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Abstract. In this article, we are going to study the factoring probability
of Pollard’s ρ method and its efficiency during the elliptic curve primality
proving. We will describe factoring strategies and heuristics involving the
parameters controlling Pollard’s ρ method.

1. Introduction

The elliptic curve primality proving algorithm (see [1]) proves the primality
of an input number using a recursive procedure. During a recursive step, the
recursive calls are based on the factorisation of computed curve orders. The
success of the method hugely depends on the effectiveness of the factorisation
method which we apply on these orders.

Naturally the first method which one applies is trial division. This removes
the small prime factors from the curve orders. A good candidate for the next
factorisation step is Pollard’s ρ method, which we are going to study in this
paper. One can describe the ‘gain’ during a factorisation involved in a recursive
step, as the product of the small primes which we have factorised from the curve
order. The authors of [3] gave a heuristic for the expected value of this ‘gain’ in
the case of trial division. In the second section we are going to give a heuristic to
estimate the expected value of the ‘gain’ and study the probability of success of
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extracting a prime during Pollard’s ρmethod, furthermore conduct experiments
to observe how the ‘gain’ could behave in reality. In the third section we are
going to present strategies for the application of Pollard’s ρ method during the
elliptic curve primality proving algorithm.

The algorithm which we are going to analyse is from Cohen [4], we have
just changed the x2 + 1 polynomial to the x2 + c polynomial with an integer
constant c, and added a B > 0 batching threshold. We are going to examine
this particular algorithm, modified ones could yield different results.

Algorithm 1. (Pollard’s ρ) Given a composite number n, an integer constant
c and a batching threshold B, this algorithm tries to find a non-trivial factor
of n.

1. (Initialize) Set y ← 2, x ← 2, x1 ← 2, k ← 1, l ← 1, P ← 1, b ← 0.

2. (Accumulate product) Set x ← x2 + c (mod n), p ← P (x1 − x) (mod n)
and b ← b+1. If b = B, compute g ← gcd(P, n), then if g > 1 go to step
4 else set y ← x and b ← 0.

3. (Advance) Set k ← k − 1. If k �= 0 go to step 2. Otherwise, compute
g ← gcd(P, n). If g > 1 go to step 4 else set x1 ← x, k ← l, l ← 2l, then
repeat k times x ← x2 + c (mod n), then set y ← x, b ← 0 and go to
step 2.

4. (Backtrack) Repeat y ← y2 + c (mod n), g ← gcd(x1 − y, n) until g > 1.
If g < n output g, otherwise output a message saying that the algorithm
fails. Terminate the algorithm.

2. Factoring probability and the expected value of the ‘gain’

The authors of [3] wrote that the expected value of the ‘gain’ is supposed
to be ∼ ln b(n) when one applies trial division up to a b(n) bound in case of
an n natural number. Their heuristic is the following: for each prime p the
probability that p divides a given curve order m is 1/p and this results in a
‘gain’ of ln p. Hence the expected value of the total ‘gain’ is

G(b(n)) =
∑

p∈P,p≤b(n)

ln p

p
∼

b(n)∫

2

lnx

x

1

lnx
dx ∼ ln b(n).

The authors of the mentioned article expect that the ‘gain’ will still remain
∼ ln b(n) for other factoring methods.
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We are going to study the expected value of the ‘gain’ while applying Pol-
lard’s ρ method. Bach gave asymptotic description for the factoring probability
of Pollard’s ρ method in his article [2]. We present three theorems from this
article now. Define polynomials fi ∈ Z[x, y], by f0 = x and fi+1 = f2

i + y for
i > 0.

Theorem 1. Fix k ≥ 1. Choose x and y as random subjects to 0 ≤ x, y < p.
Then the probability that for some i, j < k, i �= j, fi(x, y) ≡ fj(x, y) (mod p)

is at least
(
k
2

)
/p+O(p−3/2) as p → ∞.

Theorem 2. Fix k ≥ 1. Let n have two prime factors p and q with p < q. Then
gcd(f2i+1−fi, n) �= 1, n for some i < k with probability at least

(
k
2

)
/p+O(p−3/2)

as p → ∞.

Theorem 3. Let n have two prime divisors p and q with p < q. Let k(p) =
= � 1

4 log2 p�. Then there is some i < k(p) such that gcd(f2i+1 − fi, n) �= 1, n

with probability at least Ω(ln2 p)/p.

Based on this result, we can give a simple heuristic to estimate the expected
value of the ‘gain’ for n = pq semiprimes. There exists a c > 0 constant and
a p0 ∈ N limit, for which the probability of success is greater than c(ln2 p)/p
when p is greater than p0. During a successful factorisation we get a divisor of
n, which is not one and the number itself. In this case it could be p or q so the
factorisation will result in a ‘gain’ at least ln p. From these, and the previous
heuristic, we get that

G(b(n)) ≥
∑

p∈P,p0<p≤b(n)

c ln3 p

p
∼

b(n)∫

p0

ln3 x

x

1

lnx
dx ∼ ln3 b(n)

when the b(n) bound is big enough.

Bach gave results for n = pq numbers, which are of great interest from the
viewpoint of cryptography. (Consider the RSA scheme for example.) The next
step is to extend this result to square-free numbers. The factoring probability
for arbitrary numbers is still an open question. We are going to build heavily
onto the results of Bach.

Proposition 1. Let n = p1p2 . . . pl with p1 < p2 < . . . < pl primes, l ≥ 2. Let
k(p1) = � 1

4 log2 p1�. Then there is some i < k(p1) such that gcd(f2i+1−fi, n) �=
�= 1, n with at least

Ω(ln2 p1)

p1

(
1− 1√

p1

)l−1

probability.
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Proof. (Proposition 1) The proof is the extension of the proof of theorem 3 in
the article of Bach. First we have to sharpen a statement of Bach. Consider
f2i+1 − fi (mod q) for given q prime. This polynomial splits into absolutely
irreducible factors of degrees d1, . . . , dm, where

∑
dj = 22i+1, so it vanishes

modulo q with probability at most

1

q2

m∑
j=1

[
q + 2

√
q

(
dj − 1

2

)]
≤ m

q
+

(
∑

dj)
2

q3/2
≤ 22i+1

q
+

24i+2

q3/2

according Weil’s theorem. Summing this over i = 0, . . . , k − 1 results in

2

3

4k − 1

q
+

4

15

16k − 1

q3/2

which is less than or equal to

10

15

√
q − 1

q
+

4

15

q − 1

q3/2

because k ≤ 1
4 log2 q. So the probability for some i < k, f2i+1 ≡ fi (mod q) is

less than 1/
√
q.

As for the extension, define the

αk(p) := ∃i < j < k : fi ≡ fj (mod p)

and
βk(p) := ∃i < k : fi ≡ f2i+1 (mod p)

conditions. Using these, the probability of success during the factorisation of
n is at least

P (αk(p1) ∧ ¬βk(p2) ∧ . . . ∧ ¬βk(pl))

where P (¬βk(q)) ≥ 1− 1/
√
q according our previous calculations. These con-

ditions are independent by the Chinese remainder theorem, so this is at least

P (αk(p1))
l∏

i=2

(
1− 1√

pi

)
≥ P (αk(p1))

(
1− 1√

p1

)l−1

from where, using theorem 1, we get our result by substituting Ω(ln2 p1)/p1 in
the place of P (αk(p1)). �

2.1. Experiments for measuring the ‘gain’

Taking into consideration the hidden c constant in the ordo and the p0 prime
limit, one sees that these results are merely theoretic. Conducting experiments
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reveal that the ‘gain’ is around the logarithm of the factoring limit for smaller
numbers in case of some polynomials. This coincide with what the authors
expected in [3].

The experiment is the following. We take a factoring limit and apply the
method to the odd primes below this limit. Every time when the method is
successful for a p prime, we accumulate the ln p/p value in a sum. We compute
separate sums for different factoring limits. We increase the factoring limit
from 213 up to 220 with 213 steps gaining 128 sums. The resulting sums reveal
to us how the ‘gain’ behaves as the factoring limit increases.

We have conducted the experiment using the polynomials x2+1, x2+2 and
x2 + 3. The iteration limit (see section 3) is taken to be the square root of the
factoring limit, and the batching parameter is taken from section (3.3). The
results of the experiments were almost identical for every polynomial. One can
be seen in figure 1.
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Figure 1: The behavior of the ‘gain’. The dashed line is the natural logarithm
function and the solid line represents the computed sums when the x2 + 1
polynomial was applied during the method.

Of course in reality the method performs better, because the prime factors
which are found by it aren’t bounded by a factoring limit. Also one can vary
the probability of success with the modification of the applied iteration limit.
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3. Factoring strategy during ECPP with Pollard’s ρ method

There are three parameters which one can vary during the application of
Pollard’s ρ method: the constant of the applied polynomial, a limit on the
iteration count and the batching parameter. The method could compute for a
decent amount of time, so it is mandatory to impose a limit on the iteration
count.

One could apply the method in an iterative deepening fashion: taking the
first curve order, we apply the method with one polynomial but using an iter-
ation limit. If we were not successful, we move on to the next curve order, and
factorise in the same fashion. If there are no more curve orders left, we can go
back to a previously tried one, and continue where we left off, yet again with
a limit on the iteration count. (This requires us to store the variables which
are used during the previous call.) The manner in which we choose the curve
order where we want to try harder is still an open question.

But it is not reasonable to let the method run for too long time, as one
can see in section (3.1). A better strategy involves the application of multiple
polynomials to find prime factors up to a limit, see section (3.2). If this method
fails, one could still try Pollard’s p− 1 or the elliptic curve factorisation.

To optimise the runtime of the method, one can fine tune the applied batch-
ing parameter as it is described in section (3.3).

3.1. Distribution of the iteration count

Pollard’s ρ method computes with the xm+1 = f(xm) iteration, where f
is our selected polynomial. Starting this iteration with an x0 = n natural
number, sooner or later a cycle will appear in the xm (mod n) iteration. If n
has a p prime factor, then there will be a cycle much sooner in the xm (mod p)
iteration presumably. Now setting x0 = p for a p prime and executing the
method until this prime is introduced in the greatest common divisor, we can
obtain the iteration count for the given prime. Given that we have chosen our
polynomial right, it can be sought as a random map, so this given prime will
be factored out from any natural number which has it as a divisor, with nearly
the same iteration count.

Let m(p) be the iteration count of the examined method for a given p prime.
We have executed the method with the x2 + 1, x2 + 2 and x2 + 3 polynomials
for odd primes below l = 220 resulting in k = 82024 samples, and investigated
the distribution of these m(p)/

√
p samples. We took the 16

√
l value as a

limitation on the number of iterations during one execution of the method,
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so the computations would not take so long. The appropriate bin width is
calculated with 2(Q3 − Q1)/

3
√
k, where Q3 and Q1 are the third and the first

quartiles of the ordered samples. The results can be seen in figure 2.
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Figure 2: The histograms and the distributions of the computed data for the
polynomials x2 + 1, x2 + 2 and x2 + 3 from the top to the bottom.
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Repeating the computations with different polynomials yielded near identi-
cal distributions. The results coincide with the results of Knuth [5], who wrote
that m(p) has an average value of about 2

√
p. From these observations, one

can see that it is reasonable to carry out the computations until c 4
√
n, where

c = 6 or c = 8 is an acceptable choice.

3.2. Finding prime factors up to a limit

One could find every prime factor up to a given limit with Pollard’s ρ
method, similarly as it can be seen in MapleTM with Pollard’s p − 1 method.
However, in the case of Pollard’s ρ method, we achieve this by executing the
method multiple times with different polynomials. This is useful when one
wants to obtain every possible prime factor of a number up to a given limit.
Of course, because of the nature of Pollard’s ρ method, one could gain larger
primes than the posed limit, but up to this limit every prime factor will be
found. The process is the following.

If one performs Pollard’s ρ on the p primes up to an n natural number
applying 2

√
p iteration limit, then after processing every prime approximately

half of the them will be factorised successfully, independently from the iterated
polynomial. The result will be similar if one takes 2

√
n for the iteration limit

through this process, though there will be more primes which are factorised
successfully.

Based on this, first we “sieve” the primes with an f1 polynomial up to n,
then we sieve the remaining primes with an f2 �= f1 polynomial, and so on. In
every round, we apply 2

√
n iteration limit and we use a polynomial which we

haven’t used so far. With every sieving, the number of the remaining primes
halves, so we quickly arrive to a point where only a few primes remain. Now
we multiply these remaining primes to get an N constant.

Finding prime factors up to n is now done in the following fashion. We did
the aforementioned process for this n natural number, we used the polynomials
f1, f2, . . . , fk, and gained the product of the remaining primes N . Now let’s
say, that we have an m natural number and we want to find every prime factor
of m which is smaller than n. We perform Pollard’s ρ method on this number
with the 2

√
n iteration limit using the f1, f2, . . . , fk polynomials. If we weren’t

successful up until this point, then we compute gcd(m,N), which is supposed
to factorise out the remaining primes from m which are smaller than n.

We have done the described computations for n = 220. After applying
f(x) = x2+ c with c = 1, 2, . . . , 6, only 34 primes remained. Of course, one can
vary the iteration limit, to adjust the number of the required polynomials and
the size of N .
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3.3. Heuristic for a batching parameter

Denote the running time of our multiplication algorithm with µ ∈ N → R
and the running time of our gcd algorithm with γ ∈ N → R, where the argu-
ments of these functions should be interpreted in bits. We will only concentrate
on these operations during the analysis of algorithm 1, because these are the
dominant ones from the viewpoint of runtime.

Let’s look at a part of the execution, which starts at the “accumulate prod-
uct” step and ends after the gcd check and the multiplications in the “advance”
step. Denote this part of the execution as a cycle. Now the algorithm performs
the accumulate product step k times in a cycle, where k is a power of two and
increases to the consecutive power of two at the end of every cycle, except the
first. There are gcd checks interleaved in these cycles at every Bth step and at
the end. Depending on the size of the B threshold, there could be cycles where
we do not perform any gcd operations in the accumulate product step, only in
the advance step.

The required operations in an “empty” cycle will consist of two modular
multiplications in every execution of the accumulate product step, finished with
a gcd operation and k modular multiplications in the advance step. This gives
us

t1(k) := 4kµ(lnn) + γ(lnn) + 2kµ(lnn),

because a modular multiplication consists of a multiplication and a modular
correction. The required operations in a not-empty cycle will consist of the
operations in the empty cycle plus the interleaved gcd operations. In this case,
we have

t2(k) := 6kµ(lnn) +

(⌊
k

B

⌋
+ 1

)
γ(lnn),

because there will be �k/B� interleaved gcd operations.

Let’s presume that there will be m cycles before the algorithm starts back-
tracking. There will be two cycles where k = 1, so the required operations for
these cycles will be

t1(1) +

�log2 B�∑
l=0

t1(2
l) +

m−1∑
l=�log2 B�+1

t2(2
l)

at most, because the number of empty cycles will be �log2 B�. This is equal to

(m+ 1)γ(lnn) + 6(2m − 1)µ(lnn) + γ(lnn)
m−1∑

l=�log2 B�+1

⌊
2l

B

⌋
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where
m−1∑

l=�log2 B�+1

⌊
2l

B

⌋
<

2m − 1

B
,

although the sum could be empty. This happens in the case when we split the
input during the empty cycles. For this end, let’s presume from now on that
�log2 B�+ 1 ≤ m− 1 holds.

As for the backtracking, one should note that the required number of it-
erations during the backtrack step will be at most B. During one of these
repetitions, a modular multiplication and a gcd operation occurs, so

B(2µ(lnn) + γ(lnn))

operations will be performed in the backtrack step at most. Summing the
parts, we get that for an algorithm execution with m cycles

(
2m − 1

B
+B +m+ 1

)
γ(lnn) + (6(2m − 1) + 2B)µ(lnn)

operations are required at most. Here we have control over B only, so the

(
2m − 1

B
+B + 2B

µ(lnn)

γ(lnn)

)
γ(lnn)

part is interesting to us. Here we have to minimise B while n and m are fixed.
Examining the expression inside the parentheses, we get that it has a minimum
when

B =

√
2m − 1

2µ(lnn)
γ(lnn) + 1

if B is positive. From the analysis of Cohen, we know that as the smallest
p prime factor of n tends to infinity, the required cycles performed will be
asymptotically log2

√
p which is at most log2

4
√
n, so

B =

√√√√ 4
√
n− 1

2µ(lnn)
γ(lnn) + 1

∼ 8
√
n

because γ grows much faster than µ. By these heuristics it seems better to
choose B to be 8

√
n instead of a constant value which we might have fixed by

feeling. Take note that this choice of B parameter makes our �log2 B� + 1 ≤
m− 1 requirement valid if n is sufficiently big.
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