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Abstract. For an integer n denote (n)g the sequence of digits of
the g-ary representation of n. Mahler [17] proved that the number
0.(1)10(g)10(g

2)10 . . . is irrational for any g ≥ 2. It has many general-
izations and refinements. Here we prove further generalizations. In the
first direction we replace the sequence of powers by weighted sums of el-
ements of a finitely generated multiplicative semigroup of a number field.
In the second direction, the base g is replaced by an algebraic integer. As a
byproduct, we prove a Mahler-type result replacing the sequence of powers
by a fixed coordinate of solutions of a norm form equation.

1. Introduction

Let K be an algebraic number field and denote ZK its ring of integers. Let
R be a subring of ZK, p ∈ R[X] monic and D ⊂ R be finite, which includes a
complete residue system modulo p(0). The pair (p,D) is called a number system
with finiteness property, with shorthand GNS, in R[X], if for any 0 �= a ∈ R[X]
there exist an integer � ≥ 0 and a0, . . . , a� ∈ D, a� �= 0 such that

(1.1) a ≡ a0 + a1X + · · ·+ a�X
� (mod p).

With other words any element of R/(p) has a representative polynomial with
coefficients belonging to D. In the sequel � will be called the length of the
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(p,D)-representation of a. It will be denoted by l(a). Further, we denote the
sequence of the digits a0, a1, . . . , a� by (a)p.

This concept generalizes the radix as well as the negative-base representa-
tions of the integers and the canonical number systems in algebraic number
fields. Indeed if p is irreducible in R[X] and γ is a complex zero of p then
L = K(γ) is a finite extension of K, i.e., itself an algebraic number field. More-
over R[γ] is a subring of ZL, which is isomorphic to R/(p). Thus, inserting γ
on the place of X in (1.1) we get

(1.2) β = a(γ) = a0 + a1γ + · · ·+ a�γ
�.

The elements β run through R[γ]. In this case we call the pair (γ,D) a GNS
in R[γ] and denote the sequence or word of digits a0a1 . . . a� of β by (β)γ .

In the case of K = Q, hence ZK = Z, p = X − 10 and D = {0, 1, . . . , 9},
which means γ = 10, our equation (1.2) gives the decimal representation of
the positive integer β. The negative integers can not have similar representa-
tion because the sum of the right hand side is always non-negative. However,
choosing p = X + 10 and the same D as before, it is easy to see that (p,D) is
a GNS in Z[x], thus, any integer β has a representation (1.2) with γ = −10.

The positive-based, especially decimal, representation is used since the an-
cient time while the negative-based representation was introduced by Grünwald
[10]. Knuth [15] and Penney [19] studied radix representations in some quadratic
number fields. A GNS with the special digit set D = {0, 1, . . . , |p(0)| − 1} was
called canonical number system, CNS, by Kátai and Szabó [14]. They, Gilbert
[9] as well as Kátai and Kovács [13] characterized completely the bases of CNS
in quadratic number fields. GNS over Z was defined by Pethő [20], and over
orders of algebraic number fields by Pethő and Thuswaldner [21]. Indlekofer,
Kátai and Racskó [12] studied connections between number systems and fractal
geometry.

For an integer n denote (n)g the sequence of digits of the g-ary representa-
tion of n, where g ≥ 2. Plainly, (n)g, and (a)p above, are finite words over the
actual digit set, as alphabet. For finite words concatenation is the operation of
joining them end-to end. If w1, w2 are finite words over the alphabet A then
their concatenation will be denoted by w1w2. Plainly, w1w2 is a finite word
over A as well.

Mahler [17] proved that the number 0.(1)10(g)10(g
2)10 . . . is irrational for

any g ≥ 2. Bundschuh [6], Niederreiter [18], Shan [23] generalized and/or gave
new proofs of the result of Mahler. The most general statement of this art is due
to Shan and Wang [24]: Let g, h ≥ 2 be two integers, (ni)

∞
i=1 be a strictly in-

creasing sequence of integers. Then the positive real number 0.(gn1)h(g
n2)h . . .

is irrational. Notice that their proof works for unbounded sequences of integers
(ni)

∞
i=1 too. Mahler’s result was generalized for numeration systems based on
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linear recursive sequences of integers by Barat, Frougny and Pethő [1] and by
Becker [3]. Refinements and applications were given by Becker and Sander [4]
as well as by Barat, Tichy and Tijdeman [2].

The g-ary representation of a real number is periodic exactly for the rational
numbers. Thus, the result of Mahler and his successors means that the infinite
word (gn1)h(g

n2)h . . . is not periodic. This version of Mahler’s statement allows
far reaching generalizations. Equipped with the GNS concept it is straightfor-
ward to ask under which condition is the infinite word (αn1)γ(α

n2)γ . . . not
periodic. Here the algebraic integer γ is chosen such that (γ,D) is a GNS in
R[γ] and α ∈ R[γ]. Fortunately, we can go further by replacing the powers of α
by linear combinations of elements of a finitely generated multiplicative group
of R[γ].

2. Main results

In this section we collect the main results of these notes. Let K be an
algebraic number field and S ⊂ ZK be finite. With Γ(S) and Γ∗(S) we will
denote the multiplicative semigroup and multiplicative group generated by S
in K, respectively.

Our first result deals with (p,D)-representations of weighted sums of ele-
ments of a multiplicative semigroup of polynomials.

Theorem 2.1. Let K be a number field, R be a subring of ZK and (p,D)
be a GNS over R. Let 0 /∈ A,B ⊂ R[X] be finite, Γ′ be the multiplicative
semigroup generated by B and s ≥ 1. Let (cn) be a sequence of elements of
form cn = an1un1 + · · · + ansuns with uni ∈ Γ′, ani ∈ A, 1 ≤ i ≤ s, n ≥ 1.
If there exists a zero γ of p such that (cn(γ)) has infinitely many different
members, a(γ), b(γ) �= 0 for all a ∈ A, b ∈ B and γ /∈ Γ∗({b(γ) : b ∈ B}), then
the infinite word W = (c1)p(c2)p . . . is not periodic.

The next theorem follows from the first one, but is interesting on its own
right. The principal difference is that here we are dealing with radix represen-
tations in algebraic number fields.

Theorem 2.2. Let L = K(γ) be a finite extension of the number field K, where
γ is an algebraic integer. Let G = ZK[γ] and D be a complete residue system
modulo γ in ZK. Let 0 /∈ AG,BG ⊂ G be finite, and ΓG = 〈β : β ∈ BG〉. Let
(c′n) be a sequence whose terms have the form c′n = αn1µn1+ · · ·+αnsµns with
αnj ∈ AG, µnj ∈ ΓG, 1 ≤ j ≤ s, n ≥ 1. If (γ,D) is a GNS in G, γ /∈ Γ∗

G and
(c′n) has infinitely many distinct terms then the infinite word (c′1)γ(c

′
2)γ . . . is

not periodic.
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Specialising the last theorem to the simplest case, when K is the rational
number field and considering the ordinary g-ary representation we get imme-
diately the following far reaching generalization of Mahler’s result.

Corollary 2.3. Let A,B be finite sets of positive integers and g ≥ 2 be a
positive integer. Let Γ = Γ(B) and cn = an1un1 + · · · + ansuns with uni ∈ Γ,
ani ∈ A, 1 ≤ i ≤ s, n ≥ 1. If g /∈ Γ then the number 0.(c1)g(c2)g... is irrational.

To illustrate the power of Theorem 2.2 we formulate a further corollary
which is dealing with (γ,D)-representations of sequences of algebraic integers
with given norm.

Corollary 2.4. Let γ be an algebraic integer, which is neither rational nor
imaginary quadratic. Let K = Q(γ), D be a complete residue system modulo γ
in ZK and (p,D) be a GNS in Z[γ]. If (cn) is a sequence of elements of Z[γ] of
given norm, which includes infinitely many pairwise different terms, then the
word (c1)γ(c2)γ . . . is not periodic.

Notice that in the rational and in the imaginary quadratic fields there are
only finitely many units, and, more generally, finitely many elements with given
norm, hence there are cases, when (c1)γ(c2)γ . . . is, and other cases, when it is
not periodic.

Our final result deals with the coordinates of solutions of norm form equa-
tions. Let K be an algebraic number field of degree k. It has k isomorphic
images, K(1) = K, . . . ,K(k) in C. Let α1 = 1, α2, . . . , αs ∈ ZK be Q-linear
independent elements and L(X) = α1X1+ · · ·+αsXs. Plainly s ≤ k. Consider
the norm form equation

(2.1) NK/Q(L(X)) =

k∏
j=1

(α
(j)
1 X1 + · · ·+ α(j)

s Xs) = t,

where 0 �= t ∈ Z, which solutions are searched in Z. Notice that the polyno-
mial NK/Q(L(X)) is invariant against conjugation, thus, it has rational integer
coefficients. For the theory of norm form equations we refer to the books of
Borevich and Safarevich [5] and of Schmidt [22]. Now we are in the position to
state our Mahler-type result on the solutions of (2.1).

Theorem 2.5. Let (xn) = ((xn1, . . . , xns)) be a sequence of solutions of (2.1),
including infinitely many different ones. Let 1 ≤ j ≤ s be fixed and g ≥ 2.
If (xnj) is not ultimately zero then the infinite word (|x1j |)g(|x2j |)g . . . is not
periodic.
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3. Proof of Theorems 2.1, 2.2 and of Corollary 2.4

The basic tool of our proofs is the theory of S-unit equations. We define
them here and cite the fundamental theorem on such equations. For an al-
gebraic number field K denote MK its set of places. Let S ⊂ MK be finite
including all archimedean places, let OS denote the set of S-integers of K, i.e.,
the set of those elements α ∈ K with |α|v ≤ 1 for all v ∈ MK \ S.

Consider the weighted S-unit equation

(3.1) α1X1 + · · ·+ αsXs = 1,

where s ≥ 2, α1, . . . , αs are non-zero elements of K and the solutions x1, . . . , xs

belong to OS . A solution x1, . . . , xs of (3.1) is called degenerate if there exists
a proper subset I of {1, . . . , s} such that

∑
i∈I αixi = 0. The next theorem was

proved by Evertse [7] and independently by van der Poorten and Schlickewei
[25], see also [8].

Theorem 3.1. Equation (3.1) has only finitely many non-degenerate solutions
in x1, . . . , xs ∈ OS.

In the sequel q mod p denotes the reminder of q by applying on it the
Euclidean division by p. The function q mod p is defined for all elements of
ZK[X] because p is monic. Notice that the degree of q mod p is less than m.

Proof of Theorem 2.1. The spirit of the proof goes back to Shan and
Wang [24]. Assume in the contrary that W is eventually periodic. We deduce
a weighted S-unit equation with infinitely many solutions, which lead to a
contradiction.

Step 1. Preparation for the deduction of the S-unit equation. Assume that
a period of W is H of period length h, i.e., W = W0H

∞, where W0 is a finite
word over D. Omitting, if necessary, some starting members of (cn) we may
assume without loss of generality that W0 = λ1, i.e., W is purely periodic.
Thus, there exist for all n ≥ 1 cn0, cn1 ∈ D∗ of length less than h and non-
negative integers en such that (cn)p = cn0H

encn1. More precisely, cn0 is a
suffix and cn1 is a prefix of H.

There exist only finitely many, modulo p, pairwise incongruent polynomi-
als with a (p,D)-representation of bounded length. Thus, the length of the
words (cn)p, n = 1, 2, . . . is not bounded. Further, there are only |A|s possible
choices for the s-tuple (an1, . . . , ans). Thus, there exists an infinite sequence
k1 < k2 < . . . of integers such that l((ckn

)p) ≥ h and l((ckn+1
)p) > l((ckn

)p)
and the s-tuples (akn1, . . . , akns) are the same for all n ≥ 1.

1λ denotes the empty word
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Write (ckn
)p = ckn0H

ekn ckn1, where ckn0 is a suffix and ckn1 is a prefix of H
both of length at most h−1 for all n ≥ 1. AsH has at most h−1 proper prefixes
and h− 1 proper suffixes there exists an infinite subsequence of kn, n ≥ 1 such
that the corresponding words satisfy ckn0 = C0 and ckn1 = C1. In the sequel
we work only with this subsequence, therefore, to simplify the notation, we
omit the subindexes. With this simplified notation we have (cn)p = C0H

enC1,
where C0 denotes a proper suffix, and C1 a proper prefix of H and (en) tends
to infinity. Finally, replacing H by the suffix of length h of HC1, and denoting
it again by H we have (cn)p = C0H

en . If C0 �= λ then set C0 = dtdt+1 . . . dh−1

and H = d0d1 . . . dh−1 with t > 0 and dj ∈ D.

Now we are in the position to turn the last equation into a weighted S-unit
equation. Indeed, put q0 = 0, if C0 = λ and q0 = dt+dt+1X+. . .+dh−1X

h−t−1

otherwise, and q = d0 + d1X + . . .+ dh−1X
h−1 the polynomials corresponding

to C0 and H, respectively. Then

cn ≡ q0 +Xh−t
en−1∑
i=0

Xihq ≡

≡ q0 + qXh−t
en−1∑
i=0

Xih ≡

≡ q0 + qXh−tX
hen − 1

Xh − 1
≡

≡ q

Xh − 1
Xhen+h−t + q0 −

qXh−t

Xh − 1
(mod p).

Step 2 Application of the theory of S-unit equations. The last congruence
lead to a weighted S-unit equation. Indeed, by the assumption, there exists a
zero γ of p such that a(γ), b(γ) �= 0 for all a ∈ A, b ∈ B. Substituting γ for X,
the last congruence implies

(3.2) cn(γ) = a1(γ)un1(γ) + . . .+ as(γ)uns(γ) = as+1(γ)γ
hen+h−t + as+2(γ),

where we set

as+1(γ) =
q(γ)

γh − 1
,

as+2(γ) = q0(γ)−
q(γ)γh−t

γh − 1
.

By Proposition 2.3. of [21] |γ| > 1, hence γh �= 1 and the right hand side of
(3.2) is well defined. Plainly ak(γ) ∈ K(γ), k = 1, . . . , s + 2 and ak(γ) �= 0,
k = 1, . . . , s by assumption. If as+1(γ) = 0 then (cn(γ)) is a constant sequence,
which again contradicts the assumptions. Thus, as+1(γ) �= 0 either. Taking
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Γ1 the multiplicative semigroup generated by γ and b(γ), b ∈ B we see that
the equation (3.2) has infinitely many solutions in (u1, . . . , us, us+1) ∈ Γs+1

1 .
Moreover, we show that it is an S-unit equation in s or s+1 unknowns according
as as+2 = 0 or not.

Assume first as+2(γ) = 0. After division by a1(γ)un1 �= 0 and rearranging
the terms we get from (3.2) the equation

(3.3) α1x1 + · · ·+ αsxs = 1,

with

αi = −ai+1(γ)

a1(γ)
, if 1 ≤ i < s,

αs =
as+1(γ)

a1(γ)
,

which has infinitely many solutions in x1, . . . , xs ∈ Γ∗
1, namely

xi =
un,i+1(γ)

un1(γ)
, if 1 ≤ i < s,

xs =
γhen+h−t

un1(γ)
, n = 1, 2, . . . .

Notice that x1, . . . , xs−1 belong to the multiplicative group Γ∗, which is a
proper subgroup of Γ∗

1 by the assumption γ /∈ Γ∗. Equation (3.3) has infinitely
many solutions (x1, . . . , xs) ∈ Γ∗

1, hence, by Theorem 3.1, there is a proper
subset I of {1, . . . , s} such that

∑
i∈I αixi = 0 hold for infinitely many solutions.

Now we distinguish two cases

Case 1. s ∈ I. Plainly I has at least two elements. Let k ∈ I \ {s}.
Dividing the equation

∑
i∈I αixi = 0 by αkxk �= 0 and rearranging we get an

equation with infinitely many solutions in Γ∗
1 of the same shape as (3.3), but

in less unknowns. Notice that all but exactly one coordinates of the solution
vector belong to Γ∗. After some steps we get an equation of form αx = 1 with
0 �= α ∈ K(γ), which has infinitely many solutions in x ∈ Γ∗

1 and such that the
set of exponents of γ in the solutions is unbounded.

Let u1, u2 ∈ Γ be two solutions of αx = 1 such that the exponents of γ in
u1 and u2 are different. Then αu1 = αu2 = 1, which implies u1/u2 = 1. As
the exponents of γ in u1/u2 is not zero and γ /∈ Γ this is a contradiction.

Case 2. s /∈ I. Then J = {1, . . . , s}\I is such a proper subset of {1, . . . , s}
for which

∑
i∈J αixi = 1 holds for infinitely many xi ∈ Γ∗, i ∈ J \ {s}, and

xs ∈ Γ∗
1. Hence, we arrived again the equation (3.3) in less unknowns. The

argument of Case 1 applies again.
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In the case as+2(γ) �= 0 we can use the same argument as in the case
of as+2(γ) = 0 with the only difference that the number of unknowns is
one more. �

Proof of Theorem 2.2. The minimal polynomial p of γ over K is monic and
its coefficients are integers in K. As G = ZK[γ] the mapping π :
: ZK[X]/pZK[X] �→ G, π(q) = (q mod p)(γ) for q ∈ ZK[X], is an isomorphism.

Thus, for all β ∈ BG and α ∈ AG there exist b ∈ ZK[X] with β = π(b) = b(γ)
and a ∈ ZK[X] with α = π(a) = a(γ), respectively. Plainly a, b �= 0 for
all a ∈ AG and b ∈ BG. In the rest of this proof we fix these polynomials
and set A = {a : π(a) = α, α ∈ AG}, B = {b : π(b) = β, β ∈ BG} and
set Γ = 〈b : b ∈ B〉. We have µ ∈ ΓG if and only if µ = βn1

1 · · ·βnr
r with

n1, . . . , nr ∈ Z≥0. The mapping π is obviously an isomorphism between Γ and
ΓG. We supposed γ /∈ Γ∗

G, hence all assumptions on A,B and Γ of Theorem 2.1
satisfy.

It remains to prove that the sequence (cn(γ)) has infinitely many distinct
terms for a suitably chosen sequence (cn) with cn ∈ ZK[X]. To prove this set
(cn) the sequence with cn = an1µn1+ · · ·+ansµns with π(anj) = αnj , π(unj) =
= µnj for all j = 1, . . . , s, n ≥ 1. Then π(cn) = c′n, i.e, (cn mod p)(γ) = c′n ∈ G
for all n ≥ 1.

If δ ∈ G then there exists on one hand a polynomial d ∈ ZK[X] of degree
less then deg p such that δ = d(γ). On the other hand there exist dj ∈ D,
j = 0, . . . , l such that

δ = d(γ) =
l∑

j=0

djγ
j

because (γ,D) is a GNS in G. Let σ be a relative conjugation of the field
extension L/K. Then

σ(δ) = d(σ(γ)) =

l∑
j=0

djσ(γ)
j ,

which means

d(X) ≡
l∑

j=0

djX
j mod (X − σ(γ))

for all σ. The relative conjugates of γ runs through the roots of p, which are
pairwise different. Hence

d ≡
l∑

j=0

djX
j (mod p).
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This is the (p,D)-representation of d, moreover π(d) = γ. As π is an isomor-
phism, (p,D) is a GNS in ZK[X]. Hence, by Theorem 2.1, (c1)p(c2)p . . . is not
periodic. Because of (cn)p = (c′n)γ for all n ≥ 1 the sequence (c′1)γ(c

′
2)γ . . . is

not periodic either, as stated. �

Remark 3.2. Becker proved in [3], see Corollary, a Mahler type result for se-
quences (fk) where fk =

∑n
i=1 aiu

nk
i and (nk) is a strictly increasing sequence

of natural numbers. He assumed a1, . . . , an, u1, . . . , un nonzero algebraic num-
bers such that neither ui nor uiu

−1
j are roots of unity and (fk) to be natural

numbers for all k. He actually proved that (f1)h(f2)h . . . is not periodic for each
h ≥ 2. If h /∈ 〈u1, . . . , un〉 then Becker’s result is a special case of Corollary
2.2. Analyzing more carefully Step 2 of the proof of Theorem 2.1 in the special
case treated by Becker our method is capable to handle the remaining cases.

Proof of Corollary 2.4. Assume that NK/Q(cn) = N for all n ≥ 1, where
NK/Q denotes the norm function from K to Q. It is well known, see e.g. [5],
that there exists a finite set A such that any element of ZK of norm N can
be written as αu, with α ∈ A and u a unit of ZK. As K is neither the field
of rational numbers nor an imaginary quadratic number field, it has infinitely
many units, and, by Dirichlet’s unit theorem there are units ε1, . . . , εr of infinite
order and non-negative integers n1, . . . , nr such that u = εn1

1 . . . εnr
r .

The number γ is a base of a radix system in Z[γ], thus, its norm is at
least two in modulus, see [16], hence it is not a unit, i.e. γ /∈ 〈ε1, . . . , εr〉.
Taking s = 1 all assumptions of Corollary 2.2 satisfy, hence (c1)γ(c2)γ . . . is
not periodic. �

4. Proof of Theorem 2.5

For the convenience of the reader we repeat the definition of the norm form
equation. Let K be an algebraic number field of degree k. It has k isomorphic
images, K(1) = K, . . . ,K(k) in C. Let α1 = 1, α2, . . . , αs ∈ ZK be Q-linear
independent elements and L(X) = α1X1+ · · ·+αsXs. Plainly s ≤ k. Consider
the norm form equation

(4.1) NK/Q(L(X)) =
k∏

j=1

(α
(j)
1 X1 + · · ·+ α(j)

s Xs) = t,

where t ∈ Z, which solutions are searched in Z. For the theory of norm form
equations we refer to the books of Borevich and Safarevich [5] and of Schmidt
[22].
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Proof of Theorem 2.5. Let M denote the Z-module generated by α1, . . . , αs.
Plainly M ⊆ ZK and it coincides with the values of L(x), when x runs through
Zs. The module M is called full if s = k. Further M is called degenerate if
it contains a submodule M0, which is proportional to a full module in some
subfield L of K, where L is neither rational nor imaginary quadratic. It was
proved by Schmidt, [22] (Theorem 1D, p. 212), that there exists a t such that
(4.1) has infinitely many solutions x ∈ Zs if and only if M is degenerate.

If M is a degenerate module, 0 �= µ ∈ M such that NK/Q(µ) = t and

M0 = µML, where ML is a full module in L then the group of units UM0
of

the multiplication ring of ML is infinite. The set µUM0 is called a family of
solutions. Schmidt proved, [22] (Theorem 4B, p. 217), that the solutions of
(4.1) are contained in finitely many families of solutions.

There exists a family and an infinite subsequence of (xn) such that the
sequence of the j-th coordinate of its members is not ultimately zero. It will be
clear that we may assume without loss of generality that already (xn) satisfies
this property. Thus, there exists µ ∈ M and an infinite subgroup U of the
group of units of ZK such that for each n ≥ 1 there exists un ∈ U such that

α1xn1 + · · ·+ αsxns = µun.

Taking conjugates we obtain the system of linear equations

α
(i)
1 xn1 + · · ·+ α(i)

s xns = µ(i)u(i)
n , i = 1, . . . , k,

which implies
xnj = ν1u

(1)
n + · · ·+ νku

(k)
n

with some constants νi belonging to the normal closure of K. As (xnj) is not
ultimately zero, not all of the νi, 1 ≤ i ≤ k can be zero. On the other hand it
can happen, that some of them is zero. Omitting such virtual terms only the
length, but not the essence of the expression on the right hand side changes.
We may assume again without loss of generality that ν1, . . . , νk �= 0.

We claim that (xnj) is not bounded. Indeed, assume that this is false, i.e.,
(xnj) is bounded. Then it has an infinite constant subsequence (xnij) such that
xnij = z �= 0 for all i ≥ 1, but (xnij) are pairwise different. To simplify the
notation we assume that already (xn) satisfies this property. Thus, the unit
equation

(4.2) ν′1u
(1)
n + · · ·+ ν′ku

(k)
n = 1

admits infinitely many solutions u
(1)
n , . . . , u

(k)
n , where ν′i = νi/z, i = 1, . . . , k.

(4.2) is indeed a unit equation because U , as a subgroup of the group of units
of ZK, is finitely generated. Denote η1, . . . , ηr the basis of its free part. Now let
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Γ = 〈η(h)i , 1 ≤ i ≤ r, 1 ≤ h ≤ k〉, which is defined in the normal closure of K.

Plainly u
(1)
n , . . . , u

(k)
n ∈ Γ, i.e., (4.2) is a unit equation. By Theorem 3.1 the set

{1, . . . , k} has a proper subset I such that
∑

i∈I ν
′
iu

(i)
n = 0 has infinitely many

solutions un ∈ Γ. Hence
∑

i∈{1,...,k}\I ν
′
iu

(i)
n = 1 has infinitely many solutions

un ∈ Γ either. The shape of the last equation is the same as of (4.2), but it
has less summands. Thus, after some step we arrive the equation ν′hu

(h) = 1
for some 1 ≤ h ≤ k, which has infinitely many solutions u ∈ Γ, more precisely
u ∈ 〈η1, . . . , ηr〉, which is absurd because η1, . . . , ηr have infinite order. Thus,
the claim is proved.

As (xnj) is not bounded (|xnj |) has a strictly monotone increasing infinite
subsequence. From here on we can repeat the proof of Theorem 2.1. �

Remark 4.1. If K is a real quadratic number field (4.1) is called Pell equation,
which solutions can be expressed by the union of finitely many linear recursive
sequences. In this case Theorem 2.5 is included implicitly in Theorem 1 of [1].

Győry, Mignotte and Shorey [11] proved with the notation of Theorem 2.5
that if the set of the j-th coordinate of the solutions of (4.1) is not bounded
then the greatest prime factor of them tends to infinity. Our Theorem 2.5 shows
that the assumption of Győry, Mignotte and Shorey always holds if (4.1) has
infinitely many solutions, which j-th coordinates is non-zero.

Acknowledgement. The author thanks the anonymous referee for his/here
comments.
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