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Abstract. Dirichlet series and their analytic properties play a central
role in analytic number theory. We prove a variant of George Pólya’s four
point theorem, resp. Rolf Nevanlinna’s five point theorem for a large class
of functions representable as Dirichlet series in some right half-plane.

1. Introduction and statement of the main result

One of the most spectacular theorems in complex analysis is Rolf Nevan-
linna’s five point theorem [16] which claims that two meromorphic functions
sharing five different values are identical. Hermann Weyl called it “one of the
few great mathematical events of [the twentieth] century” ([23], p.8). Recall
that two meromorphic functions f and g are said to share a value c ∈ C∪{∞}
if the sets of preimages of c under f and g are identical, i.e., f−1(c) :=
:= {s ∈ C : f(s) = c} = g−1(c); if in this case the roots of the equations
f(s) = c and g(s) = c have the same multiplicity, then f and g are said to
share the value c counting multiplicity (CM), otherwise the value is shared ig-
noring multiplicity (IM) which is in this case often not explicitly mentioned.
Moreover, if four values are shared CM, then the functions are identical or can
be transformed into one another by a Möbius transform. This result is best
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possible since exp(±s) share c = 0,±1,∞ CM. It shall be noticed that George
Pólya [18] proved a forerunner of Nevanlinna’s uniqueness theorem already in
1921 showing that two entire functions of finite order sharing four complex
values CM are identical. Since entire functions share the infinite value as well,
Pólya’s theorem is also about five points; however, they are shared counting
multiplicities and the functions are assumed to be entire and of finite order. It
seems that this result is almost forgotten. It is our aim to show how success-
fully Pólya’s ansatz can be used in some instances of recent research without
the heavy machinery of Nevanlinna theory!

In the last decade, the topic of sharing values has been discussed with
respect to meromorphic functions appearing in number theory. In particular,
it was shown by the second named author that two distinct normalized elements
from the Selberg class sharing a complex value CM are already identical [20, 21].
Those functions are examples of generating functions to arithmetical data,
hence restricting to this class one could expect that indeed a smaller number
than five values can be shared. Indeed, the number of shared complex values
is zero as follows from further analytic properties to be fulfilled by elements of
the extended Selberg class (e.g., representation as a Dirichlet series as well as
an Euler product, a functional equation and, finally, a certain normalization
which rules out that with a function L also a complex multiple λL with λ �= 0, 1
is an element). In the frame of the Selberg class it would be desirable to show
that different primitive functions cannot share zero IM, since this would imply
unique factorization of these arithmetically relevant functions with important
consequences as, for example, the Artin conjecture on the holomorphicity for
L-functions to non-abelian algebraic extensions (see M.R. Murty & V.K. Murty
[14], p. 184).

In this note we shall consider another more general class of functions and
derive an optimal uniqueness theorem by using only basic results from complex
analysis.

More precisely, we are interested in entire functions of finite order that can
be represented as a Dirichlet series in some right half-plane, that is

(1.1) L(s; f) :=
∑
n≥1

f(n)n−s,

where the coefficients are given by an arithmetical function f : N → C. The
prototypical examples are Dirichlet L-functions L(s;χ) associated with a prim-
itive residue class character χ (e.g., the Legendre symbol χ(n) = (aq ) for a

prime q), resp. their continuation on N by defining χ(n) = 0 for all n not
relatively prime with q. We denote our functions in a similar form as those
Dirichlet L-functions or more general L-functions appearing in number theory
although we do not assume the existence of an Euler product as is standard
for L-functions in general.
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Theorem 1.1. For j = 1, 2, let L(s; fj) be an entire function of finite or-
der having a convergent Dirichlet series representation of the form (1.1) in
some right half-plane. If L(s; f1) and L(s; f2) share two distinct complex val-
ues counting multiplicities, then they are identical.

To exclude trivialities we assume the functions L(s; fj) in the theorem to be
non-constant. Notice that any such pair of functions L(s; fj) considered as
meromorphic functions also share the value ∞. Nevertheless, the statement is
best possible since L(s; f2) and L(s; f1) share their zeros whenever f2 = λf1,
where λ is a non-zero constant. An explicit family of entire functions defined
as a Dirichlet series in some right half-plane is given by

L(s; fα) =
∑
n≥1

exp(−αn)n−s,

so fα(n) = exp(−αn), where α is any positive real number. In fact, these
Dirichlet series converge in the whole complex plane as follows from a classical
result due to Eugène Cahen [5] (resp. [21], §2.1, or [22], §9.14), namely that
if
∑

n≥1 f(n) converges, then the abscissa of convergence for
∑

n≥1 f(n)n
−s is

equal to

lim sup
N→∞

log
∣∣∣∑n≥N f(n)

∣∣∣
logN

.

In our example, this limit superior equals −∞ and therefore L(s; fα) is an
entire function. It is not difficult to estimate, for s = r exp(iφ),

|L(s; fα)| ≤




∑
1≤n≤r/ log r

+
∑

n>r/ log r


 exp(−αn)nr � exp(r log r)

as r → ∞, hence L(s; fα) is of finite order. Later we shall study this family
of Dirichlet series more closely to show that the statement of Theorem 1.1 is
best possible, even if the shared value is not zero. The Riemann zeta-function
ζ(s) = L(s; 1), where 1 denotes the arithmetical function constant 1, is analytic
except for a simple pole at s = 1; we shall discuss such almost entire function
briefly also in a later section.

2. Proof of the main result

Assume that L(s; f1) and L(s; f2) share two distinct complex values a and
b counting multiplicities. Sharing the value a counting multiplicities, implies
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that

�a(s) =
L(s; f1)− a

L(s; f2)− a

defines an entire function of finite order. By Jacques Hadamard’s theory of
entire functions,

(2.1) �a(s) = expPa(s)

for some polynomial Pa (see Titchmarsh [22], §8.24, or Weyl [23], p. 6).

Edmund Landau [11] proved that given a non-vanishing function D, repre-
sented by a convergent Dirichlet series D(s) =

∑
n b(n)n

−s for some right half-
plane Re s > σ0, then also its reciprocal obeys a Dirichlet series representation
1/D(s) =

∑
u q(u)u

−s in the same half-plane. Actually, we do not need this
result in its full strength (the convergence in the complete zero-free half-plane):
since every convergent Dirichlet series is zero-free in another right half-plane by
the uniqueness theorem for Dirichlet series (see Apostol [2], Chapter 11, resp.
Titchmarsh [22], §9.6), it follows that L(s; f2)− a is a non-vanishing Dirichlet
series for all s having sufficiently large real part, hence, by Landau’s theorem,
its reciprocal has a Dirichlet series representation in the same range too. Defin-
ing ε : N → C by ε(1) = 1 and ε(n) = 0 for all n > 1 (so that ε = µ ∗ 1 as
Dirichlet convolution with the Möbius µ-function; see Apostol [2], Chpater 2),
we have L(s; fj)− a = L(s; fj − aε) for j = 1, 2, and, by Landau’s theorem,

L(s; f2 − aε)−1 = L(s; g),

where (f2 − aε) ∗ g = ε. This yields

�a(s) = L(s; f1 − aε)L(s; g),

valid for all s with sufficiently large real part. Since Dirichlet series form a ring,
the right hand side is again Dirichlet series

L(s; f1 − aε)L(s; g) = L(s; (f1 − aε) ∗ g) =
∑
n≥1

ga(n)n
−s,

say. In view of ∑
n≥1

ga(n)n
−s =

∑
n≥ma

ga(n)n
−s,

where ma is the minimum of all n ∈ N for which ga(n) �= 0, and in comparison
with (2.1) it follows that

Pa(s) = log


 ∑

n≥ma

ga(n)n
−s


 =

= log ga(ma)m
−s
a + log

(
1 +

∑
n>ma

ga(n)

ga(ma)

(ma

n

)s
)
.
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The series on the right hand side converges for sufficiently large Re s, however,
for Pa being a polynomial the series has to be empty. Hence,

Pa = log ga(ma)m
−s
a = −s logma + log ga(ma)

is either constant or linear (depending on ma being equal to 1 or larger) and

�a(s) = ga(ma)m
−s
a .

Concerning the other shared value b, we find the same way

�b(s) :=
L(s; f1)− b

L(s; f2)− b
= expPb(s) = gb(mb)m

−s
b

with some constant or linear polynomial Pb. Hence

L(s; f1)− a = (L(s; f2)− a) · ga(ma)m
−s
a ,

L(s; f1)− b = (L(s; f2)− b) · gb(mb)m
−s
b .

Subtracting both equations yields

b− a = L(s; f2)
(
ga(ma)m

−s
a − gb(mb)m

−s
b

)
+ bgb(mb)m

−s
b − aga(ma)m

−s
a .

If ma = mb = 1, then the latter equation simplifies to

b− a = L(s; f2)(ga(1)− gb(1)) + bgb(1)− aga(1).

Since the left hand side is constant, it follows again from the uniqueness of
Dirichlet series representations (see Apostol [2], Chapter 11, resp. Titchmarsh
[22], §9.6), that ga(1) = gb(1), hence

b− a = (b− a)g,

where g = ga(1) = gb(1). Obviously, this implies g = 1 and L(s; f1) = L(s; f2).

If ma > 1 = mb, then

b− a = L(s; f2)(ga(ma)m
−s
a − gb(1)) + bgb(1)− aga(ma)m

−s
a

and we arrive at a contradiction by the uniqueness of Dirichlet series represen-
tations; in a similar way the case ma = 1 < mb can be treated.

Finally, if both ma and mb are ≥ 2, then the Dirichlet series on the right
hand side has vanishing constant term contradicting that the quantity on the
left hand side is non-zero.



122 N. Oswald and J. Steuding

3. The results are best possible

Comparing with the proof of other (more restrictive) uniqueness theorems
for Dirichlet series, the new tool in our reasoning is Landau’s theorem [11] (see
Bombieri & Ghosh [4] for an English version). This allows to prove uniqueness
without using Nevanlinna theory at all. In previous proofs, for example, [20,
21] by the second named author as well as [6] by Steve Gonek et al., the
characteristic function from Nevanlinna theory was used in order to bound the
degree of the polynomial in Hadamard’s factorization theorem.

An exception is the recent approach of Pei-Chu Hu & Bao Qin Li [13] which
is elementary as well. They succeed in proving a variant of the above mentioned
uniqueness theorem for the extended Selberg class. In order to show that their
result is best possible they discusss the Dirichlet polynomials L1(s) = 1+2 ·4−s

and L2(s) = 1 + 3 · 9−s which, obviously, share the value 1. This also corrects
a flaw in [20, 21] where Dirichlet polynomials were ignored. We observe that

�(s) =
L1(s)− 1

L2(s)− 1
= 2

3 · exp(s log 9
4 ).

In our opinion, this example of Dirichlet polynomials is somehow special since
the shared value is not assumed at all and is as well the constant term in the
series expansion. It follows from Theorem 1.1 that besides the value 1 no other
complex value is shared (which could in this case also be shown by a more
simple argument).

We shall provide another class of examples of Dirichlet series sharing ex-
actly one arbitrary complex value. Given c, define arithmetical functions
f1, f2 : N → C by setting

f1(1) �= c , f2(1) �= c , and f2(n) = γf1(n) for n ≥ 2,

where

γ =
f1(1)− c

f2(1)− c
.

If the corresponding Dirichlet series L(s; fj) converge throughout C, then

�(s) =
L(s; f1)− c

L(s; f2)− c
= γ

by the same reasoning as above, and, consequently, L(s; f1) and L(s; f2) share
the value c. For instance, defining f1 by f1(n) = exp(−αn) for n ≥ 2 with
some positive real number α and c �= exp(−α) yields an uncountable family of
pairs of entire Dirichlet series sharing a complex value.
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Finally, let us mention that the statement of the theorem is false if we drop
the condition of finite order. For instance, the Dirichlet series

exp
(
± 2−s

)
=

∑
m≥0

(−1)m

m!
2−ms

share the complex values 0,±1 counting multiplicities.

4. Further results involving poles and swapping values

By a similar reasoning as above it is not difficult to show that if two entire
functions L(s; fj) of finite order having a convergent Dirichlet series represen-
tation of the form (1.1) in some right half-plane and L(s; f1) is attaining a
complex value a if and only if L(s; f2) is attaining another complex value b CM
and vice versa, then f1(n) = −f2(n) for n ≥ 2 and f1(1) + f2(1) = a+ b. This
follows simply by swapping the roles of the values a ↔ b in the proof above.
More precisely, the method of proof from the previous section leads to

L(s; f1)− a

L(s; f2)− b
=

L(s; f1)− b

L(s; f2)− a
= −1.

Hence, L(s; f1) = a+ b− L(s; f2) from which the statement easily follows.

It is also not difficult to obtain results for functions represented by Dirichlet
series having a pole at s = 1 of equal order and being analytic elsewhere (as
some elements in the extended Selberg class) by an almost identical reasoning.
In this case, of course, these functions share the value ∞ as well. A greater
obstacle to consider more general functions is our assumption on meromorphic-
ity in the whole complex plane. Emil Grosswald & Franz Josef Schnitzer [7]
considered Euler products similar to the one for the Riemann zeta-function ζ,
namely

ζ∗(s) =
∏
n≥1

(1− q−s
n )−1,

where the qns are arbitrary real numbers satisfying pn ≤ qn ≤ pn+1 with pn
denoting the nth prime number in ascending order. These products have a
convergent Dirichlet series representation in the half-plane Re s > 1; moreover
Grosswald & Schnitzer showed the remarkable result that any such function
ζ∗(s) can be continued analytically to the right half-plane except for a simple
pole at s = 1 and shares there the value zero CM with ζ(s) (so they share the
Riemann hypothesis with ζ). In general these functions ζ∗ have the imagi-
nary axis as natural boundary and this indicates that our assumption to deal
with entire or almost entire functions having a Dirichlet series representation
somewhere is indeed relevant and cannot be dropped easily.
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5. Last but not least: Read the Classics!

George Pólya refers to Alfred Pringsheim [19] and not to Jacques Hadamard
[8], however, Pólya’s reference to Pringsheim’s article (page 327) is about a spe-
cial case of what is nowadays well-known as Hadamard’s factorization theorem.
Actually, as a motivation for his treatise, Pringsheim wrote:

“In several short articles, which appeared within the last two years
in the Münchener Sitzungsberichten [Sitzungsberichte der Bayerischen
Akademie der Wissenschaften zu München, Mathematisch-Physikalische
Klasse∗], I have made the attempt to derive certain main theorems
from the theory of entire transcendental functions of finite order in
a completely elementary way.”†

Pringsheim stresses his contribution in pointing out the elementary ap-
proach. The origins of those certain main theorems, however, are not men-
tioned explicitly, the reader may guess to find them in the four papers listed in
a footnote including Hadamard’s path-breaking article [8]. Another source for
Pringsheim is Henri Poincaré’s paper [17] where the converse to Hadamard’s
theorem was proven.

In his historical survey “on the birth of Nevanlinna theory”, Olli Lehto [12]
provides a valuable overview of this branch of complex analysis. The motiva-
tion for studying the value distribution of analytic functions in general at that
time was Émile Picard’s great theorem from 1879 that every non-constant entire
function attains every complex value with at most one exception and subsequent
research such as, for example, Émile Borel’s work on the order of entire func-
tions and Karl Weierstraß’ factorization theorem. Hadamard’s contribution is
considered as fundamental as well as Poincaré’s theorem (mentioned above)
which stressed “the more general viewpoint of considering a-points rather than
zeros is essential” ([12], p. 8). For the class of number-theoretical relevant
Dirichlet series and zeta-functions this idea had been revived in Edmund Lan-
dau’s invited talk [10] at the occasion of the fifth International Mathematical
Congress held at Cambridge in 1912:

”Now let me discuss some different investigations about ζ(s). Given
an analytic function, the points for which this function is 0 are

∗a journal of the Bavarian Academy of Sciences
†This is the authors’ translation of the German original: ,,In einigen kleineren Aufsätzen,

welche im Laufe der letzten zwei Jahre in den Münchener Sitzungsberichten erschienen sind,
habe ich den Versuch gemacht, gewisse Hauptsätze aus der Theorie der ganzen transcendenten
Funktionen von endlicher Ordnung in vollkommen elementarer Weise zu begründen.”
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very important; however, of equal interest are those points where
the function assumes a given value a. It is easy to prove that ζ(s)
takes any value a. But where do the roots of ζ(s) = a lie?”‡

According to Lehto, “the Nevanlinna theory came into being through the
work he did in the years 1922-24” ([12], p. 5). Unfortunately, neither Pólya’s
article [18] nor the joint work of Rolf and his one year elder brother Frithiof
Nevanlinna [15] on the Riemann zeta-function are mentioned. The latter piece
of work from 1924 includes a new proof of the Riemann-von Mangoldt for-
mula for the number of zeta zeros relying on methods from Nevanlinna theory
(which can be extended to asymptotic formulae for the number of a-points;
see [21]). According to Walter Hayman, “Nevanlinna theory was greatly influ-
enced by Rolf’s discussions with Frithiof, which continued all their lives. They
would walk up and down each side of a big square, talking mathematics” ([9],
p. 421). One may say that the initial point for Rolf Nevanlinna’s work on
value-distribution was the use of Jensen’s formula and the definition of the re-
lated Nevanlinna functions, namely the proximity function m and the counting
function N , carrying all information about the characteristics of a meromor-
phic function f . In fact, Pólya’s reasoning was restricted to entire functions
with respect to the question of shared values, but Nevannlinna could apply his
deep second fundamental theorem and deduce his five point theorem. Hay-
man wrote: “The corresponding result for entire functions of finite order and
3 values aν had previously been obtained by Pólya [1921]” ([9], p. 427). An-
other biographer, Rolf Nevanlinna’s doctoral student and first Fields medalist
Lars Ahlfors, wrote about inventing Jensen’s formula and other methods from
potential theory that

“It has been said that this step marks the birth of what was to
become and still is called Nevanlinna theory in all its facets and
variations. Nevanlinna’s first version of the Second Main Theorem
dealt with the distribution of three values, and it was observed by
Collingwood and Littlewood that the theorem and its proof carry
over to the more general situation of any q values, thereby leading to
the Defect Relation. Collingwood’s and Littlewood’s merit should
not be underrated, but it was Nevanlinna who found the key that
opened the gate.” ([1], p. III)

Nevanlinna himself cited Pólya’s work and wrote

‡This is the authors’ translation of the German original: ”Ich komme jetzt zu einigen
anderen Untersuchungen über ζ(s). Es sind bei einer analytischen Funktion die Punkte, an
denen sie 0 ist, zwar sehr wichtig; ebenso interessant sind aber die Punkte, an denen sie
einen bestimmten Wert a annimmt. Zu beweisen, dass ζ(s) jeden Wert a annimmt, ist ein
leichtes. Wo liegen aber die Wurzeln von ζ(s) = a?”
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“In the special case of entire functions of finite [order] (one of the
five values then is infinity) this theorem had earlier been found by
Mr Pólya under the additional restriction that the shared values
appear with the same multiplicities.”§

Actually, Nevanlinna also discusses some further details of Pólya’s article (when
three complex values are shared counting multiplicities and Picard exceptional
values). It is apparent from his presentation that he was deeply motivated by
Pólya’s paper.

We conclude with a quotation of Ralph Boas: “Hardy is supposed to have
said once that Pólya had brilliant ideas but didn’t follow them up. There was
some truth in this unkind remark. The Collected Papers [of Pólya] include
many brief contributions that contain the germs of substantial theories that
were redeveloped later by others. Nevertheless, it would be unreasonable to
complain, considering that at the height of his career Pólya was publishing
two or three major papers in analysis every year, and doing the same thing in
probability” ([3], p. 576).
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[17] Poincaré, H., Sur les fonctions entières, Bull. Société Mathématique
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