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Abstract. We continue the analysis of a recently introduced increasing
graph process. This model is motivated by pairwise collaborations, and it is
driven by time-dependent branching dynamics. Our model is different from
most of the similar ones in the sense that edges, not vertices, are subject
to branching. In this note, we consider a slightly generalized version of
the original model, and compare the stable age distributions of the edges
for physical, and for biological age. The former is simply the time elapsed
from birth, while the latter is measured by the number of offspring, and
the death rate is connected with it. Somewhat surprising, we find that the
tail behaviour of the two distributions is completely different, although the
expected value of the biological age is a linear function of the physical age.

1. Introduction

In [3] we introduced and analyzed a random graph process. It was moti-
vated by the following words: “Consider an increasing group of individuals who
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Excellence Program of the Ministry of Human Capacities (S. Rokob).

https://doi.org/10.71352/ac.48.105

https://doi.org/10.71352/ac.48.105
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are organized by pairwise collaborations. A successful collaboration attracts
newcomers, who start collaborating with one or both participants. However,
the new connections can weaken and exhaust the attracting pair’s collabora-
tion, which eventually ceases. Representing collaborations with edges, we get
an evolving graph process.”

The mathematical model starts with a single edge. Edges are to produce
new edges till death. For every edge, the birth events form a homogeneous
Poisson process of unit density. At every birth event a new vertex appears,
which gets connected to one or both endpoints of the parent edge. Thus the
offspring size is either 2, it happens with probability p, or 1, with probability
q = 1− p. The physical age of an edge is the time elapsed from its birth, and
its biological age is defined as the number of its offspring up to the moment.
The life length of an edge is connected with its biological age: the hazard rate
at physical age t and biological age ξ(t) is equal to b+ c ξ(t), where b and c are
positive constants. The hazard rate r(t) is the (conditional) rate of immediate
death at time t provided the edge is still alive. The distribution of a random
life span λ is completeley determined by its hazard rate function r(t) through
the formula

P (λ > t) = exp

(
−

t∫

0

r(s) ds

)
.

At death the edge is deleted (but not its endpoints). The life histories of
different edges are assumed independent. Thus the edge process is a well known
mathematical object: a so called general time-dependent branchig process or
Crump–Mode–Jagers (CMJ) process.

In [3] we dealt with some asymptotic properties of this random graph pro-
cess. This time we are interested in the so called stable age distribution: this
is the limit as t → ∞ of the proportion of edges with physical age exceeding
s, 0 < s < ∞. We also compute the same quantity for biological age. We
will show that the tail behaviour of the two age distributions is significantly
different. We will prove it in a generalized model, where the random number
ε of offspring at a birth event can take on more than two values: it can be an
arbitrary bounded positive integer valued random variable, with a sufficiently
light tail.

Generalized model. The offspring distribution is

P (ε = i) = pi, i = 1, 2, . . .

Suppose that the tail of the distribution of ε is lighter than exponential:
limk→∞

1
k log(1/pk) = +∞, or equivalently, the generating function g(z) =

= E
(
zε
)
is finite on the whole real line.
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It is plausible to assume that the newborn edges share one vertex with their
parent, but as long as we do not want to investigate the properties of vertices we
do not need to fix how many new edges should be added to the graph, or how the
subgraph they form should look like. However, the analysis of the relationship
between the physical and the biological ages can provide information on the
graph structure too, for example, on the clustering properties. The higher is
the biological age of an edge, the larger are the degrees of its endpoints. Short
edge life spans lead to smaller vertex degrees, etc. We are planning to return
to these issues in a forthcoming paper.

There are many papers on random graphs and networks with heuristic com-
putations instead of exact, mathematically rigorous proofs. Such heuristics
often lead to (but not prove) correct results, but there exist interesting coun-
terexamples, too. A favourite method for getting rid of complicated mathemat-
ical inferences is to replace random quantities with their expectations. In our
case, the expectation of the biological age is a linear function of the pshysical
age, but plugging a linear transform into the stable age distribution yields a
completely false approximation to the asymptotic distribution of the biological
age.

2. Preliminaries

In this section we briefly summarize the notions, notations and theorems we
will use from the general theory of CMJ processes, together with some results
proved in [3].

Let us recall the notations of [3]. For a generic edge let π(t) denote the
Poisson process of birth events. The random times of successive birth events
are denoted by τ1, τ2, . . . . The number of progenies at the ith birth is εi, and
the cumulative sum Si = ε1 + · · · + εi gives the biological age of the parent
after τi. The life span of the edge is denoted by λ, with distribution function
L(t) = P (λ ≤ t). The stopped compound Poisson process ξ(t) = Sπ(t∧λ) is
called the reproduction process. By Wald’s identity we have

µ(t) := Eξ(t) = E(ε)E(λ ∧ t) = E(ε1)

t∫

0

[1− L(s)] ds.

The history of every edge e is characterized by the triple

(
λe, πe(·), ξe(·)

)
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which are iid copies of
(
λ, π(·), ξ(·)

)
introduced above. If edge e was born

at time σe, then at time t its biological age is ξe(t − σe) (defined as zero for
t < σe), and the edge is deleted at time σe + λe.

CMJ processes are often analyzed by the help of random characteristics. A
random characteristic is a stochastic process φ(·), which is connected with the
history of an edge. It is supposed to change exclusively during the lifetime:
φ(t) = 0 for t ≤ 0 and φ(t) = φ(λ) for t ≥ λ, and it doesn’t need to be
independent of λ, π(·), and ξ(·). The processes φe(·) belonging to different
edges are iid. The stochastic process

Zφ(t) =
∑
e

φe(t− σe),

is called the time-dependent branching process counted by random characteris-
tic. For example, φ(t) = I(0 ≤ t < λ) produces Zφ(t) = Z(t), the number
of edges at time t, while in the original model of [3], where every birth event
brings exactly one new vertex to the graph, the number V (t) of vertices is by
2 greater than Zφ(t) for the random characteristic φ(t) = π(t ∧ λ).

For certain values of the parameters b, c, p1, p2, . . . it can happen that the
process dies out: eventually all edges get deleted. From the classical theory
of discrete Galton–Watson branching processes we know that the probability
of exctinction is equal to 1 if the mean number of offspring of an edge during
its lifetime, Eξ(∞), is less than or equal to 1 (subcritical and critical cases,
respectively). In the supercritical case, i.e., when every edge produces more
than 1 new edge on the average, the probability of extinction is strictly less
than 1. In this paper, we only deal with supercritical processes, on the event
of non-extinction.

A general treatment of CMJ processes is found in the classical book of
Jagers [2], or in the more recent monograph [1]. A brief summary is presented
in [3, Section 3]. Here we only refer to a deep result of Nerman [4].

In our model, the processes Zφ(t) grow exponentially fast on the event of
non-extinction. The exponent of growth is the so called Malthusian parameter,
denoted by α. It is the only positive solution of the equation

(2.1)

∞∫

0

e−αtµ(dt) = 1.

Theorem 2.1. [4, Theorem 6.3] Suppose 1 < Eξ(∞) < ∞. Let φ and ψ be
random characteristics, both satisfying the following conditions (only formu-
lated for φ).

(i) φ(t) ≥ 0,
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(ii) the trajectories of φ belong to the Skorohod D-space, that is, they do not
have discontinuities of the second kind,

(iii) E[supt φ(t)] < ∞,

Then

lim
t→∞

Zφ(t)

Zψ(t)
=

∞∫
0

e−αtEφ(t) dt

∞∫
0

e−αtEψ(t) dt

almost everywhere on the event of non-extinction.

3. Stable age distribution

Firstly, let us deal with the distribution of the biological age.

Let g(z) = E(zε) and Gt(z), 0 ≤ z ≤ 1 denote the probability generating
functions of the offspring size and the empirical distribution of biological age
at time t, respectively. Consider the uniformly bounded random characteristic
φ(t) = zξ(t)I(0 ≤ t < λ). Clearly, Gt(z) = Zφ(t)/Z(t). In order to apply
Theorem 2.1 we have to compute Eφ(t).

Theorem 3.1.

Eφ(t) = exp

(
− (1 + b)t+ t

1∫

0

g
(
e−cts z

)
ds

)
=

= exp

(
− (1 + b)t+

1

c

1∫

e−ct

g(vz)

v
dv

)
.

Before proving this theorem, let us list a few of its consequences.

By setting z = 1 we get the survival function of the lifetime λ.

Corollary 3.1.

1− L(t) = P (λ > t) = exp

(
− (1 + b)t+

1

c

1∫

e−ct

g(v)

v
dv

)
.

In our model µ(∞) = Eε
∫∞
0

[1−L(t)] dt. Let us substitute u = e−ct in the
integral, then we obtain the following condition of supercriticality.
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Corollary 3.2. Our process is supercritical if and only if

Eε

c

1∫

0

u
1+b
c −1 exp

(
1

c

1∫

u

g(v)

v
dv

)
du > 1.

The same substitution in the integral involved in the Malthusian equation
(2.1) yields the following expression.

Corollary 3.3. The Malthusian parameter α is determined by the equation

Eε

c

1∫

0

u
α+1+b

c −1 exp

(
1

c

1∫

u

g(v)

v
dv

)
du = 1.

Proof of Theorem 3.1. The proof follows the lines of the proof of [3, Theorem
4.1]. There we have seen that

P (λ > t |π(t) = k, τ1, . . . , τk, ε1, . . . , εk) = exp

(
c

k∑
i=1

εiτi − (b+ cSk)t

)
,

hence

E(φ(t) |π(t) = k, τ1, . . . , τk, ε1, . . . , εk) =

= zSk P (λ > t |π(t) = k, τ1, . . . , τk, ε1, . . . , εk) =

= zSk exp

(
c

k∑
i=1

εiτi − (b+ cSk)t

)
,

Given π(t) = k, the conditional joint distribution of the birth times τ1, . . . , τk
coincides with that of (tU

(k)
1 , . . . , tU

(k)
k ), where (U

(k)
1 , . . . , U

(k)
k ) is an ordered

sample of size k from the uniform distribution U(0, 1) (and independent of the
litter sizes ε1, . . . , εk). Thus,

E(φ(t) |π(t) = k, ε1, . . . , εk) =

= zSk E

(
exp

(
− bt+ ct

k∑
i=1

εi(U
(k)
i − 1)

) ∣∣∣∣ ε1, . . . , εk
)

=

= zSk E

(
exp

(
− bt+ ct

k∑
i=1

εi(Ui − 1)
) ∣∣∣∣ ε1, . . . , εk

)

by the interchangeability of ε1, . . . , εk, where U1, . . . , Uk are iid random vari-
ables with uniform distribution U(0, 1), and they are independent of the ε’s.
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Thus, by independence,

E(φ(t) |π(t) = k) = e−btE

(
k∏

i=1

(
ect(Ui−1) z

)εi
)

=

= e−bt
[
E
(
ect(U1−1) z

)ε1]k
.

By the law of total expectation we have

E(φ(t) |π(t) = k) = e−bt
[
Eg

(
ect(U1−1) z

)]k
= e−bt




1∫

0

g
(
e−cts z

)
ds



k

,

therefore

Eφ(t) =

∞∑
k=0

P (π(t) = k)E(φ(t) |π(t) = k) =

=

∞∑
k=0

tk

k!
e−t · e−bt




1∫

0

g
(
e−cts z

)
ds



k

=

= exp
(
− (1 + b)t+ t

1∫

0

g
(
e−cts z

)
ds
)
,

as claimed. The second line can be obtained by substituting v = e−cts in the
inner integral. �

Theorem 3.2. The probability generating function Gt(z) of the empirical ditri-
bution of the biological age converges to

Eε

c

1∫

0

u
α+b+1

c −1 exp

(
1

c

1∫

u

g(vz)

v
dv

)
du =

=
Eε

c

1∫

0

u
α+b+1

c −1 exp

( ∞∑
i=1

pi
ci

(
1− ui

)
zi
)
du, 0 ≤ z ≤ 1.

as t → ∞, almost everywhere on the event of non-extinction.

Proof. As remarked before, Gt(z) = Zφ(t)/Zψ(t) with random characteristics
φ(t) = zξ(t)I(0 ≤ t < λ) and ψ(t) = I(0 ≤ t < λ). By Theorem 2.1 it converges
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almost everywhere on the event of non-extinction to

∞∫
0

e−αtEφ(t) dt

∞∫
0

e−αtEψ(t) dt

.

In the denominator

(3.1)

∞∫

0

e−αtEψ(t) dt =

∞∫

0

e−αt[1− L(t)] dt =
1

Eε

∞∫

0

e−αtµ(dt) =
1

Eε
,

by the Malthusian equation (2.1).

Coming to the numerator, by Theorem 3.1 we have

∞∫

0

e−αtEφ(t) dt =

∞∫

0

exp

(
− (α+ 1 + b)t+ t

1∫

0

g
(
e−cts z

)
ds

)
dt

=

∞∫

0

exp

(
− (α+ 1 + b)t+

1

c

1∫

e−ct

g(vz)

v

)
dt,

and the proof can be completed by substituting u = e−ct, and computing the
inner integral. �

It is easy to obtain the individual probabilities from the generating func-
tion of the limit distribution. All we have to do is expanding the integrand
into Taylor series by the powers of z, then integration and summation can be
interchanged.

Corollary 3.4. Let Xt(k) denote the (random) proportion of edges with bio-
logical age k at time t, k = 0, 1, . . . . Then, almost everywhere on the event of
non-extinction,

lim
t→∞

Xt(k) = coeff
(
lim
t→∞

Gt(z), zk
)
=

=
Eε

c

∑ 1

i1! . . . ik!

1∫

0

u
α+b+1

c −1
k∏

j=1

[
(1− uj)pj

cj

]ij
du,

where the sum is taken over all sequences i1, i2, . . . , ik of non-negative integers
such that i1 + 2i2 + · · ·+ kik = k is satisfied.

Let rk denote the limit above. Next, we will show that the tail probability
rk + rk+1 + · · · decreases faster than exponentially as k → ∞.
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Theorem 3.3.

rk + rk+1 + · · · ≤ Eε

α+ 1 + b

( e

zk

)k

,

where zk = g−1(ck) → ∞ as k → ∞.

Proof. For every positive z we obviously have

Xt(k) +Xt(k + 1) + · · · ≤ z−kGt(z).

This is just the Markov inequality for the empirical distribution of the biological
age. By Theorem 3.2, taking limits as t → ∞ on both sides yields

rk + rk+1 + . . . ≤ Eε

czk

1∫

0

u
α+b+1

c −1 exp

(
1

c

1∫

u

g(vz)

v
dv

)
du ≤

≤ Eε

czk

1∫

0

u
α+b+1

c −1 exp

(
1

c

1∫

0

g(vz)

v
dv

)
du =

=
Eε

α+ 1 + b
exp

(
1

c

z∫

0

g(v)

v
dv − k log z

)
.

Let us minimize the exponent. By differentiating and finding the zero of the
derivative we get

g(z)

cz
− k

z
= 0,

that is, z = zk = g−1(ck). Since g(v)/v is an increasing function of z, it follows
that

1

c

z∫

0

g(v)

v
dv ≤ g(z)

c
= k,

completing the proof. �

Remark. If the offspring distribution is bounded: ε ≤ m, then g(z) ≤ zm,
hence zk ≥ (ck)1/m, and we obtain the following upper bound.

rk + rk+1 + · · · ≤ Eε

α+ 1 + b
· ek

(ck)k/m
.

Next, let us turn to the physical age.
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It is well known [4, Corollary 6.4] that the proportion of edges at time t that
are older than s converges almost everywhere on the event of non-extinction to

(3.2) 1− F (s) :=

∞∫
s

e−αt[1− L(t)] dt

∞∫
0

e−αt[1− L(t)] dt

,

as it can be seen by considering the fraction Zφ(t)/Z(t) with random charac-
teristic φ(t) = I(s < t < λ).

Theorem 3.4.

1− F (s) ∼ Eε

α+ 1 + b
e−(α+1+b)s+M as s → ∞,

where

M =
1

c

1∫

0

g(v)

v
dv =

∞∑
i=1

pi
ci

.

Proof. By (3.1) and Corollary 3.1,

1− F (s) = Eε

∞∫

s

e−αt[1− L(t)] dt =

= Eε

∞∫

s

exp

(
− (α+ 1 + b)t+

1

c

1∫

e−ct

g(v)

v
dv

)
.

Substitution u = e−ct yields

1− F (s) =
Eε

c

∫ e−cs

0

u
α+1+b

c −1 exp

(
1

c

∫ 1

u

g(v)

v
dv

)
du.

As s tends to infinity, the domain of integration shrinks onto the origin, there-
fore the exponential term becomes more and more constant. It immediately
follows that

(3.3) 1−G(s) ∼ Eε

α+ 1 + b
exp

(
− (α+ 1 + b)s+M

)
,

indeed. �

Thus the tail of the physical age distribution is exponentially decreasing.
Now, although the expected value of the biological age is Eε t, the asymp-
totic proportion of vertices with biological age s cannot be approximated by
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1 − F (s/Eε): the asymptotic behaviour of the two functions is completely
different.

The much lighter tail of the stable biological age distribution is similar in
flavour to the counter-intuitive fact found in [3]. There it was proved that

E(ξ(t) |λ > t) =
1

c
E
(
1− e−ctε

)
=

1

c
E
(
1− g(e−ct)

)
<

1

c
.

and the proof did not depend on the offspring distribution, thus the result is
also valid in our generalized model. This is surprising, because the biological
age ξ(t) grows linearly before it is stopped at λ, hence one may think that
if the physical age of an edge is large then so is its biological age, at least
doesn’t remain bounded in mean. Both discrepancies might be explained by
the observation that reaching an extremely high physical age would point to
the fact that the biological age has not increased as fast as usually.
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