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Abstract. In the present paper the multiplicative type functional equation

f(xy)g(x+ y) = h(xy + x)k(y),

derived from the pexiderized Davison equation (PD), is considered on dif-
ferent structures.

1. Introduction

The functional equation

(D) f(xy) + f(x+ y) = f(xy + x) + f(y)

was introduced by T. M. K. Davison at the 17th ISFE (Oberwolfach, 1979)
(see [2]). During the meeting W. Benz gave the continuous solution f : R → R
of (D) for all x, y ∈ R.

The general solution of (D) was given in [3] by R. Girgensohn and K. Lajkó:

Theorem 1.1. The function f : R → R satisfies functional equation (D) for
all x, y ∈ R if and only if f is of the form f(x) = A(x) + b, where A : R → R
is an additive function and b ∈ R is an arbitrary constant.
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In [3] the authors presented the general solution of the Pexiderized version

(PD) f(xy) + g(x+ y) = h(xy + x) + k(y)

of (D) for all x, y ∈ R and for all x, y ∈ R+ := {x|x > 0}:
Theorem 1.2. The functions f , g, h, k : R → R satisfy (PD) for all x, y ∈ R
if and only if they have the form f(x) = A(x) + b1, g(x) = A(x) + b2,
h(x) = A(x) + b3, k(x) = A(x) + b4, where A : R → R is additive and b1,
b2, b3, b4 ∈ R are constants with b1 + b2 = b3 + b4.

Theorem 1.3. The functions f , g, h, k : R+ → R satisfy (PD) for all x, y ∈
∈ R+ if and only if they are of the form

(1.1)
f(x) = A(x) +B(log x) + b1, g(x) = A(x) + b2,

h(x) = A(x) +B(log x) + b3, k(x) = A(x) +B
(
log x

x+1

)
+ b4,

where A, B : R → R are additive and b1, b2, b3, b4 ∈ R are constants with
b1 + b2 = b3 + b4.

Using (1.1) in Theorem 1.3, we easily get that

A(x) = g(x)− b2, B(log x) = f(x)− g(x)− b1 + b2 (x ∈ R+).

Thus the continuity (or measurability) of functions f , g implies that A, B are
continuous (or measurable) on R+, too. This implies (see [1], [9]) that

A(x) = ax, B(x) = bx (x ∈ R+),

where a, b ∈ R are arbitrary constants.

Using these considerations together with Theorem 1.3, we get the following
result.

Theorem 1.4. The measurable (or continuous) functions f , g, h, k : R+ → R
satisfy (PD) for all x, y ∈ R+ if and only if they are of the form

(1.2)
f(x) = ax+ b log x+ b1, g(x) = ax+ b2,

h(x) = ax+ b log x+ b3, k(x) = ax+ b log x
x+1 + b4,

where a, b, b1, b2, b3, b4 ∈ R are constants with b1 + b2 = b3 + b4.

2. Positive solution of a multiplicative type functional equation
stemming from (PD)

Let us write (PD) in the following multiplicative form:

(2.1) f(xy)g(x+ y) = h(xy + x)k(y)
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for functions f , g, h, k : R (or R+) → R+ for all x, y ∈ R or for all x, y ∈ R+.

Taking the logarithm of (2.1), we get the functional equation

log (f(xy)) + log (g(x+ y)) = log (h(xy + x)) + log (k(y))

for all x, y ∈ R or for all x, y ∈ R+.

Thus the functions F , G, H, K : R (or R+) → R defined by

F = log ◦ f, G = log ◦ g, H = log ◦h, K = log ◦ k

satisfy functional equation (PD).

Using Theorems 1.2, 1.3 and 1.4 and that

f = exp ◦F, g = exp ◦G, h = exp ◦H, k = exp ◦K,

we get immediately the following results.

Theorem 2.1. The functions f , g, h, k : R → R+ satisfy (2.1) for all x, y ∈ R
if and only if

f(x) = c1 exp (A(x)) , g(x) = c2 exp (A(x)) ,

h(x) = c3 exp (A(x)) , k(x) = c4 exp (A(x)) ,

where A : R → R is an additive function and c1, c2, c3, c4 ∈ R+ are constants
with c1c2 = c3c4.

Theorem 2.2. The functions f , g, h, k : R+ → R+ satisfy (2.1) for all
x, y ∈ R+ if and only if they are of the form

(2.2)

f(x) = c1 exp (A(x) +B(log x)) , g(x) = c2 exp (A(x)) ,

h(x) = c3 exp (A(x) +B(log x)) ,

k(x) = c4 exp

(
A(x) +B

(
log

x

x+ 1

))
,

where A, B : R → R are additive and c1, c2, c3, c4 ∈ R+ are constants with
c1c2 = c3c4.

Theorem 2.3. The measurable (or continuous) functions f , g, h, k : R+ →
→ R+ satisfy (2.1) for all x, y ∈ R+ if and only if

(2.3)

f(x) = c1 exp (ax+ b log x) , g(x) = c2 exp (ax) ,

h(x) = c3 exp (ax+ b log x) , k(x) = c4 exp

(
ax+ b log

x

x+ 1

)
,

where a, b ∈ R and c1, c2, c3, c4 ∈ R+ are constants with c1c2 = c3c4.
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3. Nonnegative solutions of (2.1)

Now let us assume, that the nonnegative measurable functions f , g, h,
k satisfy (2.1) for all x, y ∈ R+ and none of the functions h, k are almost
everywhere zero. Does it follow that they are positive everywhere on R+?

In order to give an affirmative answer we will use the following result (see
Járai, Lajkó, Mészáros [8], Remark 4).

Theorem 3.1. Suppose that measurable functions f1 : X → C, f2 : Y → C,
g1 : U → C, g2 : V → C satisfy functional equation

(3.1) f1(x)f2(y) = g1 (G1(x, y)) g2 (G2(x, y))H(x, y)

for all (x, y) ∈ X × Y , where X, Y , U , V are nonvoid open intervals, G1, G2

and H are given functions, such that H is nowhere zero on X×Y , the mapping
(x, y) �→ G(x, y) = (G1(x, y), G2(x, y)) is a C1-diffeomorphism of X × Y onto
U × V with inverse (u, v) �→ F (u, v) = (F1(u, v), F2(u, v)), such that all the
partial derivatives of functions G1, G2, F1, F2 vanish nowhere on their domain
and if on one side none of the functions are almost everywhere zero, then all
the functions are everywhere nonzero.

Theorem 3.2. If the nonnegative measurable functions f , g, h, k : R+ → R
satisfy functional equation (2.1) for all x, y ∈ R+ such that h, k are positive on
some subsets of R+ with positive Lebesgue measure, then f , g, h, k are positive
everywhere on R+.

Proof. Using the symmetry of the left-hand side of (2.1) in x and y, we get

h(xy + x)k(y) = h(xy + y)k(x)

for all x, y ∈ R+. On the other hand, by replacing x by x
y+1 , we find that h

and k satisfy functional equation

(3.2) h (x) k (y) = h

(
xy

y + 1
+ y

)
k

(
x

y + 1

)

for all x, y ∈ R+, i.e. functional equation (3.1) for the unknown functions
f1 = g1 = h, f2 = g2 = k, X = Y = U = V = R+ and for the given functions

G1 (x, y) =
xy

y + 1
+ y, G2 (x, y) =

x

y + 1
, H (x, y) = 1

(
(x, y) ∈ R2

+

)
.

Observe that H is nowhere zero on R2
+ and the mapping

(x, y) → G (x, y) = (G1 (x, y) , G2 (x, y)) =

(
xy

y + 1
+ y,

x

y + 1

)
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is C1-diffeomorphism of R2
+ onto R2

+ with inverse

(u, v) → F (u, v) = (F1 (u, v) , F2 (u, v)) =

(
uv

v + 1
+ v,

u

v + 1

)
.

The partial derivatives

∂G1

∂x
=

y

y + 1
,
∂G1

∂y
=

x

(y + 1)
2 ,

∂G2

∂x
=

1

y + 1
,
∂G2

∂y
= − x

(y + 1)
2 ,

∂F1

∂u
=

v

v + 1
,
∂F1

∂v
=

u

(v + 1)
2 ,

∂F2

∂u
=

1

v + 1
,
∂F2

∂v
= − u

(v + 1)
2 ,

vanish nowhere on R2
+ and further none of the functions h, k are almost every-

where zero. All assumptions of Theorem 3.1 are satisfied, which implies that
the functions h, k are everywhere nonzero on R+, then by equation (2.1) we
get that functions f , g are everywhere nonzero, too.

Thus the nonnegativity of functions implies that f , g, h, k : R+ → R are
everywhere positive on R2

+. �

Now we can easily prove the following result for equation (2.1).

Theorem 3.3. If the nonnegative measurable (or continuous) functions f , g,
h, k : R+ → R satisfy (2.1) for all x, y ∈ R+ such that h, k are positive on
some Lebesgue measurable subsets of positive Lebesgue measure, then they have
the form (2.3), i.e.

f(x) = c1 exp (ax+ b log x) , g(x) = c2 exp (ax) ,

h(x) = c3 exp (ax+ b log x) , k(x) = c4 exp

(
ax+ b log

x

x+ 1

)
,

where a, b ∈ R and c1, c2, c3, c4 ∈ R+ are constants with c1c2 = c3c4.

Proof. Theorem 3.2 implies that functions f , g, h, k are positive everywhere
on R+ and then Theorem 2.3 gives (2.3) for these functions, which completes
the proof. �

4. Nonnegative solutions of (2.1) satisfying almost everywhere

Now let us assume, that the nonnegative measurable functions f , g, h, k
satisfy (2.1) for almost all x, y ∈ R+ and none of the functions h, k are almost
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everywhere zero. Does it follow that they are positive almost everywhere on
R+?

In order to give an affirmative answer we will use the following result (see
Járai, Lajkó, Mészáros [8], Theorem 2).

Theorem 4.1. Suppose that measurable functions f1 : X → C, f2 : Y → C,
g1 : U → C, g2 : V → C satisfy functional equation

(4.1) f1(x)f2(y) = g1 (G1(x, y)) g2 (G2(x, y))H(x, y)

for almost all (x, y) ∈ X × Y (with respect to the plane Lebesgue measure),
where X, Y , U , V are nonvoid open intervals, G1, G2 and H are given func-
tions, such that H is nowhere zero on X × Y , the mapping (x, y) �→ G(x, y) =
= (G1(x, y), G2(x, y)) is a C1-diffeomorphism of X×Y onto U×V with inverse
(u, v) �→ F (u, v) = (F1(u, v), F2(u, v)), such that all the partial derivatives of
functions G1, G2, F1, F2 vanish nowhere on their domain. Then either one
of the functions f1 and f2 and one of the functions g1 and g2 is zero almost
everywhere or all of them are almost everywhere nonzero.

Theorem 4.2. If the nonnegative measurable functions f , g, h, k : R+ → R
satisfy functional equation (2.1) for almost all x, y ∈ R+ such that h, k are
positive on some subsets of R+ with positive Lebesgue measure, then f , g, h, k
are positive almost everywhere on R+.

Proof. Similarly to the proof of Theorem 3.2 we can prove that all assumptions
of Theorem 4.1 are satisfied. This implies that the functions h, k are almost
everywhere nonzero on R+, then by equation (2.1) we get that functions f , g
are almost everywhere nonzero, too.

Thus the nonnegativity of functions implies that f , g, h, k : R+ → R are
almost everywhere positive on R2

+. �

To get the nonnegative measurable solutions of (2.1) satisfying almost ev-
erywhere, we need the following result of A. Járai (see [4], [5], [6], [7]).

Theorem 4.3. Let Z be a regular topological space, Zi (i = 1, 2, . . . , n) be topo-
logical spaces and T be a first countable topological space. Let Y be an open
subset of Rk, Xi an open subset of Rri , ri ∈ Z, (i = 1, 2, . . . , n) and D an
open subset of T × Y . Let furthermore T ′ ⊂ T be a dense subset, F : T ′ → Z,
gi : D → Xi and H : D × Z1 × . . . × Zn → Z. Suppose that the function fi is
almost everywhere defined on Xi (with respect to the ri-dimensional Lebesgue
measure) with values in Zi (i = 1, 2, . . . n) and the following conditions are sat-
isfied:

1. for all t ∈ T ′ and for almost all y ∈ Dt = {y ∈ Y |(t, y) ∈ D}

F (t) = H(t, y, f1(g1(t, y)), . . . , fn(gn(t, y)));
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2. for each fixed y in Y , the function H is continuous in the other variables;

3. fi is Lebesgue measurable on Rri (i = 1, 2, . . . , n);

4. gi and the partial derivative ∂gi
∂y are continuous on D (i = 1, 2, . . . , n);

5. for each t ∈ T there exist a y such that (t, y) ∈ D and the partial derivative
∂gi
∂y has the rank ri at (t, y) ∈ D (i = 1, 2, . . . , n).

Then there exists a unique continuous function F̃ such that F = F̃ almost
everywhere on T , and if F is replaced by F̃ then the functional equation is
satisfied almost everywhere on D.

Using Theorems 4.2 and 4.3 we can prove the following result.

Theorem 4.4. If the nonnegative measurable functions f , g, h, k : R+ → R
satisfy (2.1) for almost all (x, y) ∈ R2

+ such that they are positive on some
subsets of R+ with positive Lebesgue measure, then there exist unique contin-
uous functions f̃ , g̃, h̃, k̃ : R+ → R+ such that f̃ = f , g̃ = g, h̃ = h and
k̃ = k almost everywhere on R+, and if f , g, h, k are replaced by f̃ , g̃, h̃, k̃,
respectively, then (2.1) is satisfied everywhere on R2

+.

Proof. Theorem 4.2 shows that the functions f , g, h, k are positive almost
everywhere on R+.

First we prove that there exists a unique continuous function h̃ which is
equal to h almost everywhere on R+ and replacing h by h̃, equation (2.1) is
satisfied almost everywhere on R2

+.

With the substitution t = xy + x we get from (2.1) the equation

(4.2) h(t) =
f
(

ty
y+1

)
g
(

t
y+1 + y

)

k(y)

which is satisfied for almost all (t, y) ∈ R2
+.

By Fubini’s Theorem it follows that there exists T ′ ⊆ R+ of full measure
such that for all t ∈ T ′ equation (4.2) is satisfied for almost every
y ∈

{
y ∈ R+|(t, y) ∈ R2

+

}
= R+.

Let us define the functions g1, g2, g3, H in the following way:

g1(t, y) =
ty

y + 1
, g2(t, y) =

t

y + 1
+ y, g3(t, y) = y

H(t, y, z1, z2, z3) =
z1z2
z3
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and let us now apply Theorem 4.3 of Járai to (4.2) with the following casting:
h(t) = F (t), f(t) = f1(t), g(t) = f2(t), k(t) = f3(t), Z = Zi = R+, T = Y =
= Xi = R+ (i = 1, 2, 3).

The first assumption of Theorem 4.3 with respect to (4.2) holds.

In the case of fixed y, the function H is continuous in the other variables,
so the second assumption holds too.

Because the functions in (4.2) are measurable, the third assumption is triv-
ial.

The functions gi and the partial derivatives

D2g1(t, y) =
t

(y + 1)2
, D2g2(t, y) = − t

(y + 1)2
+ 1, D2g3(t, y) = 1

are continuous, so the fourth assumption holds, too.

For each t ∈ R+ there exist a y ∈ R+ such that (t, y) ∈ D and the partial
derivatives don’t equal zero in (t, y), so they have the rank 1. Thus the last
assumption is satisfied in Theorem 4.3.

So we get from Theorem 4.3 that there exists unique continuous function h̃
which is almost everywhere equal to h on R+ and f , g, h̃, k satisfy equation
(4.2) almost everywhere, which is equivalent to the equation

f(xy)g(x+ y) = h̃(xy + x)k(y)

for almost all (x, y) ∈ R2
+. Furthermore h̃ is positive for almost all x ∈ R+.

By a similar argument we can prove the same for the functions f , g and k,
i.e. there exist continuous functions f̃ : R+ → R, g̃ : R+ → R and k̃ : R+ → R
which are almost everywhere equal to f , g and k on R+, respectively, and the
functional equation

(4.3) f̃(xy)g̃(x+ y) = h̃(xy + x)k̃(y)

is satisfied almost everywhere on R2
+.

Both sides of (4.3) define continuous functions on R2
+, which are equal to

each other on a dense subset of R2
+, therefore we obtain that (4.3) is satisfied

everywhere on R2
+.

Applying Theorem 3.2 for equation (4.3), one can show that if the nonneg-
ative continuous functions f̃ , g̃, h̃ and k̃ : R+ → R satisfy functional equation
(4.3) for all (x, y) ∈ R2

+, such that they are positive almost everywhere on R+,
then they are positive everywhere on R+. �

Now we can easily prove the following result for equation (2.1).
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Theorem 4.5. If the nonnegative measurable (or continuous) functions f , g,
h, k : R+ → R satisfy (2.1) for almost all x, y ∈ R+ such that they are positive
on some Lebesgue measurable subsets of positive Lebesgue measure, then they
have the form

f(x) = c1 exp (ax+ b log x) , g(x) = c2 exp (ax) a.a. x ∈ R+,

h(x) = c3 exp (ax+ b log x) a.a. x ∈ R+,

k(x) = c4 exp

(
ax+ b log

x

x+ 1

)
a.a. x ∈ R+,

where a, b ∈ R and c1, c2, c3, c4 ∈ R+ are constants with c1c2 = c3c4.

Proof. Using Theorems 4.4 and 4.2, we get immediately the statement of
Theorem 4.5. �
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