
Annales Univ. Sci. Budapest., Sect. Comp. 48 (2018) 65–80
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Abstract. The periodic Hurwitz zeta-function ζ(s, α; a), s = σ + it, is
a generalization of the classical Hurwitz zeta-function, and is defined, for

σ > 1, by the series ζ(s, α; a) =
∞∑

m=0

am
(m+α)s

, where a = {am} is a periodic

sequence of complex numbers, and 0 < α � 1 is a fixed parameter. In the
paper, theorems on the approximation of analytic functions by discrete
shifts ζ(s+ ikh, α; a), k = 0, 1, . . . , h > 0, with rational α are obtained.

1. Introduction

It is well known that some of zeta and L-functions are universal in the
Voronin sense, i.e., their shifts approximate a wide class of analytic functions.
A very extensive survey on this type of universality is given in [15]. In this
note, we discuss universality theorems for the periodic Hurwitz zeta-function.
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function, universality.
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Let s = σ+it be a complex variable, and α, 0 < α � 1, be a fixed parameter.
The classical Hurwitz zeta-function ζ(s, α) was introduced in [5], and is defined,
for σ > 1, by the Dirichlet series

ζ(s, α) =
∞∑

m=0

1

(m+ α)s
,

and can be continued analytically to the whole complex plane, except for a
simple pole at the point s = 1 with residue 1.

Properties of ζ(s, α) including the universality depend on the arithmetic
nature of the parameter α. In the case of transcendental or rational α �= 1

2 , 1,
the universality of ζ(s, α) was obtained by S.M. Gonek [4]. More precisely, if
K is a compact subset of the strip D =

{
s ∈ C : 1

2 < σ < 1
}
with connected

complement, and f(s) is a continuous function onK and analytic in the interior
of K, then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ, α)− f(s)| < ε

}
> 0.

The latter inequality shows that there are infinitely many shifts ζ(s + iτ, α)
approximating with accuracy ε a given analytic function. We also note that if
at least one τ satisfies the inequality sups∈K |ζ(s+ iτ, α)− f(s)| < ε, then, in
view of the continuity with respect to τ , it follows that there infinitely many
shifts τ satisfying the above inequality.

The universality of ζ(s, α) with algebraic irrational α remains an open prob-
lem.

The type of universality from above is called continuous since the shifts τ
are taken from the set of all real numbers. If τ is restricted to some discrete
set, however, then the universality property is said to be of discrete type. A
discrete universality theorem with transcendental or rational α was obtained
in [1]. Let K and f(s) be as above. Then, for α �= 1

2 , 1, ε > 0 and h > 0,

(1.1) lim inf
N→∞

1

N + 1
#

{
0 � k � N : sup

s∈K
|ζ(s+ ikh, α)− f(s)| < ε

}
> 0.

Define the set

L(α, h, π) =

{
(log(m+ α) : m ∈ N0 = N ∪ {0}) , 2π

h

}
.

If the set L(α, h, π) is linearly independent over the field of rational numbers
Q, then it was proved in [9] that inequality (1.1) is true.

The periodic Hurwitz zeta-function, a natural generalization of the function
ζ(s, α), was introduced in [6]. Let a = {am : m ∈ N0} be a periodic sequence
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of complex numbers with minimal period q ∈ N. Then the periodic Hurwitz
zeta-function ζ(s, α; a) is defined, for σ > 1, by the Dirichlet series

ζ(s, α; a) =
∞∑

m=0

am
(m+ α)s

.

In view of periodicity of the sequence a,

(1.2) ζ(s, α; a) =
1

qs

q−1∑
l=0

alζ

(
s,

α+ l

q

)
.

Therefore, the function ζ(s, α; a) also has analytic continuation to the whole
complex plane, except for a simple pole at the point s = 1 with residue

â
def
=

1

q

q−1∑
l=0

al.

If â=0, then the function ζ(s, α; a) is entire.

A continuous universality theorem for the function ζ(s, α; a) with transcen-
dental α was obtained in [7]. The case of rational α was considered in [12].
In [11], the transcendence of the parameter α was replaced by the linear inde-
pendence of the set

L(α) = {log(m+ α) : m ∈ N0} .

The aim of this note is to prove discrete universality theorems for the func-
tion ζ(s, α; a). For their statements, we use the following convenient notation.
Denote by K the class of compact subsets of the strip D with connected com-
plements, and by H(K) with K ∈ K the class of continuous functions on K
that are analytic in the interior of K.

The first discrete universality theorem for the function ζ(s, α; a) with tran-
scendental α was obtained in [10].

Theorem 1 ([10]). Suppose that α is a transcendental number and h > 0 is
such that the number exp

{
2π
h

}
is rational. Let K ∈ K and f(s) ∈ H(K).

Then, for every ε > 0,

lim inf
N→∞

1

N + 1
#

{
0 � k � N : sup

s∈K
|ζ(s+ ikh, α; a)− f(s)| < ε

}
> 0.

In [17], the hypothesis of Theorem 1 on the numbers α and h was replaced
by the linear independence over Q for the set L(α, h, π). The present note is
devoted to the discrete universality of the function ζ(s, α; a) with rational α.

In what follows, α = a
b �= 1

2 with a, b ∈ N, a < b, and (a, b) = 1. We recall
that q is the period of the sequence a.
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Theorem 2. Suppose that (lb + a, bq) = 1 for l = 0, 1, . . . , q − 1. Let K ∈ K
and f(s) ∈ H(K). Then, for every ε > 0 and h > 0,

lim inf
N→∞

1

N + 1
#

{
0 � k � N : sup

s∈K

∣∣∣ζ
(
s+ ikh,

a

b
; a
)
− f(s)

∣∣∣ < ε

}
> 0.

The condition that (lb + a, bq) = 1 for l = 0, 1, . . . , q − 1 is technical, and
we believe that it can be removed.

Theorem 2 has the following modification.

Theorem 3. Under hypotheses of Theorem 2, for every h > 0, the limit

lim
N→∞

1

N + 1
#

{
0 � k � N : sup

s∈K

∣∣∣ζ
(
s+ ikh,

a

b
; a
)
− f(s)

∣∣∣ < ε

}
> 0

exists for all but at most countably many ε > 0.

Some composite functions of ζ
(
s, a

b ; a
)
also have the universality property.

Denote by H(G) the space of analytic functions in the region G ⊂ C en-
dowed with the topology of uniform convergence on compacta. For V > 0, let
DV =

{
s ∈ C : 1

2 < σ < 1, |t| < V
}
. For example, we have the statements.

Theorem 4. Suppose that a, b, q and K, f(s) are as in Theorem 2, V > 0 is
such that K ⊂ DV , and F : H(DV ) → H(DV ) is a continuous operator such
that, for every open set G ⊂ H(DV ), the set F−1G is not empty. Then, for
every ε > 0 and h > 0,

lim inf
N→∞

1

N + 1
#

{
0 � k � N : sup

s∈K

∣∣∣F
(
ζ
(
s+ ikh,

a

b
; a
))

− f(s)
∣∣∣ < ε

}
> 0.

For distinct complex numbers a1, . . . , av, define

Ha1,...,av
(DV ) = {g ∈ H(DV ) : g(s) �= aj , j = 1, . . . , v} .

Theorem 5. Suppose that a, b and q are as in Theorem 2, K is a compact
set of D, V > 0 is such that K ⊂ DV , and that F : H(DV ) → H(DV ) is a
continuous operator such that Ha1,...,av

⊂ F (H(DV )). For v = 1, let K ∈ K,
f(s) ∈ H(K) and f(s) �= a1 on K. For v � 2, let K be an arbitrary compact
subset of D, and f(s) ∈ Ha1,...,av (DV ). Then the assertion of Theorem 4 is
true.

The set of the natural numbers a, b and q satisfying hypotheses of The-
orems 2–5 is not empty. For example, if a = 3, b = 8 and q = 4, then
(bl + a, qb) = 1 for l = 0, 1, 2, 3.

From Theorem 5, it follows that certain elementary functions of the pe-
riodic Hurwitz zeta-functions, for example, sin

(
ζ
(
s, a

b ; a
))
, have the discrete

universality property.
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2. Application of Dirichlet L-functions

Let χ be a Dirichlet character modulo k. The Dirichlet L-function L(s, χ)
is defined , for σ > 1, by the Dirichlet series

L(s, χ) =
∞∑

m=1

χ(m)

ms
,

or by the Euler product over primes

L(s, χ) =
∏
p

(
1− χ(p)

ps

)−1

.

If χ = χ0 is the principal character modulo k, then L(s, χ0) has analytic con-
tinuation to the whole complex plane, except for a simple pole at the point
s = 1 with residue

∏
p|k

(
1− 1

p

)
,

and if χ �= χ0, then the function L(s, χ) is entire.

For us the formula

(2.1) ζ
(
s,

a

b

)
=

bs

ϕ(b)

∑
χ(mod b)

χ(a)L(s, χ), (a, b) = 1,

where ϕ(m) denotes the Euler totient function, will be useful. Let (lb+a, qb) =
= dl, l = 0, 1, . . . , q − 1. Then the equalities (1.2) and (2.1) imply

ζ
(
s,

a

b
; a
)
=

1

qs

q−1∑
l=0

alζ

(
s,

a/b+ l

q

)
=

=
1

qs

q−1∑
l=0

al
(bq/dl)

s

ϕ(bq/dl)

∑
χ(mod bq/dl)

χ

(
bl + a

dl

)
L(s, χ).(2.2)

If dl = 1 for all l = 0, 1, . . . , q − 1, then the formula (2.2) gives

(2.3) ζ
(
s,

a

b
; a
)
=

bs

ϕ(bq)

q−1∑
l=0

al
∑

χ(mod bq)

χ(bl + a)L(s, χ).
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Let, for brevity, ϕ(bq) = r, and

Aj =

q−1∑
l=0

alχj(bl + a),

where χj runs over the r Dirichlet characters modulo bq. Then, by (2.3),

(2.4) ζ
(
s,

a

b
; a
)
=

bs

r

r∑
j=1

AjL(s, χj).

Now, we remind some probabilistic joint value-distribution results for Dirich-
let L−functions. Define

Ω =
∏
p

γp,

where γp = {s ∈ C : |s| = 1} for all primes p. The torus Ω, with product topol-
ogy and pointwise multiplication, is a compact topological group. Therefore,
denoting by B(X) the Borel σ−field of the space X, we have that, on (Ω,B(Ω)),
the probability Haar measure mH can be defined. This gives the probability
space (Ω,B(Ω),mH). Let ω(p) be the projection of an element ω ∈ Ω to the
circle γp.

Let P be the set of all prime numbers. We divide the set of all positive
numbers h into two parts. We say that h is of type 1 if the numbers exp

{
2πm
h

}
are irrational for all m ∈ Z \ {0}, and h is of type 2 if it is not of type 1.

Let Ωh be a closed subgroup of the group Ω generated by the element
{p−ih : p ∈ P}. If h is of type 2, then there exists a minimal m0 ∈ N such that
the number exp

{
2πm0

h

}
is rational. Suppose that

exp

{
2πm0

h

}
=

m1

m2
, m1,m2 ∈ N, (m1,m2) = 1.

Extend the function ω(p), p ∈ P, to the N by the formula

ω(m) =
∏

pl|m,

pl+1�m

ωl(p), m ∈ N.

Then it is known [1], see also [14], that

Ωh =

{
Ω, if h is of type 1,
{ω ∈ Ω : ω(m1) = ω(m2)} if h is of type 2.

On (Ωh,B(Ωh)), also there exists the probability Haar measure mHh. De-
note by ωh(p) the pth component of ωh ∈ Ωh. Now, on the probability
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space (Ωh, B(Ωh), mHh), define the H
r(D)-valued random element L(s, ωh, χ),

χ = (χ1, . . . , χr), by

L(s, ωh, χ) = (L(s, ωh, χ1), . . . , L(s, ωh, χr)),

where

L(s, ωh, χj) =
∏
p

(
1− ωh(p)χj(p)

ps

)−1

, j = 1, . . . , r,

and put

L(s, χ) = (L(s, χ1), . . . , L(s, χr)) .

Moreover, for A ∈ B(Hr(DV )) and h > 0, we set

PN,V,h(A) =
1

N + 1
#

{
0 � k � N :

(
L(s+ ikh, χ)

)
∈ A

}

and

PL,V,h(A) = mHh

{
ωh ∈ Ωh : L(s, ωh, χ) ∈ A

}
,

i.e., PL,V,h is the distribution of the random element L
(
s, ωh, χ

)
. Let

SV = {g ∈ H(DV ) : g(s) �= 0 or g(s) ≡ 0} .

Lemma 1. For every h > 0, PN,V,h converges weakly to PL,V,h as N → ∞.
Moreover, the support of the measure PL,V,h is the set Sr

V .

Proof. We note that a way of the proof of the lemma is the same as in case
of A ∈ B(H(D)).

In the case of h of type 1, the lemma for Dirichlet L-functions with non-
equivalent characters was proved in [8]. The case of h of type 2 is consid-
ered similarly, see, for example, [14]. The method of the proof of limit the-
orems for zeta- or L-functions having the Euler product over primes is stan-
dard, therefore we give only a sketch of the proof of the lemma. First of all,
using the linear independence over the field of rational numbers of the set
{log p : p ∈ P}, a limit theorem with the limit measure mHh for probability
measures on (Ωh,B(Ωh)) is obtained. This theorem implies limit theorems in
the space (H(DV ),B(H(DV ))) for certain absolutely convergent Dirichlet se-
ries. In the next step, it is proved that the latter Dirichlet series approximate
in the mean the initial Dirichlet L-functions. This together with limit theorems
for absolutely convergent Dirichlet series leads to the limit theorems with the
same limit measure PV,h for L(s, χ) and L(s, ωh, χ). Finally, an application of
the classical Birkhoff–Khintchine ergodic theorem shows that the limit measure
PV,h coincides with PL,V,h.
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For the proof that the support of the measure PL,V,h is the set Sr
V , some

classical properties of the series of independent random elements and of expo-
nential functions are applied [8]. The problem reduces to an equation

r∑
j=1

ajχj(m) = 0, 1 � m � bq,

with some aj ∈ C. In [8], the non-equivalence of the characters is required for
their linear independence over C. In our case, the characters in (2.3), as in [1],
[2], share the same modulus, therefore they are linearly independent over C.
Hence, it follows that aj = 0 for j = 1, . . . , r, and this is sufficient to prove the
second assertion of the lemma. �

3. Discrete limit theorems for ζ
(
s, a

b
; a

)

For A ∈ B(H(D)), define

QN,V,h(A) =
1

N + 1
#

{
0 � k � N : ζ

(
s+ ikh,

a

b
; a
)
∈ A

}
.

Moreover, on the probability space (Ωh,B(Ωh),mHh), define twoH(DV )-valued
random elements

ζ1(s, ωh) =
bsωh(b)

r

and

ζ2(s, ωh) =

r∑
j=1

AjL(s, ωh, χj),

and set
ζ
(
s,

a

b
, ωh; a

)
= ζ1(s, ωh)ζ2(s, ωh).

Denote by Pζ,V,h the distribution of the random element ζ
(
s, a

b , ωh; a
)
, i.e.,

Pζ,V,h(A) = mHh

{
ωh ∈ Ωh : ζ

(
s,

a

b
, ωh; a

)
∈ A

}
, A ∈ B(H(DV )).

Lemma 2. Suppose that a, b and q are as in Theorem 2. Then QN,V,h con-
verges weakly to the measure Pζ,V,h as N → ∞. Moreover, the support of the
measure Pζ,V,h is the whole space H(DV ).

Proof. The function

ζ1(s) =
bs

r
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is a Dirichlet polynomial. Therefore, we find by a standard method (the case
of h of the type 2 is discussed in [14]) that

(3.1)
1

N + 1
# {0 � k � N : ζ1(s+ ikh) ∈ A} , A ∈ B(H(DV )),

converges weakly to the distribution of the random element ζ1(s, ωh) as
N → ∞.

For the proof of a limit theorem for the function

ζ2(s) =
r∑

j=1

AjL(s, χj),

we will apply Lemma 1. Let the function u : Hr(DV ) → H(DV ) be given by
the formula

u(g1, . . . , gr) =
r∑

j=1

Ajgj , g1, . . . , gr ∈ H(DV ).

Then, clearly, the function u is continuous. Moreover, for A ∈ B(H(DV )),

Q2,N,V,h(A)
def
=

1

N + 1
# {0 � k � N : ζ1(s+ ikh) ∈ A} =

=
1

N + 1
# {0 � k � N : u (L(s+ ikh, χ1), . . . , L(s+ ikh, χr)) ∈ A} =

=
1

N + 1
#

{
0 � k � N : (L(s+ ikh, χ1), . . . , L(s+ ikh, χr)) ∈ u−1A

}
=

= PN,V,h(u
−1A) = PN,V,hu

−1(A).

Therefore, the continuity of the function u, Theorem 5.1 of [3] and Lemma 1
show that Q2,N,V,h converges weakly to the measure PL,V,hu

−1 as N → ∞. We
observe that the measure PL,V,hu

−1 is the distribution of the random element
ζ2(s, ωh). Actually, for A ∈ B(H(DV )),

PL,V,hu
−1(A) = PL,V,h(u

−1A) = mHh

{
ωh ∈ Ωh : L(s, ωh, χ) ∈ u−1A

}
=

= mHh

{
ωh ∈ Ωh : u

(
L(s, ωh, χ)

)
∈ A

}
=

= mHh {ωh ∈ Ωh : ζ2 (s, ωh) ∈ A} .

Now, the weak convergence of the measures (3.1) and Q2,N,V,h, and a modified
Cramér–Wold method imply the weak convergence for

1

N + 1
# {0 � k � N : (ζ1(s+ ikh), ζ2(s+ ikh)) ∈ A} , A ∈ B(H2(DV )),
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to the distribution of the random element (ζ1(s, ωh), ζ2(s, ωh)) as N → ∞.
From this, using the function u1 : H2(DV ) → H(DV ) given by

u1(g1, g2) = g1g2, g1, g2 ∈ H(DV ),

we easily find that, in view of (2.4), QN,V,h converges weakly to the distribution
of the random element ζ1(s, ωh)ζ2(s, ωh) = ζ

(
s, a

b , ωh; a
)
as N → ∞.

It remains to find the support of the measure Pζ,V,h. Let g be an arbitrary
element of H(DV ), and G be its any open neighbourhood. Since the function
u is continuous, we have that the set u−1G is open as well. If K ⊂ DV is a
compact subset with connected complement, then, by the Mergelyan theorem
[16], for every ε > 0, there exists a polynomial p = p(s) such that

sup
s∈K

|f(s)− p(s)| < ε.

It is well known, see, for example, [13], that the approximation in the space
H(DV ) can be restricted to that on compact sets with connected complements.
Therefore, we can choose the polynomial p(s) to lie in the set G. The region
DV is bounded, and the non-vanishing of p(s) can be controlled by its constant
term. Hence, it is not difficult to see that there exist g1, . . . , gr ∈ SV such that

u(g1, . . . , gr) = p.

Really, since α �= 1
2 , we have that b � 3, hence, r � 2. Therefore, at least

two of the coefficients Aj in (2.4) are distinct from zero. Actually, if only one
Aj �= 0, then

ζ
(
s,

a

b
; a
)
=

bsAj

r
L(s, χj).

Writing the left-hand side as a Dirichlet series, we have for σ > 1 that

∞∑
m=1

cm
ms

=
Aj

r

∞∑
m=1

χ(m)

ms
,

where cm = 0 for m ∈ B
def
= N\

∞
∪

k=0
{a+bk}. Thus, there exists a prime number

p ∈ B such that (p, bq) = 1. Therefore, χ(p) �= 0, and, by the uniqueness
theorem for Dirichlet series, this contradicts a property of the set B. Thus,
without loss of generality, we may suppose that A1 �= 0 and A2 �= 0. Then we
can find C ∈ C with sufficiently large |C| such that, for s ∈ DV ,

g1(s) =
p(s) + C

A1
�= 0

and

g2(s) = −C +A3 + · · ·+Ar

A2
�= 0.
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If g3(s) = · · · = gr(s) = 1, then g1, . . . , gr ∈ SV , and

r∑
j=1

Ajgj(s) = p(s).

This shows that
(u−1{p}) ∩ Sr

V �= ∅.

Since p(s) lies in G, hence,

(u−1G) ∩ Sr
V �= ∅.

Therefore, there exists g1 ∈ Sr
V such that g1 ∈ u−1G, i.e., u−1G is an open

neighbourhood of an element of the set Sr
V . By Lemma 1, the set Sr

V is the
support of the measure PL,V,h. Hence, PL,V,h(u

−1G) > 0. Therefore,

PL,V,hu
−1(G) = PL,V,h(u

−1G) > 0.

Since g and G are arbitrary, this shows that the support of PL,V,hu
−1 is the

whole H(DV ), and the same assertion is true for the random element ζ2(s, ωh).

By the construction, {ωh(p) : p ∈ P} is a sequence of independent random
variables. If p | b, then p | qb, thus, χj(p) = 0. Hence,

L(s, ωh, χj) =
∏
p�b

(
1− ωh(p)χj(p)

ps

)−1

, j = 1, . . . , r.

From this, it follows that the random elements ζ1(s, ωh) and ζ2(s, ωh) are in-
dependent. Since the random element ζ1(s, ωh) is not degenerated at zero, and
the support of the random element is H(DV ), we obtain that the support of
the random element ζ1(s, ωh)ζ2(s, ωh) is H(DV ). The lemma is proved. �

Lemma 3. Under hypotheses of Theorem 4 on a, b, q and the operator F ,

QN,F,V,h(A)
def
=

1

N + 1
#

{
0 � k � N : F

(
ζ
(
s+ ikh,

a

b
; a
))

∈ A
}
,

A ∈ B(H(DV )),

converges weakly to the measure Pζ,V,hF
−1 as N → ∞. Moreover, the support

of Pζ,V,hF
−1 is the whole of H(DV ).

Proof. Since, for A ∈ B(H(DV )),

QN,F,V,h(A) =
1

N + 1
#

{
0 � k � N : ζ

(
s+ ikh,

a

b
; a
)
∈ F−1A

}
=

= QN,V,h(F
−1A) = QN,V,hF

−1(A),
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the continuity of F , Lemma 2 and Theorem 5.1 of [3] show that QN,F,V,h

converges weakly to Pζ,V,hF
−1 as N → ∞.

Let g ∈ H(DV ) be arbitrary , and let G be any open neighbourhood of g.
The continuity of F shows that F−1G is an open set as well. By the hypothesis
of Theorem 4, the set F−1G is non-empty, therefore, it is an open neighbour-
hood of a certain element g1 ∈ H(DV ). By the second part of Lemma 2, g1 is
an element of the support of the measure Pζ,V,h. Therefore,

Pζ,V,hF
−1(G) = Pζ,V,h(F

−1G) > 0.

Since g and G are arbitrary, this shows that the support of Pζ,V,h is the whole
H(DV ). �

Lemma 4. Under hypotheses of Theorem 5 on a, b, q and the operator F , the
support of the measure Pζ,V,hF

−1 includes the closure of the set Ha1,...,av (DV ).

Proof. Since Ha1,...,av
(DV ) ⊂ F (H(DV )), for each g ∈ Ha1,...,ar

(DV ), there
exists an element g1 ∈ H(DV ) such that F (g1) = g. Therefore, for every open
neighbourhood G of the element g, we have that F−1G is an open neighbour-
hood of an element of H(DV ). Hence, in view of Lemma 2, Pζ,V,h(F

−1G) > 0,
and

Pζ,V,hF
−1(G) = Pζ,V,h(F

−1G) > 0.

This shows that g is an element of the support of the measure Pζ,V,hF
−1.

Consequently, the set Ha1,...,av (DV ) and its closure lie in the support of
Pζ,V,hF

−1. �

4. Proofs of universality theorems

Proof of Theorem 2. By the Mergelyan theorem, there exists a polynomial
p(s) such that

(4.1) sup
s∈K

|f(s)− p(s)| < ε

2
.

We take V > 0 such that K ⊂ DV , and define the set

G =

{
g ∈ H(DV ) : sup

s∈K
|g(s)− p(s)| < ε

2

}
.

By Lemma 2, G is an open neighbourhood of the element p(s) of the support
of the measure Pζ,V,h. Therefore,

(4.2) Pζ,V,h(G) > 0.
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Moreover, Lemma 2 together with the equivalent of weak convergence of prob-
ability measures in terms of open sets [3, Theorem 2.1], implies the inequality

lim inf
N→∞

QN,V,h(G) � Pζ,V,h(G).

This, the definitions of QN,V,h and G, (4.1) and (4.2) prove the theorem. �

Proof of Theorem 3. We apply similar arguments to those of the proof of
Theorem 2, however, in place of equivalent of weak convergence of probability
measures in terms of open sets, we apply the equivalent in terms of continuity
sets [3, Theorem 2.1]. We recall that the set A ∈ B(Hr(DV )) is a continuity
set of the measure Pζ,V,h if Pζ,V,h(∂A) = 0, where ∂A denotes the boundary of
A.

Define the set

Ĝε =

{
g ∈ H(DV ) : sup

s∈K
|g(s)− f(s)| < ε

}
,

where V > 0 is such that K ⊂ DV . Since ∂Ĝε lies in the set
{
g ∈ H(DV ) : sup

s∈K
|g(s)− f(s)| = ε

}
,

we have that ∂Ĝε1 ∩ ∂Ĝε2 = ∅ for different positive ε1 and ε2. From this, it
follows that the set Ĝε is a continuity set of the measure Pζ,V,h for all but at
most countably many ε > 0. Then, in view of Lemma 2 and the equivalent of
weak convergence of probability measures in terms of continuity sets, we obtain
that the limit

(4.3) lim
N→∞

QN,V,h(Gε) = Pζ,V,h(Gε).

exists for all but at most countably many ε > 0. Let Gε be the same set
as in the proof of Theorem 2. Then by (4.1), we find that Gε ⊂ Ĝε. Thus,
Pζ,V,h(Ĝε) � Pζ,V,h(Gε) > 0, and the theorem follows from (4.3). �

Proof of Theorem 4. The theorem is obtained in the same way as Theorem 2,
by using Lemma 3. �

Proof of Theorem 5. Let v = 1. By the Mergelyan theorem, there exists a
polynomial p(s) such that

(4.4) sup
s∈K

|f(s)− p(s)| < ε

4
.

Since f(s) �= a1, on K, we have that p(s) �= a1 on K as well if ε > 0 is
small enough. Therefore, we can define a continuous branch of the logarithm



78 A. Laurinčikas and D. Mochov

by log(p(s) − a1) which will be analytic in the interior of K. Applying the
Mergelyan theorem once more, we find a polynomial q(s) such that

(4.5) sup
s∈K

∣∣∣(p(s)− a1)− eq(s)
∣∣∣ < ε

4
.

Then the function ga1(s)
def
= a1+eq(s) ∈ H(DV ), and ga1(s) �= a1, where V > 0

is chosen to satisfy K ⊂ DV . By Lemma 4, ga1
(s) is an element of the support

of the measure Pζ,V,hF
−1. Therefore, setting

G1,ε =

{
g ∈ H(DV ) : sup

s∈K
|g(s)− ga1(s)| <

ε

2

}
,

we have that Pζ,V,hF
−1(G1,ε) > 0. Hence, be Lemma 4,

lim inf
N→∞

1

N + 1
#

{
0 � k � N : sup

s∈K

∣∣∣F
(
ζ
(
s+ ikh,

a

b
; a
))

− ga1
(s)

∣∣∣ < ε

2

}
> 0.

Combining this with (4.4) and (4.5) gives the assertion of the theorem.

Now let v � 2. Define

G2,ε =

{
g ∈ H(DV ) : sup

s∈K
|g(s)− f(s)| < ε

}
.

The function f(s) belongs to the set Ha1,...,av
(DV ). Therefore, by Lemma 4,

f(s) is an element of the support of Pζ,V,hF
−1. This implies Pζ,V,hF

−1(G2,ε) >
> 0. Therefore, by Lemma 5,

lim inf
N→∞

1

N + 1
#

{
0 � k � N : sup

s∈K

∣∣∣F
(
ζ
(
s+ ikh,

a

b
; a
))

− f(s)
∣∣∣ < ε

}
�

� Pζ,V,hF
−1(G2,ε) > 0.

The theorem is proved. �

Obviously, Theorems 4 and 5 have modifications of type of Theorem 3.
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[6] Javtokas, A. and A. Laurinčikas, On the periodic Hurwitz zeta-
fucntion, Hardy-Ramanujan J., 29 (2006), 18–36.
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the periodic Hurwitz zeta-function, Integral Tranforms Spec. Funct., 20
(2009), 673–686.
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[17] Mincevič, A. and D. Mochov, On the discrete universality of the peri-
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A. Laurinčikas and D. Mochov
Institute of Mathematics
Faculty of Mathematics and Informatics
Vilnius University
Naugarduko str. 24
LT-03225 Vilnius
Lithuania
antanas.laurincikas@mif.vu.lt

dmitrij.mochov@mif.vu.lt


