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(Québec, Canada)

Communicated by Jean-Marie De Koninck

(Received March 1, 2018; accepted April 18, 2018)

Abstract. In their seminal work, Erdős and Rényi [3] uncovered a sharp
transition in the size of the largest connected component of random graphs.
Here, we consider feedforward networks which have important applications
in artificial intelligence and sensory neural networks [9] [13] . We obtain
generating functions for both the total number of feedforward networks
and the number of connected feedforward networks as well as an asymp-
totic expression for the total number of feedforward networks. Moreover,
considering a random family of feedforward networks, we uncover a sharp
threshold in their probability of being connected.

1. Introduction

Exact enumaration of graphs satisfying a given set of conditions is in itself
a rich problem [10], [6], [7] with applications in many scientific fields [1], [2].
Previously, we enumerated connected networks [11]. In the present paper, we
focus on the enumeration of feedforward networks which play important roles
both in biological systems such as sensory systems and in artifical intelligence
[12], [9]. Many networks can be considered as directed graphs and often contain
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two privileged sets of nodes, the input nodes which receive external stimuli
and output nodes which communicate the network computation to the outside
world. We focus here on feedforward networks in which the nodes can be
partitioned into disjoint sets L0, L2, . . . , Lk such that connections are possible
only from nodes in Lj to nodes in Lj+1, 0 ≤ j ≤ k − 1.

1.1. Definitions and notation

Definition 1.1. A network is a directed graph N = (V, VInp, VOut, E) where
V is the set of nodes, VInp ⊂ V is the set of input nodes, VOut ⊂ V is the
set of output nodes and E ⊂ V × V is the set of connections where (vi, vj)
is a connection from node j to node i. The input and output nodes satisfy:
vi ∈ VInp ⇒ (vi, vj) �∈ E, ∀j and vi ∈ VOut ⇒ (vj , vi) �∈ E, ∀j. Furthermore,
(vi, vi) �∈ E, ∀i. We define the set of internodes as VInter := V \(VInp ∪ VOut).

Definition 1.2. A network is a feedforward network if there exists an integer
k ≥ 1 and a function f such that f : V → {0, 1, . . . , k} with:

1) v ∈ VInp ⇔ f(v) = 0,

2) v ∈ VOut ⇔ f(v) = k,

3) (vi, vj) ∈ E ⇒ f(vi) = f(vj) + 1.

If it is so, for j, 0 ≤ j ≤ k, we define Lj := {v ∈ V : f(v) = j}. We
define the layer structure of a feedforward network by the vector L ∈ Nk,
L = (L1, L2, . . . , Lk) with Lj := #Lj .

Definition 1.3. We say that two networks N (j) =
(
V (j), V

(j)
Inp , V

(j)
Out, E

(j)
)
,

j = 1, 2 are isomorphic if V
(1)
Inp = V

(2)
Inp , V

(1)
Out = V

(2)
Out and if there exists a bijective

function H : V (1) → V (2) such that (vi, vj) ∈ E(1) ⇔ (H(vi), H(vj)) ∈ E(2).

This definition implies that input and output nodes are considered distin-
guishable while internodes are considered indistinguishable.

Definition 1.4. We say that a feedforward network is connected if for each
j such that vj �∈ VInp, ∃vi such that (vj , vi) ∈ E and if for each j such that
vj �∈ VOut, ∃vi such that (vi, vj) ∈ E.

Definition 1.5. We say that two internodes vi, vj (i �= j) are redundant if
(vi, v�) ∈ E ⇔ (vj , v�) ∈ E and that a network is redundant if it contains at
least two nodes which are redundant.

Notation. We write λ � n if λ is an integer partition of n.
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1.2. The Pólya Enumeration Theorem

The Pólya Enumeration Theorem is a flexible tool to enumerate structures
such as graphs or molecule conformations [8]. Letting G stand for the group of
permutations between indistinguishable nodes of a graph and N for the number
of nodes of this graph, it can be expressed as

(1.1) F (x) =
1

#G

∑
s∈G

Ps(x), Ps(x) =

∞∏
j=1

(
1 + xj

)os(j)

with os(j) the number of orbits of length j induced on the possible connections
by the node permutation s. Here and below, observe that the product is actu-
ally a finite one since the length of an orbit is smaller or equal than the number
of possible connections which is ≤ N2. The function F (x) is the generating
function for the number of networks where the coefficient of xn is the number
of networks with exactly n connections. Since Ps(x) depends only on the type
of the permutation s, (1.1) can be written as

(1.2) F (x) =
1

#G

∑
λ∈B

#{s ∈ G : type(s) = λ}
∞∏
j=1

(
1 + xj

)oλ(j)

where B is the set of all possible permutation types. For instance, if we con-
sider permutations of N elements and impose no restriction, B is the set of all
partitions of N .

1.3. Statement of results

Write Fx(L) for the generating function of all feedforwad networks with
structure layer L = (L0, L1, . . . , Lk).

Theorem 1.1. Let k be a positive integer and let L = (L0, L1, . . . , Lk) be a
vector of positive integers, then

Fx(L) =
∑

λ=(λ1,...,λk−1)

λj�Lj, 1≤j≤k−1




k−1∏
j=1

Lj∏
�=1

1

�a(�,j)a(�, j)!


Px(λ1)Px(λk−1)

k−2∏
j=1

Qx(λj , λj+1)

where a(�, j) is the number of occurrences of the integer � in the partition λj.
The auxiliary polynomials P and Q are defined by

Px(λ) =
∞∏
�=1

(
1 + x�

)a(�)
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where a(�) is the number of occurrence of � in the partition λ and

Qx(λj , λ�) =
∏

1≤r≤∞
1≤s≤∞

(
1 + xLCM(r,s)

)rs·a(r,j)a(s,�)/LCM(r,s)

.

From the generating function Fx(L), we obtain

Theorem 1.2.

(1.3) F1(L) =
2
∑k−1

j=0 LjLj+1

∏k−1
j=1 Lj !

(
1 +O

(
k2B22−2A

))

provided that kB2−2A < 1 where A = minj∈{0,...,k} Lj and
B = maxj∈{0,...,k} Lj.

We define Cx(L) as the generating function for the number of feedforward
networks with structure layer L in which every node sends at least a connection
but doesn’t necessarily receive one and we define implicitly Cx(L, λ) by the
contribution to Cx(L) of a permutation of type λ.

Given λ = (λ1, λ2, . . . , λk−1), we define aλ(t, �) as the number of occurrences
of the integer � in λt. We say that ν = (ν1, ν2, . . . , νk−1), satisfies ν ⊆ λ if
aν(t, �) ≤ aλ(t, �) for all t, �. If ν ⊆ λ we define

J(ν, λ) =
k−1∏
t=1

Lt∏
�=1

(
aλ(t, �)

aν(t, �)

)
.

Theorem 1.3. Let L = (L0, L1, . . . , Lk) be a vector of positive integers. Let
Kx(L) be the generating function for the number of connected feedforward net-
works having layer structure L, we have

Kx(L) =
∑

λ=(λ1,λ2,...,λk−1)

λj�Lj, 1≤j≤k−1

Kx(L, λ), with

(1.4) Kx(L, λ) = Cx(L, λ)−
∑
ν⊂λ
ν �=φ

J(ν, λ)Kx(L, λ− ν)Rx(L, ν, λ)

where

Rx(L, λ, ν) =
k−1∏
t=1

∏
1≤j<∞
1≤�<∞

((
1 + xLCM(j,�)

)aν(t+1,�)

− 1

)aλ(t,j)j·�/LCM(j,�)

.
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We define M(L) as the number of feedforward networks with layer structure
L that are both connected and non redundant. We obtain

Theorem 1.4.

M(L) = Lk!

k−1∏
j=0




Lj∑
m=0

(−1)m
(
Lj

m

)(
2Lj −m− 1

Lj+1

)
 =

=
2
∑k−1

j=0 LjLj+1

∏k−1
j=1 Lj !


1 +O




k−1∑
j=0

(
L2
j

2Lj+1
+

L2
j+1

2Lj

)


 .

Finally, we define G(n, k, p) as the family of random feedforward networks
with k layers of n nodes in which each possible connection actually exists with
an independent probability of p. We obtain the following.

Theorem 1.5. For a positive real number b, the probability that a network in

G(n, k, p) is strongly connected when p = log(nk/b)
n and as n tends to infinity is

equal to

e−2b

(
1 +O

(
k log2 n

n

))
.

2. Proof of the Theorems

2.1. Enumeration of all feedforward networks

Let k be a positive integer and let L = (L0, L1, . . . , Lk) be a vector of
positive integers. Let G = G(L) be the group of permutations between indis-
tinguishable nodes. We have, G = SL1 × . . .× SLk−1

and

(2.1) #G =

k−1∏
j=1

Lj !.

For s ∈ G, write s = (s1, s2, . . . , sk−1) where sj is the permutation between
the nodes of layer j and set �r,j(s) as the number of disjoint cycles of length
r in sj . We say that two permutations s and s∗ are of the same type if
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�r,j(s) = �r,j(s
∗), ∀r, j. We write type(s) = λ = (λ1, . . . , λk−1) with λj � Lj .

Equation (1.2) yields

(2.2) Fx(L) =
1∏k−1

u=1 Lu!

∑
λ=(λ1,...,λk−1),

λj�Lj,1≤j≤k−1

#{s ∈ G, type(s) = λ}Pλ(x)

where Pλ(x) is the contribution to Fx(L) from a permutation of type λ. Let
a(r, j) be the number of occurences of r in λj . The number of permutations of
Lj elements with a(r, j) cycles of length r for all r is

Lj !∏Lj

r=1 r
a(r,j)a(r, j)!

.

Taking the product over all layers j, we get from (2.2)

(2.3) Fx(L) =
∑

λ=(λ1,...,λk−1),

λj�Lj, 1≤j≤k−1

Pλ(x)

k−1∏
j=1

Lj∏
r=1

1

ra(r,j)a(r, j)!
.

Now consider a cycle of length v on nodes in layer j and one of length w on
nodes in layer j + 1, these induce orbits of lengths LCM(v, w) on connections
from nodes in layer j to nodes in layer j + 1. Given that the total of possible
connections is v · w, the number of orbits is v·w

LCM(v,w) . The corresponding

contribution to Pλ(x) from these connections is thus

(2.4)
(
1 + xLCM(v,w)

)v·w/LCM(v,w)

.

We write Pλ(x) = P
(1)
λ (x)P

(2)
λ (x)P

(3)
λ (x) where P

(1)
λ (x) accounts for the con-

nections between the input nodes and the first layer of internodes, P
(2)
λ (x) for

the connections between internodes and P
(3)
λ (x) for the connections between

the last layer of the internodes and the output nodes. We straightforwardly
have from (2.4)

(2.5) P
(1)
λ (x) =

∞∏
r=1

(1 + xr)a(1,r) and P
(3)
λ (x) =

∞∏
r=1

(1 + xr)a(k−1,r)

where a(j, r) is the number of cycles of length r in the permutation of the jth
internode layer. Similarly, we have

(2.6) P
(2)
λ (x) =

k−2∏
j=1

∏
1≤r<∞
1≤s<∞

(
1 + xLCM(r,s)

)a(j,r)a(j+1,s)rs/LCM(r,s)

.

Putting equations (2.5) and (2.6) in (2.3), we prove Theorem 1.1. �
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2.1.1. An asymptotic formula for F1(L)

We show that the main contribution to F1(L) comes from the identity per-
mutation. This contribution is

(2.7) q1 :=
2
∑k−1

j=0 LjLj+1

∏k−1
j=1 Lj !

.

Now let s be a permutation leaving all but two nodes of layer j∗ fixed. Let q2
be the contribution of this permutation to F1(L). We have

q2
q1

=

(
Lj∗

2

)
2−Lj∗+1−Lj∗−1 .

Let Qm stand for the total contribution from permutations leaving all but m
nodes fixed. In particular, we have assuming that A ≤ Lj ≤ B for each j,

(2.8)
Q2

q1
= O

(
kB22−2A

)
.

We now want to obtain an upper bound for Qm for each integer m ≥ 3. Let
Dm = (d1, . . . , dk−1) be a vector of non negative integers summing up to m
and let W (Dm) be the number of networks counted by permutations leaving
all but dj interneurons fixed in layer j. We then have

W (Dm)

q1
≤

k−1∏
j=1

(
Lj

dj

)
dj !2

−dj(Lj+1+Lj−1) ≤
k−1∏
j=1

L
dj

j 2−dj(Lj+1+Lj−1) ≤

≤ Bm2−Am.

Summing this over all admissible vectors Dm, we obtain

(2.9)
Qm

q1
≤

(
(kB)2−2A

)m
.

Combining equations (2.7), (2.8) and (2.9), completes the proof Theo-
rem 1.2. �

2.2. Enumerating connected networks

We now give a generating function for the number of connected feedforward
networks, thus proving Theorem 1.3. Let Cx(L) be the generating function for
the number of networks with layer structure L in which each node (except
output nodes) sends a forward connection and let Kx(L) be the generating
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function for the number of networks with layer structure L satisfying the sup-
plemental condition that each node (except input nodes) receives a connection.
Similarly, let Cx(L, λ) and Kx(L, λ) be generating functions for the number of
networks left invariant by a permutation of type λ . We have

(2.10) Cx(L, λ) =
k−1∏
s=0

∏
1≤j<∞
1≤�<∞

(
(1 + xLCM(j,�))a(s+1,�) − 1

)a(s,j)j·�/LCM(j,�)

where a(s, j) is the number of occurrences of the integer j in the partition λs.
The minus 1 term is necessary to exclude the case where the permuted nodes
in layer s send no forward connection. We obtain Kx(L, λ) from Cx(L, λ)
by subtracting the generating function associated to networks in which each
node sends a forward connection but in which some nodes don’t receive any
connection. We divide the internodes of a network into two sets, those who
receive a path from at least one input node and those who don’t. Given a
permutation s of type λ leaving connections invariant, we let s′ be the subset
of this permutation acting on internodes that don’t receive a path from input
nodes and denote ν the type of the permutation s′. Between two consecutive
layers, connections from a nodes permuted by s\s′ to a neode permuted by s′

are not allowed. We thus have

Kx(L, λ) = Cx(L, λ)−
∑
ν⊂λ
ν �=φ

J(ν, λ)Kx(L, λ− ν)Rx(L, ν, λ), with

Rx(L, λ, ν) =

k−1∏
t=1

∏
1≤j<∞
1≤�<∞

((
1 + xLCM(j,�)

)aλ(t+1,�)

− 1

)aν(t,j)j·�/LCM(j,�)

where aλ(t, j) is the number of occurrences of j in λt. The coefficient J(ν, λ)
counts the number of possible ways of choosing a subpermutation of type ν in
a permutation of type λ. Explicitly, we have

J(ν, λ) =
k−1∏
t=1

∏
j≥1

(
aλ(t, j)

aν(t, j)

)
.

2.3. Enumerating connected, non redundant networks

We let M(L) be the number connected and non redundant networks having
layer structure L. The inward connections received by a node in layer j can
be seen as a binary sequence where the �th entry is equal to one if and only
if the node receives a connection from the �th node of layer j − 1. From the
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non redundancy condition, the Lj corresponding sequences must take distinct
values so the number of possible ways of choosing the connections from nodes

in layer j−1 to nodes in layer j is given by
(
2Lj−1

Lj

)
. Assuming that each node in

layer j receives at least one input from a node in layer j−1 reduces this number

to
(
2Lj−1−1

Lj

)
. However this also counts networks in which some nodes don’t send

any connection. To correct this, we use the inclusion-exclusion principle and
obtain the number of connected subgraphs between nodes of adjacent layers Lj

and Lj+1, namely

(2.11)

Lj∑
m=0

(−1)m
(
Lj

m

)(
2Lj−m − 1

Lj+1

)
.

Taking the product over all layers of nodes we get from (2.11)

(2.12) M(L) = Lk!

k−1∏
j=0




Lj∑
m=0

(−1)k
(
Lj

m

)(
2Lj−m − 1

Lj+1

)
 .

where the factor Lk! comes from the fact that the nodes in the output layer are
by construction distinguishable. Equation (2.12) thus proves the first part of
Theorem 1.4. In order to prove the second part of Theorem 1.4, first observe
that (

2Lj − 1

Lj+1

)
=

(2Lj − 1)!

Lj+1!(2Lj − 1− Lj+1)!
=

=
(2Lj − 1)Lj+1

Lj+1!

(
1 +O

(
Lj+1

2Lj

))Lj+1

=

=
2LjLj+1

Lj+1!

(
1 +O

(
L2
j+1

2Lj

))
.

(2.13)

We also have

Lj∑
m=1

(−1)m
(
Lj

m

)(
2Lj−m − 1

Lj+1

)
≤

Lj∑
m=1

(
Lj

m

)(
2Lj−m − 1

Lj+1

)
=

=
2LjLj+1

Lj+1!
O

(
Lj

2Lj+1

)
.

(2.14)

Putting (2.13) and (2.14) together and taking the product over all layers, we
obtain from 2.11

M(L) =
2
∑k−1

j=0 LjLj+1

∏k−1
j=1 Lj !


1 +O




k−1∑
j=0

(
L2
j

2Lj+1
+

L2
j+1

2Lj

)


 ,

thereby proving the second part of Theorem 1.4. �
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3. The probability of being connected

As is often the case in the study of graphs and networks [5], [4], we define a
family of random networks and compute the probability that a network satis-
fies a relevant property. Given positive integers n and k as well as a parameter
p, 0 < p < 1, we define the family of random networks G(n, k, p) as the fam-
ily of feedforward networks with k layers of n nodes such that each possible
connection has an independant probability p of actually existing.

Let P (a, p, n) stand for the probability that two adjacent layers each of n
nodes are connected and that the total number of connections between the two
layers is equal to a. Since the total number of possible connections between
the two layers is n2, we have by the inclusion-exclusion principle

P (a, p, n) =

n∑
s=0

n∑
r=0

(−1)s+r

(
n

s

)(
n

r

)(
(n− s)(n− r)

a

)
pa(1− p)n

2−a.

Summing the above over a, we get

(3.1)
n2∑
a=1

P (a, p, n) =
n∑

s=0

n∑
r=0

(−1)r+s

(
n

s

)(
n

r

)
(1− p)nr+ns−rs.

Assuming that p = log(nk/b)
n for a positive constant b, we have

(1− p)n = exp (n log(1− p)) =

= exp

(
− log n− log(nk/b) +O

(
log2 n

n

))
=

=
b

nk
exp

(
O

(
log2 n

n

))
.

Thus we get from 3.1

(3.2)

n2∑
a=1

P (a, p, n) =

=
n∑

s=0

n∑
r=0

(−1)r+s

(
n

s

)(
n

r

)
br+s

(nk)r+s

(
1 +O

(
log2 n

n
+ p(r + s)

))
.

Using the relation (
n

r

)
=

nr

r!

(
1 +O

(
r2

n

))



Counting feedforward networks 271

in (3.2) we obtain that
∑n2

a=1 P (a, p, n) is equal to

n∑
s=0

n∑
r=0

(−1)r+s (b/k)
r+s

r!s!

(
1 +O

(
log2 n+ r2 + s2

n
+ p(r + s)

))
.

If R and S tend to infinity with n, the above is equal to

S∑
s=0

(−1)s(b/k)s

s!
×

×
R∑

r=0

(−1)r(b/k)r

r!

(
1 +O

(
log2 n+R2 + S2 + log n(R+ S)

n

))
+

+O
(
e−S + e−R

)
.

Choosing S = R = log n, we obtain

n2∑
a=1

P (a, p, n) = exp(−2b/k)

(
1 +O

(
log2 n

n

))
.

Finally, taking the product over all layers, we obtain

G(n, k, p) = e−2b

(
1 +O

(
k log2 n

n

))

completing the proof of Theorem 1.5. �
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