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Abstract. We provide an estimate for the sum of the reciprocals of the
middle prime factor counting multiplicity.

1. Introduction

Given an integer n ≥ 2, write it as n = pa1
1 pa2

2 . . . pak

k where the primes pj
satisfy p1 < p2 < · · · < pk so that k = ω(n). For a real positive number β < 1,
by letting p{β}(n) := pmax(1,�β(k+1)�), the first author has shown in [6] that
there exists a function G (x, β) such that G (x, β)− 1 = o(1) as x → ∞ and

∑
1<n≤x

1

p{β}(n)
=

x

log x
exp

(
(log2 x)

1−β
(log3 x)

β

ββ (1− β)
1−2β

(
G (x, β) +O

(
1

log23 x

)))
.

Here and in what follows, logk x denotes the k-th iterate of log evaluated at
x, and we shall always assume that the input x is large enough so that the
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iterated logarithms are real and positive. For the case β = 1, we have that
p{β}(n) = P (n), the largest prime factor of n, and it was studied by Erdős,
Ivić and Pomerance [4]. For the case β = 0, p{β}(n) = p(n) the smallest prime
factor of n. See [3, problem 9.6] for an estimate. Our goal is to extend the
investigation for the middle prime factor to the case where the multiplicity of
prime factors is taken into account. We write each integer n as n = p1p2 · · · pk
with p1 ≤ p2 ≤ . . . ≤ pk, k = Ω(n) and we set p(1/2)(n) := p� k+1

2 �. We prove

the following.

Theorem 1.1. As x → ∞,

∑
1<n≤x

1

p(1/2)(n)
= C

x√
log x

(
1 +O

(
1

log2 x

))
,

where C :=
3

2Γ (3/2)

∑
p

1

p2
g (p, 1/2)

∏
3≤q≤p

(
1− 2

q

)−1

and

g (p, 1/2) :=
∏
q<p

(
1− 1

2q

)∏
q

(
1− 1

2q

)−1 (
1− 1

q

)1/2

where this last product

runs over all primes q.

2. The proof of Theorem 1.1

We have

(2.1)
∑

1<n≤x

1

p(1/2)(n)
=

∑
p≤x

1

p

∑
k≥1

#
{
1 < n ≤ x : Ω(n) = k, p(1/2)(n) = p

}
.

In the case where k ≥ 3, we write k = 2k0 + δ, where k0 :=
⌊
k+1
2

⌋
and

δ ∈ {−1, 0}. Let n = apb, where k = Ω(n), P (a) ≤ p, Ω(a) = k0 − 1,
p = p(1/2)(n), p(b) ≥ p and Ω(b) = k − k0. From here on, we define the sets
A = Ap,k and B = Bp,k respectively by

A = {a ∈ N : P (a) ≤ p,Ω(a) = k0 − 1} ,B = {b ∈ N : p(b) ≥ p,Ω(b) = k − k0} ,

so that, from Mertens’ theorem, Luca and Pomerance [5, Lem. 13] and (2.1),
we have

(2.2)
∑

1<n≤x

1

p(1/2)(n)
=

∑
p≤x

1

p

∑
k≥3

∑
ab≤x/p
a∈A
b∈B

1 +O

(
x log2 x

log x

)
.
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As De Koninck and Luca [2, eq. (2), eq. (3)] showed, we may also expect that
integers n that have a middle prime factor larger than log x or that are such
that Ω(n) ≥ 10 log2 x do not contribute much to (2.2), so that

(2.3)
∑

1<n≤x

1

p(1/2)(n)
=

∑
p≤log x

1

p

∑
3≤k≤10 log2 x

∑
ab≤x/p
a∈A
b∈B

1 +O

(
x log2 x

log x

)
.

Here and in what follows, we let Np,k(x) :=
∑

ab≤x/p
a∈A
b∈B

1 =
∑

a≤x/p
a∈A

∑
b≤ x

ap

b∈B

1. The fol-

lowing uses the same basic ideas as those presented in [6].

Proposition 2.1. Uniformly for all real r ∈ (0, 3), integers k ∈ [3, r log2 x]
and primes p ∈ [2, log x], and setting λ = k − k0 = k −

⌊
k+1
2

⌋
,

Np,k(x) =
x

p log x

g
(
p, λ−1

log2 x

)

Γ
(
1 + λ−1

log2 x

) (log2 x)
λ−1

(λ− 1)!

(
1 +O

(
(log2 p)

2

log2 x

)) ∑
a≤x/p
a∈A

1

a
.

Proof. First of all, one can easily see that λ = k − k0 with k0 ≤ R log2 x,
0 < R < 2. Moreover, since p ≤ log x and Ω(a) ≤ 3 log2 x, we have that

ap ≤ (log x)
3 log2 x+1

so that, by Alladi [1, thm. 6], we have

∑
b≤ x

ap

b∈B

1 =
x

ap log x

(log2 x)
λ−1

(λ− 1)!


 g

(
p, λ−1

log2 x

)

Γ
(
1 + λ−1

log2 x

) +O

(
(log2 p)

2

(log p)
λ−1
log2 x log2 x

)
×

×

(
1 +O

(
(log2 x)

2

log x

))
,

where g (y, µ) =
∏
q<y

(
1− µ

q

)∏
q

(
1− µ

q

)−1 (
1− 1

q

)µ

. Now, observe that

Γ

(
1 +

λ− 1

log2 x

)
� 1 and that g

(
p,

λ− 1

log2 x

)
� (log p)

− λ−1
log2 x . Hence, it follows

that

∑
b≤ x

ap

b∈B

1 =
x

ap log x

g
(
p, λ−1

log2 x

)

Γ
(
1 + λ−1

log2 x

) (log2 x)
λ−1

(λ− 1)!

(
1 +O

(
(log2 p)

2

log2 x

))
.

Using this estimate in Np,k(x), we obtain the desired result. �
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The next part is to estimate the sum of the reciprocals for those integers
a ≤ x/p that are in the set A.

Proposition 2.2. Uniformly for 0 < r < 3, 3 ≤ k ≤ r log2 x and 2 ≤ p ≤ log x,

∑
a≤x/p
a∈A

1

a
=

1

2k0−1

∏
3≤q≤p

(
1− 2

q

)−1

+O


 1

3k0−1

∏
3<q≤p

(
1− 3

q

)−1

 .

Proof. We shall first obtain an estimate for the sum
∑
a∈A

1
a . Let y = π(p),

where π(x) denotes the number of prime numbers not exceeding x. Then,

∑
a∈A

1

a
=

∑
a1+a2+···+ay=k0−1

1

2a13a25a3 . . . p
ay
y

,

where pj denotes the j-th prime number. Clearly,

∑
a∈A

1

a
=

1

2k0−1

∏
3≤q≤p

(
1− 2

q

)−1

− 1

2k0−1

∑
Ω(a)≥k0

P (a)≤p
p(a)>2

2Ω(n)

n
.

Proceeding in the same manner for this last sum, we have

∑
Ω(a)≥k0

P (a)≤p
p(a)>2

2Ω(n)

n
≤

∑
m≥k0

(
2

3

)m ∑
Ω(a)≥k0

P (a)≤p
p(a)>3

3Ω(n)

n
�

(
2

3

)k0−1 ∏
3<q≤p

(
1− 3

q

)−1

.

Hence, we conclude that

∑
a∈A

1

a
=

1

2k0−1

∏
3≤q≤p

(
1− 2

q

)−1

+O


 1

3k0−1

∏
3<q≤p

(
1− 3

q

)−1

 .

Since p ≤ log x, Ω(a) ≤ 2 log2 x and P (a) ≤ p, we get a ≤ (log x)
2 log2 x

, so that
a ≤ x/p for any a ∈ A, thus completing the proof of the proposition. �
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Combining the preceding two propositions with (2.3), we get for any fixed

r ∈
[

2
log 2 , 3

)
that

∑
1<n≤x

1

p(1/2)(n)
=

x

log x

∑
p≤log x

1

p2

∏
3≤q≤p

(
1− 2

q

)−1
(
1 +O

(
(log2 p)

2

log2 x

))
×

×
∑

3≤k≤r log2 x

1

2k0−1

(log2 x)
λ−1

(λ− 1)!

g
(
p, λ−1

log2 x

)

Γ
(
1 + λ−1

log2 x

) + E1(x) + E2(x) + E3(x),

(2.4)

where

E1(x) �
x

log x

∑
p≤log x

1

p2

∏
3<q≤p

(
1− 3

q

)−1

×

×
∑

3≤k≤r log2 x

1

3k0−1

(log2 x)
λ−1

(λ− 1)!

g
(
p, λ−1

log2 x

)

Γ
(
1 + λ−1

log2 x

) ,

E2(x) � x
∑

p≤log x

1

p2

∏
3≤q≤p

(
1− 2

q

)−1 ∑
r log2 x<k≤10 log2 x

1

2k0−1
+

+ x
∑

p≤log x

1

p2

∏
3<q≤p

(
1− 3

q

)−1 ∑
r log2 x<k≤10 log2 x

1

3k0−1

and E3(x) �
x log2 x

log x
. First observe that

(2.5) E2(x) � x
∑

k>r log2 x

1

2k0−1
� x

∑
k>r log2 x

1

2k/2
� x2−r log2 x/2 � x

log x
,

since r ≥ 2
log 2 . Noticing that g

(
p, λ−1

log2 x

)
� Γ

(
1 + λ−1

log2 x

)
uniformly for prime

numbers p ≤ log x and integers 3 ≤ k ≤ r log2 x, we obtain that

E1(x) �
x

log x

∑
3≤k≤r log2 x

1

3k0−1

(log2 x)
λ−1

(λ− 1)!
.

When k = 3, we have λ = k0 = 1, so that using Stirling’s formula and the fact
that k0 � k/2 � λ, we get

(2.6) E1(x) �
x

log x


1 +

∑
4≤k≤r log2 x

(
e log2 x

3 (λ− 1)

)λ−1

 .
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By definition, we have λ = k−k0 = k−
⌊
k+1
2

⌋
, so that λ ≤ k

2 +
1
2 ≤ r

2 log2 x+
1
2

and λ ≥ 2. Each of those values of λ may appear at most twice in (2.6), so

that, since the function f defined for t ≥ 1 and A > 1 by f(t) =
(
eA
t

)t
is

concave and reaches its global maximum when t = A, we obtain

(2.7) E1(x) �
x

log x


1 + log2 x

(
e log2 x

3 log2 x
3

) log2 x
3


 � x

(log x)2/3
.

Similarly, the error related to the term O
(

(log2 p)2

log2 x

)
in (2.4) is smaller than

C x√
log x

1
log2 x for a positive constant C and x large enough. Using this bound

along with (2.5) and (2.7), we obtain that, for any fixed real number r such
that 2

log 2 ≤ r < 3,

∑
1<n≤x

1

p(1/2)(n)
=

x

log x

∑
p≤log x

S

p2

∏
3≤q≤p

(
1− 2

q

)−1

+O

(
x√
log x

1

log2 x

)
,

(2.8)

where S = S (x, p, r) :=
∑

3≤k≤r log2 x

1

2k0−1

(log2 x)
λ−1

(λ− 1)!

g
(
p, λ−1

log2 x

)

Γ
(
1 + λ−1

log2 x

) . To esti-

mate S, it may be easier to write it over λ− 1.

Proposition 2.3. For any fixed real number r such that 2
log 2 ≤ r < 3, we have

S =
3

2

∑
1≤m≤λ1−2

1

m!

(
log2 x

2

)m g
(
p, m

log2 x

)

Γ
(
1 + m

log2 x

) +O(1),

where λ1 := �r log2 x� −
⌊
�r log2 x�+ 1

2

⌋
.

Proof. As noted before, since λ =
⌊
k+1
2

⌋
, each possible value of λ when

3 ≤ k ≤ r log2 x may be attained only once in the case where k = 3 and
possibly the case k = �r log2 x�, and twice for every other values of λ. Define
λ1 to be the largest possible value for λ, so that

λ1 := �r log2 x� −
⌊
�r log2 x�+ 1

2

⌋
=

r

2
log2 x+O(1).

We have that λ = 1 when k = 3 and λ ≥ 2 for k ≥ 4. Hence, when k = 3,
λ = 1 and k0 = 1, so that the summand is equal to 1. When k = �r log2 x�,
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we have k0 − 1 � r
2 log2 x, so that the summand is � 1 by Stirling’s formula.

Moreover, we have 1
2k0−1 = 4 1

2k
2λ−1. Since

λ = k − k0 ⇐⇒ λ = k −
⌊
k + 1

2

⌋
⇐⇒ k = 2λ or k = 2λ+ 1,

it follows that

S = 4
∑

2≤λ<λ1

(2 log2 x)
λ−1

(λ− 1)!

g
(
p, λ−1

log2 x

)

Γ
(
1 + λ−1

log2 x

)
(

1

22λ
+

1

22λ+1

)
+O(1).

Hence, by setting m = λ− 1, we obtain the desired result. �

To estimate the above sum, we start by omitting the g and Γ functions.

Proposition 2.4. As x → ∞,

T :=
∑

1≤m≤λ1−2

1

m!

(
log2 x

2

)m

=
√
log x

(
1 +O

(
1√

log x log2 x

))
.

Note that this estimate alone does not directly tell us how to estimate the
sum S.

Proposition 2.5. Uniformly for 2 ≤ p ≤ log x,

S =
3

2

g (p, 1/2)

Γ (3/2)

√
log x


1 +O



(∑

q<p

1

2q − 1

)2
1

log2 x




 .

Proof. For A > 10 and t ≥ 1, consider the function f(t) := 1√
t

(
eA
t

)t
. This

function is concave and reaches its global maximum at t0, where

(2.9) t0 =
log2 x

2
− 1

2
+O

(
1

log2 x

)
and t0 (log t0 − log3 x+ log 2) = −1

2
,

so that

(2.10) f (t0) =

√
2 log x

log2 x

(
1 +O

(
1

log2 x

))
.

We will use that global maximum to estimate S. Let ξ = (log2 x)
−3/8

and
write

T =
∑

1≤m≤t0(1−ξ)

1

m!

(
log2 x

2

)m

+
∑

t0(1+ξ)<m≤λ1−2

1

m!

(
log2 x

2

)m

+

+
∑

t0(1−ξ)<m≤t0(1+ξ)

1

m!

(
log2 x

2

)m

=: T1 + T2 + T3.
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From Stirling’s formula, we have

T1 �
∑

1≤m≤t0(1−ξ)

f(m) � t0f (t0 (1− ξ)) � f (t0 (1− ξ)) log2 x

and
T2 �

∑
t0(1+ξ)<m≤λ1−2

f(m) � f (t0 (1 + ξ)) log2 x.

Notice that we have, for any v ∈ [−ξ, ξ], f (t0 (1 + v)) � f (t0) exp

(
− t0v

2

2

)
.

Hence, from (2.10), we have

T1 � f (t0) log2 x exp

(
− (log2 x)

1/4

2

)
= o

(
1√
log2 x

f (t0)

)
�

√
log x

log2 x

and T2 = o
(√

log x
log2 x

)
. Moreover, from Proposition 2.4, we conclude that

T3 =
√
log x

(
1 +O

(
1

log2 x

))
.

Observe that the integers m that satisfy (1− ξ) t0 < m ≤ (1 + ξ) t0 are the
main contributors to the sum T . Write S = S1 + S2 + S3 +O(1) with

Sj :=
3

2

∑
m∈Ij

1

m!

(
log2 x

2

)m g
(
p, m

log2 x

)

Γ
(
1 + m

log2 x

) (j = 1, 2, 3) ,

where the intervals Ij are defined by I1 = [1, (1− ξ) t0), I2 = ((1 + ξ) t0, λ1 − 2]
and I3 = ((1− ξ) t0, (1 + ξ) t0]. To estimate S1 and S3, we may use the fact

that g
(
p, m

log2 x

)
� Γ

(
1 + m

log2 x

)
which gives, as x → ∞ and uniformly for

2 ≤ p ≤ log x,

S1 � T1 = o

(√
log x

log2 x

)
and S2 � T2 = o

(√
log x

log2 x

)
,

so that

(2.11) S = S3 + o

(√
log x

log2 x

)
.

For S3, note that, from (2.9), m
log2 x = t0(1+v)

log2 x = 1
2 + O (ξ), where −ξ < v ≤ ξ.

Moreover ξ log2 p ≤ (log2 x)
−3/8

log3 x = o(1) as x → ∞. Hence, there exists a
constants K1 such that, uniformly for 2 ≤ p ≤ log x and m ∈ I3,

(2.12)
g
(
p, m

log2 x

)

g
(
p, 1

2

) = 1 +∆K +
∆2

2
K2 +O

(
K 1

log2 x

)
,
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where ∆ := m
log2 x − 1

2 and K := K1 −
∑
q<p

2
2q−1 . On the other hand, we have

from (2.9) that there exist constant D1 and D2 such that

(2.13)
1

Γ
(
1 + m

log2 x

) =
1

Γ (3/2)

(
1 +D1∆+D2∆

2 +O

(
1

log2 x

))
.

Combining (2.12) and (2.13) in S3, we get

S3 =
3

2

g (p, 1/2)

Γ (3/2)
T3

(
1 +O

(∑
q<p

1

2q − 1

1

log2 x

))
+ S4 + S5,

where

S4 :=
3g (p, 1/2)

2Γ (3/2)
(D1 +K)

∑
m∈I3

1

m!

(
log2 x

2

)m (
m

log2 x
− 1

2

)

and

S5 :=
3g (p, 1/2)

2Γ (3/2)

(
D2 +K

(
D1 +

K
2

)) ∑
m∈I3

1

m!

(
log2 x

2

)m (
m

log2 x
− 1

2

)2

.

For S4 and S5, we have to estimate
1

2

∑
m∈I3

1

(m− j)!

(
log2 x

2

)m−j

, where

j = 1 or j = 2. As with T3,

1

2

∑
m∈I3

1

(m− j)!

(
log2 x

2

)m−j

=

√
log x

2

(
1 +O

(
1

log2 x

))
.

Hence, uniformly for 2 ≤ p ≤ log x,

S4

g (p, 1/2)
�

∑
q<p

1

2q − 1

√
log x

log2 x
.

For S5, we have

S5

3g(p,1/2)
2Γ(3/2)

=

(
D2 +K

(
D1 +

K
2

))
×

×

(
1

4

∑
m∈I3

1

(m− 2)!

(
log2 x

2

)m−2

− 1

2

∑
m∈I3

1

(m− 1)!

(
log2 x

2

)m−1

+

+
1

4
T3

)
,
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so that we get

S5

g (p, 1/2)
�

(∑
q<p

1

2q − 1

)2 √
log x

log2 x
.

Hence, from (2.11), we obtain

S =
3

2

g (p, 1/2)

Γ (3/2)

√
log x


1 +O



(∑

q<p

1

2q − 1

)2
1

log2 x




 ,

which completes the proof of Proposition 2.5. �

Using this last estimate for S in (2.8), we get

∑
1<n≤x

1

p(1/2)(n)
=

3

2Γ (3/2)

x√
log x

∑
p≤log x

1

p2

∏
3≤q≤p

(
1− 2

q

)−1

g (p, 1/2)×

×


1 +O



(∑

q<p

1

2q − 1

)2
1

log2 x




 .(2.14)

What is left to estimate is the sum over the primes p ≤ log x. Since

∏
3≤q≤p

(
1− 2

q

)−1

= exp


−

∑
3≤q≤p

log

(
1− 2

q

)
 � (log p)

2
,

g (p, 1/2) � 1√
log p

and
∑
q<p

1

2q − 1
� log2 p, we obtain that

∑
p>log x

1

p2

∏
3≤q≤p

(
1− 2

q

)−1

g (p, 1/2)

(
1 +O

(
(log2 p)

2

log2 x

))
� 1√

log x
.

Hence, it follows from (2.14) that

∑
1<n≤x

1

p(1/2)(n)
= C

x√
log x

(
1 +O

(
1

log2 x

))
,

where

C :=
3

2Γ (3/2)

∑
p

1

p2
g (p, 1/2)

∏
3≤q≤p

(
1− 2

q

)−1

,

which completes the proof of Theorem 1.1. �
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