
Annales Univ. Sci. Budapest., Sect. Comp. 47 (2018) 197–209

SOME MATHEMATICAL PROPERTIES OF THE

PERFORMANCE MEASURES APPLIED

FOR POINT CLOUD DATABASES

István Csabai, László Dobos,
Attila Kiss and János M. Szalai-Gindl

(Budapest, Hungary)

Communicated by András Benczúr

(Received March 30, 2018; accepted June 20, 2018)

Abstract. Data megatsunami remains a genuine challenge in a variety
of scientific domains which typically focus on multidimensional objects.
A distributed architecture is needed to store massive amounts of data.
In such an environment, the optimization for data placement strategy is
an important issue which has been of concern to researchers for several
decades. To this purpose, tiling algorithms were presented in our previous
work which can optimize data partitioning for load balancing and nearest
neighbor search. These are based on a multidimensional histogram which
can be utilized for data placement. Two performance measures were also
introduced which can support the comparison of the efficiency of meth-
ods. This paper contributes by extending them with a new measure and
examines the mathematical properties of these measures.

1. Introduction

The scientific world is working with vast amounts of data. For example,
the Millennium XXL cosmological N-body simulation needs 100 TB space [1].

Key words and phrases: Multi-dimensional histogram partitioning, data placement, load
balancing.
2010 Mathematics Subject Classification: 68M14, 68M20.
The project has been supported by the Hungarian National Research, Development and
Innovation Office under grant no. OTKA NN 114560 and by the European Union, co-financed
by the European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002).

https://doi.org/10.71352/ac.47.197

https://doi.org/10.71352/ac.47.197


198 I. Csabai, L. Dobos, A. Kiss and J. M. Szalai-Gindl

There are areas that have even greater needs. “Projections indicate that by
2020, more than 60 PB of archived data will be accessible to astronomers”,
according to [3]. Nowadays, geoinformatics also has petabyte-scaled geospatial
data volumes (see e.g. [9]). In order to cope with the data megatsunami, to
store and manage them, data should be distributed across multiple servers.

An important aspect is that data updates are rare. In this paper, we assume
that we have static multidimensional data, a shared nothing environment and
a global index structure. Furthermore, we pay particular attention to sparse
but strongly clustered points on a hierarchy of scales which form so-called point
clouds such as cosmological N-body simulations, intersections of road networks
etc. These point clouds can often be mapped to continuous D-dimensional
parameter space. This representation could be useful for specific queries and
operations including nearest neighbor search, box queries, cluster analysis and
outlier identification. Special support is needed for the aforementioned chal-
lenges in the data storage layer and leading to the concept of the point cloud
database [6].

Mass scientific data ingestion processes typically consist of parallel Extract-
Transform-Load (ETL). A multidimensional histogram is to be formed during
the extraction or transformation phase based on the spatial attributes of ob-
jects, before the data are distributed to the servers. Using this prior information
about approximate estimate of the data distribution, three methods were pro-
posed for grouping histogram bins and assigning them to servers in our previous
work [12].

Two performance measures were also introduced for the comparison of the
efficiency of methods. This paper is its extension with a new performance
measure and some mathematical properties. Moreover, we give a method for
bin shell traversal, which is related to the computation of the proximity search-
related measure.

This paper is organized as follows. Used symbols are described in Sec. 2.
Sec. 3 provides details about two different measures of goodness of a tiling
with reference to proximity search and box queries. Furthermore, it contains
a method for histogram bin shell traversal which is one of the most time-
consuming part of the computation of proximity search-related measure. Fi-
nally, Sec. 4 presents a summary of our results.

2. Used symbols

We assume continuousD-dimensional parameter space which can be thought
of as a vector space with the Euclidean norm. We restrict our attention to a
search space which is a bounding box of r data points {dl}rl=1 in RD. We utilize
regular binning (equal bin width) for the histogram construction and write n



Performance measures applied for point cloud databases 199

for the value of the histogram resolution so there are nD bins: {Bj}n
D

j=1. If the
histogram is considered as an array, a bin index is denoted by (x1, x2, . . . , xD)
which means the spatial position of the bin in the histogram. We will use the
notation w(Bj) for the contained point amounts (weight) of bin Bj , B̄ = r/nD

for the mean weight of bins. Let s be the number of servers S1, S2, . . . , Ss

(s ≥ 2). An A : {Bj}n
D

j=1 → {Si}si=1 bin assignment function (or assignment)
will take the value of Si if the bin Bj is assigned to the server Si. In this pa-
per, we only consider surjective bin assignment functions (which are typically
non-injective). We denote the number of data points (weight) and the number
of bins belonging to a server Si by w(Si) and b(Si), respectively. The mean
weight of servers is defined simply as S̄ = r/s.

3. Performance measures

The histogram bins should be grouped and assigned to servers in the fol-
lowing manner:

• the server weights must be roughly the same (ensuring load balance of
the servers),

• we want to keep clusters of data points together as much as possible
(preserving data locality).

Furthermore, we must take into account a variety of query types. One of them
is the similarity queries where the user retrieves the result set relative to a
query point. It includes exact match and nearest neighbor queries. Also, these
are closely linked to intention to bring points together from a cluster. Another
query type is the box queries where retrieved data come from a given hyper-
rectangle so query criteria include an interval for each dimension. However,
different aims cannot be supported at the same time so there is a trade-off
between them.

When methods are applied for a given histogram we would like to compare
them. Therefore, we attempt to quantify the results of a tiling technique in
terms of a selected viewpoint. We defined performance measures in [12] which
take values between 0 (worst) and 1 (best). The k-nearest neighbor measure
is briefly presented for the self-containment of this paper, a new performance
measure is introduced and some properties of them will be given in this section.

3.1. k-nearest neighbor measure

A kth nearest neighbor of a given datum point d in {dl}rl=1 has the kth

smallest distance among all distances between d and d′ ∈ {dl}rl=1. We repeat
only the most important definitions from [12].



200 I. Csabai, L. Dobos, A. Kiss and J. M. Szalai-Gindl

Definition 3.1. A shell of a histogram bin B is any hypersphere drawn around
the center of B which passes through any other bin center. To ease terminology,
we will use term ”a bin is on a shell” if the center of this bin is on the shell.

Definition 3.2. The bin shell difference between B1 and B2 is the number of
shells centered on B1 which are contained by the shell defined by B1 and B2.

We will discuss traversing histogram bins in the order of bin shells in
Sec. 3.2.

Suppose the results of a given method define a bin assignment function A.
Let us successively take shells around Bj and accumulate bins on the shells until
the bins contain at least k data points taken together. Let K∗(Bj , k) denote
the set of these bins. We define a subset of K∗(Bj , k), written as K(Bj , k,A)
or K for brevity, which has such bins for which A takes the same value as for
Bj .

Definition 3.3. The k-nearest neighbor measure of a certain bin with respect
to an assignment A for the value of k is

(3.1) κ(Bj , k,A) = min

{
1,

w(K)

k

}
.

Definition 3.4. The k-nearest neighbor measure of a certain server with re-
spect to an assignment A for the value of k is

(3.2) κ(Si, k,A) =
1

b(Si)

∑
Bj∈Si

κ(Bj , k,A).

Definition 3.5. The k-nearest neighbor measure of an assignment A for the
value of k is

(3.3) κ(k,A) =
1

s

s∑
i=1

κ(Si, k,A) =
1

s

s∑
i=1


 1

b(Si)

∑
Bj∈Si

κ(Bj , k,A)




3.2. Bin shell traversal

The computation efficiency of k-nearest neighbor measure is important if
hierarchical tiling is applied (see [12]). We want to search a quick method for
bin shell traversal which is one of the most time-consuming part of this measure
computation.

This section presents a shell traversing method starting from a given bin to
determine the order of bin shells. For simplicity, it deals with the case where
the histogram grid is a regular rectangular one but it can easily be generalized



Performance measures applied for point cloud databases 201

Figure 1. Black square contains histogram bins. The shell differences from the
central bin are displayed. As 25 = 02+52 = 32+42, if the central bin has index
(x1, x2), the indices of black bins are (x1 − 3, x2 + 4), (x1 + 0, x2 + 5), (x1 +
3, x2 + 4) . . . etc. because of the squared distance between them. The black
bins are on the thirteenth shell.

to the general case. The squared Euclidean distance between the centers of the
side neighbor bins can be taken to be 1 (with the appropriate measurement
unit). Therefore, if the squared distance of two arbitrary bin centers is taken
we get a non-negative integer. Centers can be identified by bin indices of
the histogram. Accordingly, suppose it is possible to find D square numbers
relatively quickly which sum to given a natural number then bin indices of a
shell can be located in a faster way than brute force search. To be specific,
let us consider Fig. 1. It depicts a histogram bounded by black square where
some shell differences from the central bin are given (see Def. 3.2). (Note:
the grey bins are beyond the histogram but their shell differences from the
central bin are less than or equal to the shell differences between the central
bin and corners which make them necessary for the complete picture.) Suppose
the central bin has index (x1, x2) and the squared distance between itself and
black bins is 25. As 25 = 02 + 52 = 32 + 42, the indices of black bins are
(x1−3, x2+4), (x1+0, x2+5), (x1+3, x2+4) . . . etc. Furthermore, take a series
of integers 1, 2, . . . , we can write them in the form j21+ · · ·+j2D where j1, . . . , jD
are integers. Thus we can determine shells, one after another. Note: not all
natural numbers can be represented as the sum of two or three square numbers
based on Fermat’s theorem on sums of two square numbers and Legendre’s
three-square theorem [7]. The first theorem states that an odd prime p can
be expressed as the sum of two square numbers if and only if p = 4k + 1 with



202 I. Csabai, L. Dobos, A. Kiss and J. M. Szalai-Gindl

integer k. The second theorem states that a natural number m cannot be
expressed as the sum of three square numbers if and only if m = 4k(8l + 7)
with integers k, l. However, every natural number can be expressed as the
sum of D integer square numbers with space dimension D > 3 because of
Lagrange’s four-square theorem [7] which states that every natural number can
be expressed as the sum of four square numbers. Therefore, bin indices on the
ith shell can be computed by the sum of D square numbers representation of
i in this case although this does not mean that finding bins with a given shell
difference becomes easy. The issue is how to compute them quickly.

For D = 2, we will apply the classic Cornacchia’s algorithm (see for instance
[2]). This method provides only primitive solutions where the two integers are
relative primes (see Alg. 1). However, we need every solution for all bin indices
of a given shell. As we will see, for this, the prime factorization is needed. For
the sake of completeness, the details of the method are given. The following
proposition is easily seen and its proof is left to the reader:

Proposition 3.1. For prime p, primitive solutions to p = x2 + y2, if any,
include all solutions.

We proceed to show how to construct solutions for a composite number
using primitive solutions of its prime factors. Let norm(a + bi) be the square
of the absolute value of a+ bi ∈ Z[i] where Z[i] stands for Gaussian integers as
usual. We denote by Z+ the set of the positive integers.

Theorem 3.2 ([5, Theorem 9.2]). A prime p in Z+ is composite in Z[i] if and
only if it is a sum of two squares.

Proof. The proof is found in [5]. �

Corollary 3.1 ([5, Corollary 9.3]). If a prime p in Z[i] is composite, and p �= 2,
then up to unit multiple p has exactly two Gaussian prime factors, which are
conjugate and have norm p.

Proof. The proof is found in [5]. �

Remark 3.1. The prime p = 2 is the product of the square of (1 + i) by a
unit: 2 = −i(1 + i)2 where 1 + i is a Gaussian prime thus it has only one
Gaussian prime factor up to unit multiple. However, 2 = (1+ i)(1− i) hence it
is also a product of a Gaussian prime and its conjugate (and these have norm
2). Consequently, if a prime integer p > 0 is a sum of two square numbers,
then there exist exactly two conjugates P, P ∈ Z[i] with norm p.

Let the factorization of integer m be p1 · p2 · · · pt where p1, p2, . . . , pt are
primes (which are not necessarily different) and suppose each prime factor



Performance measures applied for point cloud databases 203

pj is 2 or may be written of the form 4k + 1 with integer k. Therefore,
Cornacchia’s algorithm can applied to them because of Fermat’s theorem on
sums of two square numbers to determine the form a2j + b2j . So pj = Pj ·
Pj = (aj + bji)(aj − bji) and norm(Pj) = norm(Pj) = a2j + b2j . Moreover,

m = p1 · p2 · · · pt = norm(Q1) · norm(Q2) · · ·norm(Qt) where Qj ∈ {Pj , Pj}
and m = norm(Q1 · Q2 · · ·Qt) because of the multiplicative property. Note:
norm(Q1) · norm(Q2) = norm(Q1 · Q2) may be interpreted as the famous
Brahmagupta–Fibonacci identity. Furthermore, Q1 ·Q2 · · ·Qt is a unique Gaus-
sian integer (up to unit multiple) which has (unique) norm in the form a2+ b2.
Finally, if all possible ways of multiplying Gaussian integers Q1, Q2, . . . , Qt are
computed and their norms are taken, then we obtain all solutions for the com-
posite number m. Note: only relatively small integer will need to be factored
down to its prime factors so the algorithm can be performed within a reasonable
time. No general efficient algorithm is known for the x2 + y2 decomposition of
an arbitrary natural number [4].

Algorithm 1: Cornacchia’s algorithm (special case) based on [2]

input : A natural number m
output: All the primitive solutions (x, y) of m = x2 + y2

r0 = m;
for t ← 1 to m/2 do

if t2 ≡ −1 (mod m) then
r1 ← m;
r2 ← t;
while r22 ≥ m do

tmp ← r2;
r2 ← r1 (mod r2);
r1 ← tmp;

end
if r21 > m then

(r2, r1 (mod r2)) is a primitive solution;
end

end

end

For D > 2, we can apply backtracking decomposition method (see Alg. 2)
which can be found in Schorn’s technical report [11]. It also has tolerable time
cost for small integer. We remark that there is more faster way for certain
dimensions (e.g. D = 3, 4) see for instance [10] and [11] for more details. Fur-
thermore, even if we can find at least a solution for the prime factors with
space dimension D �= 2, 4, 8 efficiently, it would not give the result for the gen-



204 I. Csabai, L. Dobos, A. Kiss and J. M. Szalai-Gindl

eral problem. This is because there is no generalization of the Brahmagupta–
Fibonacci identity where the multiplication of two number decomposition pro-
duces D square numbers on the other side of the equation based on Hurwitz’s
theorem (see [8]).

Algorithm 2: Backtracking decomposition method on the basis of
the Schorn’s report [11]

input : A natural number m, the dimension D
output: All the solutions (x1, x2, . . . , xD) for m = x2

1 + x2
2 + · · ·+ x2

D

if D = 2 then
give the prime factorization of m;
apply Alg. 1 for prime factors and Brahmagupta–Fibonacci
identity, as described in the text;

else
for i ← �

√
m� to 1 do

apply this algorithm recursively for m− i2 and D − 1;
if the result is not empty then

the output with i2 is a solution;
end

end

end

3.3. Box measure

A D dimensional box query I is a subset of B ⊂ RD which can be written
as I = [l1, u1] × · · · × [lD, uD], where the [ld, ud] are ordinary intervals within
the bounding box of the data points. Without restricting generality, we assume
that the ‘granularity’ of box queries is the same as the histogram bins, i.e. the
sides of the query box are aligned on the histogram grid. If the resolution of the

histogram is equal along all axes, there are
(
n+1
2

)D
different such box queries.

Let us denote data points selected by a box query on a given server by I ∩ Si,
while the number of data points selected by w(I) and w(I ∩ Si).

Suppose the processing time (or workload) of a box query I on a given

server Si is proportional to I ∩ Si. This workload is expressed as w(I∩Si)
w(Si)

. To

quantify the load balancing performance of a given assignment A with respect
to a box query I we define the server speed

(3.4) βi(I) = 1− w(I ∩ Si)

w(Si)
,



Performance measures applied for point cloud databases 205

and the box measure with respect to I

(3.5) β(I) =
1

s

s∑
i=1

βi(I).

(Note: β(I) takes values between 0 (worst) and 1 (best).) Considering all
possible box queries with equal probability regardless of volume we average
over all possible queries to get

(3.6) β =
1(

n+1
2

)D
∑
I

β(I) = 1− 1

s ·
(
n+1
2

)D
∑
I

s∑
i=1

w(I ∩ Si)

w(Si)
.

For an optimally balanced assignment A, i.e. w(Si) = S̄, the box measure is

(3.7) β = 1− 1

r ·
(
n+1
2

)D
∑
I

w(I).

It follows from the fact that r = s · S̄ and
∑s

i=1 w(I ∩ Si) = w(I) because the
assigned bin set of the servers are disjoint.

The following proposition will be important.

Proposition 3.3. A bin Bj is contained in exactly cj :=
∏D

d=1(xd+1)·(n−xd)
distinct box queries where xd is the dth value of index (x1, x2, . . . , xD) of Bj.

Proof. The bin Bj with index (x1, x2, . . . , xD) is contained by box query
I = [l1, u1] × · · · × [lD, uD] where ld ≤ xd, xd + 1 ≤ ud for all d = 1, . . . ,D. It
is easy to count all possibilities for the lower and upper bounds because their
values can be chosen independently of each other and along each dimension.
For dimension d, there are xd +1 options for ld and n−xd options for ud. The
rest of the proof is straightforward. �

By the previous Prop. 3.3, we get the following results:

(3.8) cmin =

D∏
d=1

(0 + 1) · (n− 0) = nD

(3.9) cmax =
D∏

d=1

(⌊n
2

⌋
+ 1

)
·
(
n−

⌊n
2

⌋)
=

(⌈n
2

⌉)2D

We have that:

(3.10)
∑
I

w(I) =
∑
Bj

cj · w(Bj) =
∑
Bj

w(Bj) ·
D∏

d=1

(xd + 1) · (n− xd),

where (x1, x2, . . . , xD) is the index of the bin Bj .



206 I. Csabai, L. Dobos, A. Kiss and J. M. Szalai-Gindl

Proposition 3.4.
∑

I w(I) attains its maximum (minimum) value if the coef-
ficient of cmax (cmin) is r.

Proof. We give the proof only for the maximal case. The other case can
be done analogously. Suppose, contrary to our claim, that there is a weight
distribution {w(Bj)} which is better. Then:

cmax · r <
∑
j

cj · w(Bj),

r <
∑
j

cj
cmax

· w(Bj) ≤
∑
j

w(Bj) = r,

a contradiction. �

Combining Eq. (3.10) with Prop. 3.4 we obtain:

Corollary 3.2. For an optimally balanced assignment A:

1−

(
2 ·

⌈
n
2

⌉2
(n+ 1) · n

)D

≤ β ≤ 1−
(

2

n+ 1

)D

.

If D is large enough then β is around 1 because

lim
n→∞


1−

(
2 ·

⌈
n
2

⌉2
(n+ 1) · n

)D

 = lim

n→∞


1−

(
2 · n2

4

(n+ 1) · n

)D

 =

= lim
n→∞

(
1−

(
n

2 · (n+ 1)

)D
)

=

= 1− 1

2D
.

Therefore with sufficiently large D, the results of the optimization for load
balancing also implies server speed optimality for box queries, as one may have
expected.

For uniformly distributed dataset, we treat w(Bj) as a random variable
whose distribution is binomial: w(Bj) ∼ B(r, 1/nD), thus the expected value
of any bin weight is

(3.11) E[w(Bj)] =
r

nD = B̄.

Proposition 3.5. For uniformly distributed dataset,

E
[∑

I

w(I)

]
= B̄ ·

(
n · (n+ 1) · (n+ 2)

6

)D

.



Performance measures applied for point cloud databases 207

Proof. Throughout the proof, C(I) denotes the number of contained bins of

I = [l1, u1] × · · · × [lD, uD] which is the size of I, i.e.,
∏D

i=1(ui − li). From
Eq. 3.11 it follows that E[w(I)] is equal to the product of C(I) and B̄ (by the
linearity of expected value operator) and therefore

E
[∑

I

w(I)

]
= B̄ ·

n−1∑
l1=0

n∑
u1=l1+1

· · ·
n−1∑
lD=0

n∑
uD=lD+1

D∏
i=1

(ui − li) =

= B̄ ·
n−1∑
l1=0

n∑
u1=l1+1

(u1 − l1) · · ·
n−1∑
lD=0

n∑
uD=lD+1

(uD − lD).

It is easy to check that

n−1∑
ld=0

n∑
ud=ld+1

(ud − ld) =
n · (n+ 1) · (n+ 2)

6

for any d = 1, . . . ,D (i.e., the sums is equal to the nth tetrahedral number) and
the proof is complete. �

Proposition 3.6. For an optimally balanced assignment A and uniformly dis-
tributed dataset, the expected value of the box measure can be explicitly computed
by the formula:

E[β] = 1−
(
n+ 2

3n

)D

.

Proof. By using Eq. (3.7) and Prop. 3.5,

E[β] = 1− 1

r ·
(
n+1
2

)DE
[∑

I

w(I)

]
=

= 1− 1

nD · B̄ ·
(
n+1
2

)D · B̄ ·
(
n · (n+ 1) · (n+ 2)

6

)D

= 1−
(
n+ 2

3n

)D

.

�

4. Conclusions

Our previous work presented two performance measures which can support
the comparison of the efficiency of data placement methods. In this work, a
new performance measure was introduced and we studied mathematical char-
acteristics of this measure. We found a proof for the correlation between the
optimization for load balancing and for box queries with sufficiently large D.



208 I. Csabai, L. Dobos, A. Kiss and J. M. Szalai-Gindl

In Sec. 3.3, the results showed that the box measure (or its expected value) is
very close to 1 in several cases. It is interesting how close to 1 it can be. This
issue needs to be addressed in the future. Finally, we presented a method for
histogram bin shell traversal which is associated to the Gaussian integers.

References

[1] Angulo, R.E., V. Springel, S.D.M. White, A. Jenkins, C.M.
Baugh and C.S. Frenk, Scaling relations for galaxy clusters in the
Millennium-XXL simulation, Monthly Notices of the Royal Astronomical
Society, 426(3) (2012), 2046–2062.

[2] Basilla, J.M., On the solution of x2+dy2 = m, Proceedings of the Japan
Academy, Series A, Mathematical Sciences, 80(5) (2004), 40–41.

[3] Berriman, G.B. and S.L. Groom, How will astronomy archives survive
the data tsunami?, Communications of the ACM, 54(12) (2011), 52–56.

[4] Carella, N.A., Lagrange’s theorem on the minimal set of squares,
https://arxiv.org/abs/1108.6246v1, (2011).

[5] Conrad, K., The gaussian integers, http://www.math.uconn.edu/

~kconrad/blurbs/ugradnumthy/Zinotes.pdf

[6] Dobos, L., I. Csabai, J.M. Szalai-Gindl, T. Budavári and A.S.
Szalay, Point cloud databases, in: C.S. Jensen, H. Lu, T.B. Peder-
sen, C. Thomsen, K. Torp (Ed.) Conference on Scientific and Statistical
Database Management, SSDBM ’14 (Aalborg, Denmark, June 30 - July
02, 2014), Proceedings of the 26th International Conference on Scientific
and Statistical Database Management, ACM, New York, 2014, 33:1–33:4.

[7] Grosswald, E., Representations of Integers as Sums of Squares, Springer-
Verlag, New York, 1985.

[8] Hurwitz, A., Über die Komposition der quadratischen Formen, Mathe-
matische Annalen, 88(1) (1922), 1–25.

[9] Lee, J.-G. and M. Kang, Geospatial big data: challenges and opportu-
nities, Big Data Research, 2(2) (2015), 74–81.

[10] Rabin, M.O. and J.O. Shallit, Randomized algorithms in number the-
ory, Communications on Pure and Applied Mathematics, 39(1) (1986),
239–256.

[11] Schorn, P., An experimental comparison of algorithms for decomposing
an integer into a sum of three squares, ftp://ftp.inf.ethz.ch/pub/

software/xyz/papers/SquareDecomposition.ps



Performance measures applied for point cloud databases 209

[12] Szalai-Gindl, J.M., L. Dobos and I. Csabai, Tiling strategies for
distributed point cloud databases, in: A. Choudhary, K. Wu, F. Rusu, G.
Trajcevski, A. Shoshani, B. Dong, B. Zhang (Ed.) Conference on Scientific
and Statistical Database Management, SSDBM ’17 (Chicago, IL, USA,
June 27–29, 2017), Proceedings of the 29th International Conference on
Scientific and Statistical Database Management, ACM, New York, 2017,
32:1–32:6.

I. Csabai and L. Dobos
Department of Physics of Complex Systems
Eötvös Loránd University
Budapest
Hungary
csabai@complex.elte.hu

dobos@complex.elte.hu

A. Kiss and J. M. Szalai-Gindl
Department of Information Systems
Eötvös Loránd University
Budapest
Hungary
kiss@inf.elte.hu

szalaigindl@inf.elte.hu




