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Abstract. In this note, we shall make a survey on the generalized Kubert
functions (also called functions with distribution property) emphasizing
the use of the polylogarithm function in number theory. We shall reveal
that the Bernoulli function part often appears in the form of a difference
of the first polylogarithm function and elucidate the limiting behavior of
functions in question as they approach a rational point on the unit circle.
We shall clarify this elimination of Clausen function part in Riemann’s
posthumous fragment II and Mordell’s Lambert-like series.

1. Introduction and preliminaries

Riemann left three (or four if we count the example, around 1854, of ev-
erywhere non-differentiable function) legacies in number theory. The biggest is
surely his memoir [10] (1859) on the number of primes under a given quantity,
his unique paper in number theory. Prior to this, in his Habilitationsschrift
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(1854), in which he developed the theory of Riemann integration, he gave an
example of a discontinuos and integrable function, cf. Wang [16].

Dedekind [1] succeeded in elucidating the genesis of all the formulas in
Part II of Riemann’s posthumous fragment [11]. It has no text, only formulas
dealing with the asymptotic behavior of those modular functions from Jacobi’s
[3], for which the variable tends to rational points on the unit circle. Part I
has been analyzed notably by Wintner (1941) [17], which contains some far-
reaching comments on Part II.

Dedekind did this task by introducing the most celebrated Dedekind eta-
function defined by

(1.1) η(z) = e
πiz
12

∞∏
n=1

(1− e2πinz), Imz > 0.

Dedekind proved the general transformation formula, which contained the
Dedekind sum

(1.2) s(h, k) =

k−1∑
m=1

((m
k

))((
hm

k

))
=

∑
m mod k

((m
k

))((
hm

k

))
,

where (h, k) = 1, k ∈ N, and where

(1.3) ((x)) =

{
x− [x]− 1

2 x �∈ Z
0 x ∈ Z

= − 1

π

∞∑
n=1

sin 2πnx

n

is the saw-tooth Fourier series, where the convergence is uniform in any interval
free from integer points.

What Riemann did was to eliminate the singular part by taking the odd part

(1.4)
∑
2�n

an =
∑
n

an −
∑
2|n

an.

The polylogarithm function l1(x) of order 1 is

(1.5)

∞∑
n=1

cos(2πnx)

n
+ i

∞∑
n=1

sin(2πnx)

n
= l1(x) =

=
∞∑

n=1

e2πinx

n
= A1(x)− πiB1(x),

for 0 < x < 1, where

(1.6) A1(x) = − log 2| sinπx| =
∞∑

n=1

cos(2πnx)

n
,
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is its real part, the Clausen function and the imaginary part is

(1.7) l1(x)− l1(−x) = −2πiB1(x), 0 < x < 1,

where

(1.8) B̄1(x) = x− [x]− 1

2
= − 1

π

∞∑
n=1

sin(2πnx)

n
= ((x))

is the first periodic Bernoulli polynomial, where the second equality holds for
x ∈ Z. One of the earliest use of the polylogarithm function (inclding higher
order ones) in this way is probably in Lehmer [6], Yamamoto [18] etc.

We give one typical example from Wang [15] and [16], the former of which
generalized and shortened the 65 pages paper of de Reyna [2] to 16 pages.

Let

(1.9) log
2K

π
=

∞∑
p=1

4zp

p(1 + zp)
,

be one of elliptic modular functions, where p runs through odd integers (i.e.
odd part)

Lemma 1.1.

(1.10)

log
2K

π
=

= − log(1− y) + ω(y) + log
π

Q
+

Q−1∑
r=1

(−1)r
(
l1

(
Mr

Q

)
− 2l1

(
Mr

2Q

))

for Q odd;
(1.11)

log
2K

π
= − 2π2

Q2(1− y)
− log(1− y) +

π2

Q2
+ log

8π

Q
+ ω(y)−

−

Q
2 −1∑
r=1

(−1)r
2r

Q

(
2l1

(
Mr

2Q

)
− 2l1

(
−Mr

2Q

)
− l1

(
Mr

Q

)
+ l1

(
−Mr

Q

))
,

for Q even and Q
2 odd.

log
2K

π
= − log(1− y) + log

2π

Q
+ ω(y) + 2

Q
2 −1∑
r=1

(−1)r
2r

Q
×(1.12)

×
(
2l1

(
Mr

2Q

)
− 2l1

(
−Mr

2Q

)
− l1

(
Mr

Q

)
+ l1

(
−Mr

Q

))
,

for Q
2 even.
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Theorem 1.1. (N.-L. Wang) Let ξ = M
Q be a rational number with M even

and Q > 1 and let z = yeπiξ, y ∈ [0, 1). Then we have

(1.13) log
2K

π
= − log(1− y) + ω(y) + log

π

Q
− πi

2

Q−1∑
r=1

(−1)r+[
Mr
Q ],

for Q odd, and

log
2K

π
=− 2π2

Q2(1− y)
− log(1− y) +

π2

Q2
+ log

8π

Q
+ ω(y)−(1.14)

− πi

Q
2 −1∑
r=1

2r

Q
(−1)r+[

Mr
Q ]

for Q even and Q
2 odd.

(1.15) log
2K

π
= − log(1− y) + log

2π

Q
+ ω(y) + 2πi

Q
2 −1∑
r=1

2r

Q
(−1)r+[

Mr
Q ]

for Q
2 even; where 2πiMQ is one of the values of log e2πi

M
Q , and ω(y) is a con-

tinuation function on I = [0, 1] with ω(1) = 0 which maybe different in different
place.

There are more cases. In a forthcoming paper of Kanemitsu and Mehta [4],
Mordell’s Lambert-like series has been elucidated. In order to find the invisible
in Mordell [8], we introduce the Lambert-like series

(1.16) g̃(t, x) =
∞∑

m=0

h̃(m, t)xm =
∞∑

n=1

an

( ∞∑
m=0

e2πimαxm

)
tn,

where

(1.17) h̃(m, t) =

∞∑
n=1

ane
2πimαtn,

for |x| < 1, α /∈ Q.

Theorem 1.2. Let α /∈ Q, β real, |x| < 1. Then

(1.18)

∞∑
n=1

e2πiβn

n

( ∞∑
m=0

e2πimnαxm

)
=

=
∞∑

n=1

e2πinβ

n

1

1− xe2πinα
=

∞∑
m=0

h̃(m, 1)xm,
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where

(1.19) h̃(m, 1) = − log 2 | sinπθ(m) | −πiB̄1 (θ(m)) ,

where

(1.20) θ(m) = mα+ β /∈ Z.

In view of (1.7), we may consider the imaginary part of h̃(m, t), which is
the function h(m, t)2i Im h̃(m, t) = considered by Mordell.

On the other hand, the Clausen function appears in certain crucial places.
We quote a typical example from Kanemitsu–Kuzumaki [5].

Theorem 1.3. Let m = 5, K = Q(ζ5) and k = 2, 3. Then K+ = Q(
√
5), and

ζQ(ζ5)(2) =
8π6

375
√
5

{
A2

(
1

5

)2

−A2

(
2

5

)2
}
,

ζQ(ζ5)(3) = −64π8

57
1
2

ζ(3)

{
A3

(
1

5

)
−A3

(
2

5

)}
,

ζQ(
√
5)(2) =

2π4

75
√
5
,

ζQ(
√
5)(3) = − 4π2

3
√
5
ζ(3)

{
A3

(
1

5

)
−A3

(
2

5

)}
.

2. Kubert identities

As we have seen, the invisible part, the Clausen function plays an important
role. In the hope of introducing more general Dedekind sum by replacing the
saw-tooth Fourier series in (1.2) by Kubert functions, we study the class of
(generalized) Kubert functions f(x). They are periodic of period 1 and satisfy
the (generalized) Kubert relation (Walum [14])

(2.1)
∑

r mod m

f
(
x+

r

m

)
=

m−1∑
r=0

f

(
mx+ r

m

)
= θ(m)f(mx),

for every positive integer m, where θ(m) is a function in m only and the sum
is over all residue classes modulo m. In most cases, however, we may choose
the least non-negative residues modulo m as the mid term in (2.1).
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(2.1) is often expressed as

(2.2)
∑

r mod m

f

(
x+ r

m

)
=

m−1∑
r=0

f

(
x+ r

m

)
= θ(m)f(x).

Here x+r
m varies all the solutions y of my = x in Q/Z or R/Z but the

situation is set up so that it makes sense for x ∈ (0, 1) or x ∈ (0,∞). (2.1) is
slightly more general than the defining condition of other authors who restrict
to the case θ(m) = m1−s. Milnor [7] defines the relation (∗s):

(2.3) (∗s)
m−1∑
r=0

f

(
x+ r

m

)
= m1−sf(x).

Example 2.1. There are many examples of Kubert functions.

(i) The simplest is the Bernoulli polynomial. The nth Bernoulli polynomial
Bn(x) is defined by the Taylor expansion

(2.4)
zexz

ez − 1
=

∞∑
n=0

Bn(x)

n!
zn, |z| < 2π

and the nth Bernoulli number Bn is the value Bn(0). The nth Bernoulli poly-
nomial satisfies the Kubert identity

(∗n)
m−1∑
r=0

Bn

(
x+ r

m

)
= m1−nBn(x),

which has been known as the multiplication formula in the theory of Bernoulli
polynomials.

The periodic Bernoulli polynomial B̄n(x) is defined by

(2.5) B̄n(x) = Bn(x− [x]),

where [x] indicates the greatest integer not exceeding x.

The nth periodic Bernoulli polynomial satisfies the Kubert identity (∗n).
We have the Fourier expansion (Hurwitz, 1890)

(2.6) B̄n(x) = − n!

(2πi)
n

∞∑
k=−∞
k �=0

e2πikx

kn
.

(ii) The digamma function ψ(x) = Γ′

Γ (x) satisfies a modified Kubert relation

(∗1) m−1
m−1∑
r=0

ψ

(
x+ r

m

)
= ψ(x)− logm

and the gamma function satisfies the Gauss multiplication formula.
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(iii) The Hurwitz zeta-function and the polylogarithm functions satisfy the
Kubert relation. These as well as the Bernoulli polynomials will be expounded
as examples of the Lipschitz–Lerch transcendent elsewhere.

A more general setting of the uniform map f has been considered by Sun [13]
which reads

(2.7)

m−1∑
r=0

f

(
x+ r

m
,my

)
= f(x, y).

Here the domain of definition of f is X×Y ⊂ C×C and it is assumed that

{(x+r
m ,my)

∣∣∣r modm} ⊂ X × Y .

In the case where f is of variables separable type

(2.8) f(x, y) = g(x)h(y),

it is proved ([13]) that (2.7) amounts to Theorem 2.3, i.e. θ is completely
multiplicative or totally multiplicative, i.e. θ(mn) = θ(m)θ(n) for all m,n ∈ N.

Theorem 2.2. ([13]) If f is a non-zero solution of (2.7) of variables separable
type, then the uniform map condition (2.7) amounts to

(2.9)

m−1∑
r=0

g

(
x+ r

m

)
= θ(m)g(x),

i.e. the generalized Kubert relation (2.1) and the function θ in (2.17) is com-
pletely multiplicative.

We shall prove Theorem 2.4 below which is a generalization of Sun’s theo-
rem.

On [7, p.281], it is remarked that it suffices to assume (2.10) to hold for all
prime values of m, to cover the general case. First we remark that the proof of
[14, Theorem 2.1], which seems to be due to Carlitz, will give simultaneously
a proof of the fact that θ in (2.1) is completely multiplicative as well as this
primality assertion.

Theorem 2.3. ([7], [14])

(i) If f is a non-zero solution of (2.1), then θ is completely multiplicative.

(ii) If (2.1) holds true for all prime values of m, then it is true for all
positive integral values of m.

Proof. For arbitrary m and n, we transform

(2.10) S :=
mn−1∑
r=0

f
(
x+

r

mn

)
.
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by writing r = an+ b. We see that a, b run through 0 ≤ a < m and 0 ≤ b < n,
respectively. Hence (2.10) becomes the double sum

(2.11) S =
n−1∑
b=0

m−1∑
a=0

f

(
x+

b

mn
+

a

m

)
.

Since the inner sum in (2.11) is θ(m)f
(
mx+ b

n

)
in case (i) or if m is a prime

in case (ii), it follows that

(2.12) S =
mn−1∑
r=0

f
(
x+

r

mn

)
= θ(m)θ(n)f(mnx),

in case (i) or if m is a prime in case (ii). In the case of (i), since S =
= θ(mn)f(mnx), we choose x so that f(mnx) �= 0, and we conclude that
θ is completely multiplicative.

To prove (ii), we appeal to (2.12), which means that
∑mn−1

r=0 f
(
x+ r

mn

)
=

= θ(m)θ(n)f(mnx) = θ(mn)f(mnx) holds by (i) if m,n are primes, i.e. that
(2.1) is true for their product mn, which implies the validity of (2.1) for all
values of m. �

Lemma 2.1. Suppose f is a non-zero uniform map of variable separable type
satisfying (2.8) and that

(2.13) f(y0) �= 0,

for some y0 in the domain of h, then

(2.14) f(my0) �= 0,

for all m ∈ N.

Proof. (2.25) reads

(2.15) h(my0)

m−1∑
r=0

g

(
x+ r

m

)
= g(x)h(y0).

For some x0, we must have g(x0) �= 0, in which case the right-hand side is
non-zero, whence so is the left-hand side and the assertion follows. �

Theorem 2.4. (Generalization of Sun’s theorem)

(i) Suppose f is a non-zero solution of (2.7) of variables separable type
f(x, y) = g(x)h(y). For a fixed y0 such that h(y0) �= 0, let

(2.16) θ(m) =
h(y0)

h(my0)
�= 0
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whose non-vanishingness follows from Lemma 2.1. Then (2.7) amounts to

(2.17)

m−1∑
r=0

g

(
x+ r

m

)
= θ(m)g(x),

and the function θ in (2.17) is completely multiplicative.

(ii) It suffices to assume the validity of

(2.18) g(x)h(y) = h(mny)

mn−1∑
r=0

g

(
x+ r

mn

)
.

for all relatively prime pairs m,n and the validity of (2.25) for prime power
values of m.

Proof. For arbitrary m and n, we transform the right-hand-side of

(2.19) g(x)h(y0) = h(mny0)
mn−1∑
r=0

g

(
x+ r

mn

)
,

which is (2.25) with modulus mn. By writing r = an+ b, we see that a, b run
through 0 ≤ a < m and 0 ≤ b < n, respectively. Hence the right-hand side of
(2.19) becomes the double sum

(2.20) g(x)h(y0) = h(mny0)
n−1∑
b=0

m−1∑
a=0

g

(
x+ b

mn
+

a

m

)

whose innermost sum is

1

h(my0)
h(my0)

m−1∑
a=0

g

(
x+ b

mn
+

a

m

)
=

1

h(my0)
h(y0)g

(
x

n
+

b

n

)
.(2.21)

Substituting this in (2.20) and arguing in the same way as above, we conclude
that

g(x)h(y0) = h(mny0)
1

h(my0)h(ny0)
h(y0)h(ny0)

n−1∑
b=0

g

(
x

n
+

b

n

)
=(2.22)

= h(mny0)θ(m)θ(n)g(x)

Choosing an x such that g(x) �= 0, we infer that (2.22) implies

(2.23) h(y0) = h(mny0)θ(m)θ(n),

which is the multiplicativity of θ.
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Note that (2.22) may be written as

g(x)θ(mn) = θ(m)
n−1∑
b=0

g

(
x

n
+

b

n

)
(2.24)

which amounts to (2.17) on account of multiplicativity and non-vanishingness
of θ, which proves assertion (i).

To prove (ii) we note that Uunder condition (2.8), we note that (2.7) reads

(2.25) h(my)

m−1∑
r=0

g

(
x+ r

m

)
= g(x)h(y).

We appeal to (2.22) and note that (2.19) leads to

(2.26)

mn−1∑
r=0

g

(
x+ r

mn

)
= θ(m)θ(n)g(x)

valid for all primes m,n. Using multiplicativity of θ, (2.26) amounts to the
validity of (2.25) for the product of two primes. By the UFD property of
integers, this leads to the validity of (2.25) for all m ∈ N, completing the proof.

�
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[9] Riemann, B., “Über die Darstellbarkeit einer Function durch eine
trigonometrische Reihe” (1854), In:Riemann’s Collected works, pp.
227–265.
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