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Abstract. We produce an infinite family of imaginary quadratic fields
whose ideal class groups have 3-rank at least 2.

1. Introduction

The class group of a number field is one of the fundamental and mysterious
objects in algebraic number theory. Starting from Gauss, this topic has been
received serious attention of many mathematicians. It is well known that there
are infinitely many imaginary quadratic fields with class number divisible by
a given integer n ≥ 2 (cf. [9, 1]). A closely related problem is concerning the
p-rank of class groups of imaginary quadratic fields (in fact, any number fields).
A result of Y. Yamamoto [10, Proposition 2] gives the existence of infinitely
many imaginary quadratic fields whose class groups have p-rank at least 2 for
any integer p ≥ 2. In [2], F. Diaz y Diaz developed an algorithm for generating
imaginary quadratic fields whose class groups have 3-rank at least 2. In [3], the
authors obtained a parameterized family of quadratic fields whose class group
has 3-rank at least 2. In 2013, Y. Kishi [6] gave a family of imaginary quadratic
fields whose 3-rank of the class group is at least 2. In [8], P. Llorente and J.
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Quer found 1824, 20 and 3 imaginary quadratic fields whose 3-rank of the class
groups are 4, 5 and 6, respectively. The aim of this paper is to produce an
infinitely family of imaginary quadratic fields whose class groups have 3-rank
at least 2.

For any three positive integers k, � and n, we consider the quadratic fields:

K− = Q(
√
�2 − 2�k3n) and K+ = Q(

√
3(2�k3n − �2)).

In this paper, we prove the following:

Theorem 1.1. Let k ≡ 4 (mod 135), � ≡ 2 (mod 135) and n be three odd
positive integers such that � < 2k3n and gcd(k, �) = 1. If n �≡ 0 (mod 3), then
the 3-rank of the class groups of K− is at least 2.

It is easy to see that Theorem 1.1 yeilds infinitely many imaginary quadratic
fields whose class groups has 3-rank at least 2. The idea of the proof is to
construct real quadratic fields of the form K+ whose class number is divisible
by 3, and then apply the relation [6, Theorem 1] between the ranks of real and
imaginary quadratic fields.

2. Proof of Theorem 1.1

We begin the proof with the following crucial proposition.

Proposition 2.1. Let k, � and n be as in Theorem 1.1. Then the class number
of K+ is divisible by 3.

The conditions � < 2k3n and n �≡ 0 (mod 3) are not necessary in Proposi-
tion 2.1. Therefore, we can suppress these two conditions to get real as well as
imagainary quadratic fields of the form K+ with class number divisible by 3.
We give the proof of Proposition 2.1 in the most general case, that is without
counting these two conditions.

The following characterization of Y. Kishi and K. Miayke [5, Main Theorem]
is one of the main ingredients in the proof of Proposition 2.1.

Theorem 2.2. For any two integers u and v, let

(2.1) fu,v(x) = x3 − uvx− u2.

If

(K-1) u and v are relatively prime,
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(K-2) fu,v(x) is irreducible over Q,

(K-3) discriminant Dfu,v
of fu,v(x) is not a perfect square in Z,

(K-4) one of the following conditions holds:

(K-4.1) 3 � v,

(K-4.2) 3 | v, uv �≡ 3 (mod 9), u ≡ v ± 1 (mod 9),

(K-4.3) 3 | v, uv ≡ 3 (mod 9), u ≡ v ± 1 (mod 27),

then the normal closure of α, where α is a root of fu,v(x), is a cyclic, cubic,
unramified extension of K = Q(

√
Dfu,v

); in particular, K has class number
divisible by 3. Conversely, every quadratic number field K with class number
divisible by 3 and every unramified, cyclic and cubic extension of K is given by
a suitable choices of integers u and v.

Proof of Proposition 2.1

We choose u = 2� and v = 3kn. Then gcd(u, v) = 1 since gcd(k, �) = 1 and
� ≡ 2 (mod 3). Also by (2.1), we obtain:

fu,v(x) = x3 − 6�knx− 4�2.

The discriminant of fu,v is

Dfu,v = 144�2D,

where D = 3�(2k3n − �). As both k and � are odd, we see that D ≡ 3 (mod 4),
and thus D is not a square in Z.

Since k ≡ 4 (mod 5) and � ≡ 2 (mod 5), so that

fu,v(x) ≡ x3 + 2x− 1 (mod 5).

Thus fu,v(x) is irreducible modulo 3 and hence it is irreducible as a polynomial
with integer coefficients as well.

We again see that 3 | v. As m ≡ 4 (mod 9), we have mn ≡ 1, 4, 7 (mod 9)
and thus uv = 6�mn = 3 (mod 9). Furthermore,

v + 1 = 3mn + 1 ≡ 4 ≡ u (mod 27).

Thus we see that fu,v(x) satisfies the conditions (K-1)–(K-3) and (K-4.3).
Therefore by Theorem 2.2 we complete the proof of Proposition 2.1. �
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We now extract the following proposition from [6, Theorem 1] which is
needed in proving Theorem 1.1.

Proposition 2.3. Let d be a square-free positive integer such that d �≡ 0
(mod 3). Suppose r and s are the 3-ranks of the class groups of Q(

√
−d) and

Q(
√
3d), respectively. Then r = s+1 if and only if there does not exist a triplet

(x, y, z) ∈ Z× Z× Z satisfying the following conditions:

(K-5) x2 − 4y3 = 3z2d,

(K-6) gcd(x, y) = 1,

(K-7) xyz �= 0,

(K-8) y ≡ 1 (mod 3) and x2 ≡ 1, 7 (mod 9).

Proof of Theorem 1.1

Let r and s be the 3-ranks of K− and K+, respectively. To prove Theo-
rem 1.1, it is sufficient to show r = s+ 1 since s ≥ 1 by Proposition 2.1.

We can express,

(2.2) �2 − 2�k3n = −a2d,

where d is a square-free positive integer.

As k ≡ 4 (mod 27), so that k3n ≡ 10n (mod 27). Further 10n ≡ 10, 19
(mod 27) since n �≡ 0 (mod 3). Therefore by reading (2.2) modulo 9, we
see that 3 | a. Furthermore reading (2.2) modulo 27, we obtain a2d ≡ 9, 18
(mod 27) and thus d ≡ 1, 2 (mod 3) since a is odd and 3 | a.

Let us assume that (x, y, z) ∈ Z × Z × Z be such that they satisfy all the
conditions (K-5)–(K-8). Then reading the condition (K-5) modulo 4, we see
that

x2 ≡ 3z2 (mod 4).

This shows that both x and z are even.

Suppose that x = 2u and z = 2v for some positive integer u and v. Then
the conditions (K-5)–(K-8) imply

(2.3) u2 − y3 = 3v2d,

with gcd(u, y) = 1, uyv �= 0 and u2 ≡ 4, 7 (mod 9).

If y is odd, then u is even, and thus by (2.3), we see that v is odd, and
hence reading (2.3) modulo 27 we arrive at a contradiction. Thus y is even and
therefore u is odd. In this case reading (2.3) modulo 4, we obtain

1 ≡ 3v2 (mod 4)

as d ≡ 1 (mod 4). This is not possible. Thus we complete the proof. �
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