Annales Univ. Sci. Budapest., Sect. Comp. 47 (2018) 117-126

ON UNIQUENESS FOR MEROMORPHIC
FUNCTIONS AND THEIR nTH DERIVATIVES

Vu Hoai An (Hai Duong, Vietnam)
Ha Huy Khoai (Hanoi, Vietnam)

Communicated by Bui Minh Phong
(Received February 23, 2018; accepted July 15, 2018)

Abstract. In this paper, we consider the problem of uniqueness of deriva-
tives of meromorphic functions when they share a set of roots of unity.

1. Introduction

Let C denote the complex plane. By a meromorphic function we mean a
meromorphic function in the complex plane C.

In 1926, R. Nevanlinna ([8]) showed that a meromorphic function is uniquely
determined by the inverse images, ignoring multiplicities, of 5 distinct values.
In 1997 Yang and Hua ([10]) studied the unicity problem for meromorphic
functions and differential monomials of the form f"f, when they share only
one value.

S.S. Bhoosnurmath, R.S. Dyavanal ([2]) extend Yang—Hua’s result to the
case of (™)),

As a generalization of Nevanlinna’s theorem on determining a meromorphic
function by its single preimages, one considered the problem of determining a
meromorphic function by a finite set of points in C U oc.
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Inspired by the mentioned above results, in this paper we study possible
relations between two meromorphic functions f and g, when (f)*) and (g")®*)
share a finite set.

We first recall some notations. Let f be a non-constant meromorphic func-
tion. For every a € C, define the function v : C — N by

" 0 if f(z)#a
vi(z) = . . . R
m if f(z) = a with multiplicity m,

and set v7° = 1/0%. For f € M(C) and S C CU {oo}, we define

Ef(S) = [ J{(z,v(2) s z € a e S}.

a€S

In [12] Yang posed the problem: is it true that the equality f~1(S) = g=1(9)
with S = {—1,1} for polynomials of the same degree f, g implies that either
f=gor f=—g? This problem was solved in [9].

Now let d,n,k € N*. Concerning the mentioned above problem of Yang,
and related topics (see, for example [9]), in this paper, instead of {£1} we
consider the set of roots of unity of degree d, S = {a € C : a? = 1}, and the
following problem: how we can say about the relations of f, g, if Epnya (S) =
= E(gn)(k) (S)?

We shall prove the following theorem.

Theorem 1. Let f(z) and g(z) be two non-constant meromorphic functions,
and let n,d, k be positive integers with n > 2k + QliTJFS, d>2,and S = {a €
€ C:a =1}, If Ejuy (S) = E(gnyn (S), then one of the following two cases
holds:

1. f=c1e?” and g = coe™ % for three non-zero constants c1,co and ¢ such
that (—1)%4(cyco)™ (nec)? e = 1,

2. f=tg witht"®=1,tcC.
2. Lemmas

We assume that the reader is familiar with the notations in the Nevanlinna
theory (see [8]).

We first need the following Lemmas.
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Lemma 2.1. ([8]) Let f be a non-constant meromorphic function on C and let
ay,as, ..., ag be distinct points of CU {oo}. Then

(=270 ) < 3N (ro =) + 50,

—a;

where S(r, f) = o(T(r, f)) for all r, except for a set of finite Lebesque measure.

Lemma 2.2. ([10]) Let f and g be non-constant meromorphic functions on C.
If Ef(1) = E4(1), then one of the following three cases holds:

L (1, £) < Nalr )+ o 5) + Dalrvg) + N ) + 500, 1) + S(r,9),

f
and the same inequality holds for T(r,g);
2. fg=1
3. f=gy.

Lemma 2.3. ([7]) Let f be a non-constant meromorphic function on C and
n, k be positive integers, n > k and let a be a pole of f. Then we have

()Y = =, where =1 (@) on(a) £0

(z

Lemma 2.4. ([7]) Let f be a non-constant meromorphic function on C and
n, k be positive integers, n > k and let a be a pole of f. Then we have

(fm® hi
frk T (2 — q)pkth

where p = v;°(a), hx(a) # 0.

Lemma 2.5. Let f be a non-constant meromorphic on C and k be a positive
integer. Then we have

T (. (N®) < (k+ DTC ) + S f).

(f)“”)

Proof. By Lemma 2.4 and noting that m(r, 7

= S(r, f) we get

T (. (N®) = m (r.(H®) + N (HO) < mr )+ N, £) + kN, )+
+S(r, f) <T(r, f) + ET(r, f) + S(r, f) = (K + 1)T(r, f) + S(r, f).

Lemma 2.5 is proved. |
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Lemma 2.6. Let f be a non-constant meromorphic function on C and n,k be
positive integers, n > 2k. Then
fn—k i
L (n = 2K)T(r, f) + kN(r, ) + N (7, W) <7 (r,(f)™) + S0, )
fn—k

2 N (1 () S KT 0) + kNG ) + S0 ),

Proof. 1. By Lemma 2.3 we have

(2.1) N(r,(f")W) =nN(r, f) + kNy(r, ).

(k)
From this and noting that S(r, f) = S(r, f™), m(r, (f; ) = S(r, f) we obtain

fn—k
(7™

(n = kymr ) = m(r %) < m(r, (F)0) +m(r, s ) + 850 ) =

, (‘;:)(:)) - N(r, Q) +S(rf) <

=m(r, (fn)(k)) +T(r @

n—k
<m(r,(f")®) ++kN(r, f)+km(r, ) +EN(r, f) —N(r, (ffnw) +S(r, f) =

fnfk
(fm)®)

(22)  =m(r,(f)®) + KT, f) + kNG, £) = N(r, )+ S f).
From (2.1) and (2.2) it implies that
nN(r f) + (n = Kym(r. f) = (n = k) (N f) +mr. f)) + kN (r, f) =

= (n— KT (r, f) + BN (r, £) < N (r, () m (i, (/1) @) = kN (r, )+

+kT(r, f) + kN1 (r, f) — N(r, dj:;;) +S(r, f) =
= T(r, (f”)(k)) - N(r, (ff::)_(i)) + ET(r, f)+ S(r, f).

Thus

(n—2K)T(r, f) +EN(r, f) + N(r,

) <7(r(M®) + S0,
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(k)
2. By Lemma 2.4 and noting that m(r, %) = S(r, f) we have

g ) <70 ) e ) (e 220
ko

n\ (k)
L) + 800) < KT 1) = N f)+

+EN1(r, f) + kN(r, f) + S(r, f) = kT (r, f) + kEN1(r, f) + S(r, ).

< km(r, f)+ N(r,

So gt
N(r, W) < KT(r, f) + kNy(r, f) + S(r, f).

Lemma 2.6 is proved. |

Lemma 2.7. ([11]) Let f(z) and g(z) be two non-constant entire functions
and n, k be positive integers, n > k. If (f*)*)(g")®) = h, h € C,h # 0, then
f = Lie’® and g = lae™"* for three non-zero constants li,lo and | such that
(—=1)*(l112)™(nl)?* = h.

Lemma 2.8. Let f be a non-constant meromorphic function and n, k be positive
integers, n > k+3,a € C, a#0. Then

Ty(r) < Ny ( (f)(lk)_) 50 1),

n—k—2
n+k

Proof. Since n > k + 3 we have ”;ﬁf > 0. Because n > k + 3 it follows that
(f™)®) is not constant.

Applying Lemma 2.1 to (f")*) with the values oo, 0 and a, we obtain

T(r(1m®) <
<M (7’, (f")(’“)) + Ny (r, (fnl)(k)> + Ny (r, WJ + S(r, f).

By the similar arguments as in the proof of [Lemma 3.4, 7 | we obtain

% (1) < S (v g ) + S ) + o,

— N ®) = M) N P) = M ).
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Therefore,
T(T’ (fn)(k)) < %N (r, (fnl)(k)> + (1 + k(”%k*l))]vl (?"7 (fn)(k)) i
+ N <T, (fn)(i) a> +S(r, f)

From this and by

¥ (s gow)

Ni(r, (f)®) < T(r, (F)P) + S(r, ),

IN

T(r, (f")™) + S(r, f),

we have

E+1 n+kn—k—-1)
n (n+k)n

T(r,(f1)¥) < ( )T(r, (FM®)+

Lemma 2.8 is proved. |
3. Proof of Theorem 1

Since n > k + 3, from Lemma 2.8, applying to (f™)*) with the value 1, it
implies that (f*)*) = 1 has a solution. So Egnyin (S) # 0 and E(gnyo) (S) # 0.
By E(gnym (S) = Egnyw (S) we see that ((fM)*EN)e and ((g™)*))¢ share the
value 1 CM. Applying Lemma 2.2 to ((f")*))? ((g™)*))¢ we arrive to one of
the following cases:

Case 1.

T (i, ((")®)0) < Na (1, (7)) +1 ( d)+N2 (7 (g™ ™)) +

o
(™))

#82 ( g ) S (R US4 5(r (6 )),

L
((g™)™*))
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T (v, (4" ®)?) < Ny (1 () E)?) 4, ( W)-FN‘Z (7 (g @) +

(3.1) + N <r7 W) +5(r () ®)) + 5 (r, (6" ®)?).

By Lemma 2.6 we obtain
(n=20)T(r, f) < T(r, (D) + S(r, £) < (k+ DT f) + S(r. ),
(n—20)T(r,g) < T(r,(9")®) + S(r,g) < (k + UnT(r,g) + S(r.g).

From this and since

T (. ((f))7) = ar (r, ()P ) + 5 (. (@),
T (. (g ®)") = dr (r.(4") D) + 5 (. ()™
it is easy to see that

o S (r((m®)?) =8 (n(M®) = S(r. £),

$ (r (g ™)7) = 8 (r,(g")®) = S(r,9).

On the other hand, if a is a pole of ((f*)*))? then f(a) = oo with
V&Ofn)(k))d(a) > n + k > 2. Moreover, because d > 2, we see that if a is a

zero of ((f™)*))? then (f*)*)(a) = 0 with V?(fn)(k))d(a) > 2. Therefore,

N (. () ®)7) = 2N (1, £) < 2T, f) + S(r. £),

% o) = (g ) <
<2 (v o) + ¥ (e )) -
-2 (v3)+ (v gm)) =

<2 )+ 2 mt ) (r, f) < 2T(r, f) + 2kNy (r, f)+

+2kT (r, f))—i—S(r,f (2k+2) (ry f) +2kNy(r, f) + S(r, f).
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Similarly,
N (1. (9" ®)7) < 2T, g) + (1, 9),
1 n—k
% (v o) <2000+ (- ) <
< 2(k + 1)T(r,g) + 2kNy (7, g) + S(r, ).
Set

Combining (3.1) and (3.2) we get

T <r, ( f”)(k))d> < (442k)T(r, f)+AT(r, g)+2kN, (r, f)+2N (r, gn_i >—|—S(r).

ny(k)\d frk
T(r,((g )y ) < (442k)T(r, g)+4T (r, f)-+2kN, (r, g)+2N (r, fn)(k))—l—S(r).

T (r, ((®)) + T (7, ((6")®)?) < (4+2K)T(r) + AT (r) + 26N (1)+
n—k n—k
On the other hand, by Lemma 2.6 we have

n—k
d((n — 2k)T(r, f) + kN(r, f) + N (r, M}) <T (r, ((f")(k>)d) + S(r, f),

—~

(0= 20T () + KNG 0) + 8 (1 L) ) <7 (1 (@) )) + (),
Thus,

n—~k n—k
d(n —2K)T(r) + dkN(r) + dN (r, (ffn)(k)> +dN <r, (jn)(k)) <

n—Fk n—Fk
< (44 2K)T(r)+4T(r) +2kN1(r) + 2N (r, (gn)(k)> +2N (r, (jcfn)(k)> +.5(r).
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Moreover, because d > 2, we give

Therefore,

din —2k)T(r) < (2k +8)T(r) + S(r), d(n — 2k) < 2k + 8.

From this we obtain a contradiction to n > 2k + %%8.

Case 2. ((f")#)d((g")*)4 = 1. From this we have (f")*)(g")*) = h with
h? = 1. We are going to prove f(z) # 0, f(z) # oo, g(z) # 0, g(z) # oo for all
z € C. Assume f has a zero a, and V?(a) = a, a > 1. Then a is a pole of g with
v(a) = B, B > 1 such that na — k =nB 4+ k and n(a — B) = 2k. From this
and by n > 2k + %jg > 2k we obtain a contradiction. By similar arguments
we have g(z) # 0, f(z) # 00, g(z) # oo for all z € C. So f(z) and g(z) are
two non-constant entire functions. Applying Lemma 2.7 to f and g we obtain
f = ci1e®” and g = coe“* for three non-zero constants c¢i,co and ¢ such that
(=1)*(c1e2)™(ne)® = h. Because h? = 1 we give (—1)%4(cica)(nc)?d = 1.

Case 3. ((fM)Nd = ((gm)* )d. Then (f*)*) = h(g™)*) with h¢ = 1. Set

= h we have (f*)*) = ((eg)")®). By the similar arguments as in the proof
of [Theorem 1.1, 1] we obtain f = seg with s = 1. Set ¢ = se. Then we get
tnd — Sndend = 1.

Theorem 1 is proved. |
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