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Abstract. In this paper, we consider the problem of uniqueness of deriva-
tives of meromorphic functions when they share a set of roots of unity.

1. Introduction

Let C denote the complex plane. By a meromorphic function we mean a
meromorphic function in the complex plane C.

In 1926, R. Nevanlinna ([8]) showed that a meromorphic function is uniquely
determined by the inverse images, ignoring multiplicities, of 5 distinct values.
In 1997 Yang and Hua ([10]) studied the unicity problem for meromorphic
functions and differential monomials of the form fnf

′
, when they share only

one value.

S.S. Bhoosnurmath, R.S. Dyavanal ([2]) extend Yang–Hua’s result to the
case of (fn)(k).

As a generalization of Nevanlinna’s theorem on determining a meromorphic
function by its single preimages, one considered the problem of determining a
meromorphic function by a finite set of points in C ∪∞.
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Inspired by the mentioned above results, in this paper we study possible
relations between two meromorphic functions f and g, when (fn)(k) and (gn)(k)

share a finite set.

We first recall some notations. Let f be a non-constant meromorphic func-
tion. For every a ∈ C, define the function νaf : C → N by

νaf (z) =

{
0 if f(z) �= a

m if f(z) = a with multiplicity m,

and set ν∞f = ν01
f

. For f ∈ M(C) and S ⊂ C ∪ {∞}, we define

Ef (S) =
⋃
a∈S

{(z, νaf (z)) : z ∈ a ∈ S}.

In [12] Yang posed the problem: is it true that the equality f−1(S) = g−1(S)
with S = {−1, 1} for polynomials of the same degree f, g implies that either
f = g or f = −g ? This problem was solved in [9].

Now let d, n, k ∈ N∗. Concerning the mentioned above problem of Yang,
and related topics (see, for example [9]), in this paper, instead of {±1} we
consider the set of roots of unity of degree d, S = {a ∈ C : ad = 1}, and the
following problem: how we can say about the relations of f, g, if E(fn)(k)(S) =
= E(gn)(k)(S)?.

We shall prove the following theorem.

Theorem 1. Let f(z) and g(z) be two non-constant meromorphic functions,
and let n, d, k be positive integers with n > 2k + 2k+8

d , d ≥ 2, and S = {a ∈
∈ C : ad = 1}. If E(fn)(k)(S) = E(gn)(k)(S), then one of the following two cases
holds:

1. f = c1e
cz and g = c2e

−cz for three non-zero constants c1, c2 and c such
that (−1)kd(c1c2)

nd(nc)2kd = 1;

2. f = tg with tnd = 1, t ∈ C.

2. Lemmas

We assume that the reader is familiar with the notations in the Nevanlinna
theory (see [8]).

We first need the following Lemmas.
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Lemma 2.1. ([8]) Let f be a non-constant meromorphic function on C and let
a1, a2, ..., aq be distinct points of C ∪ {∞}. Then

(q − 2)T (r, f) ≤
q∑

i=1

N1

(
r,

1

f − ai

)
+ S(r, f),

where S(r, f) = o(T (r, f)) for all r, except for a set of finite Lebesgue measure.

Lemma 2.2. ([10]) Let f and g be non-constant meromorphic functions on C.
If Ef (1) = Eg(1), then one of the following three cases holds:

1. T (r, f) ≤ N2(r, f) +N2

(
r,

1

f

)
+N2(r, g) +N2

(
r,
1

g

)
+ S(r, f) + S(r, g),

and the same inequality holds for T (r, g);

2. fg = 1;

3. f = g.

Lemma 2.3. ([7]) Let f be a non-constant meromorphic function on C and
n, k be positive integers, n > k and let a be a pole of f . Then we have

(fn)(k) =
ϕk

(z − a)np+k
, where p = ν∞f (a), ϕk(a) �= 0.

Lemma 2.4. ([7]) Let f be a non-constant meromorphic function on C and
n, k be positive integers, n > k and let a be a pole of f . Then we have

(fn)(k)

fn−k
=

hk

(z − a)pk+k
, where p = ν∞f (a), hk(a) �= 0.

Lemma 2.5. Let f be a non-constant meromorphic on C and k be a positive
integer. Then we have

T
(
r, (f)(k)

)
≤ (k + 1)T (r, f) + S(r, f).

Proof. By Lemma 2.4 and noting that m
(
r,
(f)(k)

f

)
= S(r, f) we get

T
(
r, (f)(k)

)
= m

(
r, (f)(k)

)
+N(r, (f)(k)) ≤ m(r, f) +N(r, f) + kN1(r, f)+

+S(r, f) ≤ T (r, f) + kT (r, f) + S(r, f) = (k + 1)T (r, f) + S(r, f).

Lemma 2.5 is proved. �
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Lemma 2.6. Let f be a non-constant meromorphic function on C and n, k be
positive integers, n > 2k. Then

1. (n− 2k)T (r, f) + kN(r, f) +N
(
r,

fn−k

(fn)(k)

)
≤ T

(
r, (fn)(k)

)
+ S(r, f);

2. N
(
r,

fn−k

(fn)(k)

)
≤ kT (r, f) + kN1(r, f) + S(r, f).

Proof. 1. By Lemma 2.3 we have

(2.1) N(r, (fn)(k)) = nN(r, f) + kN1(r, f).

From this and noting that S(r, f) = S(r, fn), m
(
r,
(f)(k)

f

)
= S(r, f) we obtain

(n− k)m(r, f) = m(r, fn−k) ≤ m
(
r, (fn)(k)

)
+m

(
r,

fn−k

(fn)(k)

)
+ S(r, f) =

= m
(
r, (fn)(k)

)
+ T

(
r,
(fn)(k)

fn−k

)
−N

(
r,

fn−k

(fn)(k)

)
+ S(r, f) ≤

≤ m
(
r, (fn)(k)

)
++kN(r, f)+km(r, f)+kN1(r, f)−N

(
r,

fn−k

(fn)(k)

)
+S(r, f) =

(2.2) = m
(
r, (fn)(k)

)
+ kT (r, f) + kN1(r, f)−N

(
r,

fn−k

(fn)(k)

)
+ S(r, f).

From (2.1) and (2.2) it implies that

nN(r, f) + (n− k)m(r, f) = (n− k)
(
N(r, f) +m(r, f)

)
+ kN(r, f) =

= (n− k)T (r, f) + kN(r, f) ≤ N
(
r, (fn)(k)

)
+m

(
r, (fn)(k)

)
− kN1(r, f)+

+kT (r, f) + kN1(r, f)−N
(
r,

fn−k

(fn)(k)

)
+ S(r, f) =

= T
(
r, (fn)(k)

)
−N

(
r,

fn−k

(fn)(k)

)
+ kT (r, f) + S(r, f).

Thus

(n− 2k)T (r, f) + kN(r, f) +N
(
r,

fn−k

(fn)(k)

)
≤ T

(
r, (fn)(k)

)
+ S(r, f).
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2. By Lemma 2.4 and noting that m
(
r,
(f)(k)

f

)
= S(r, f) we have

N

(
r,

1

(fn)(k)

fn−k

)
≤ T

(
r,
(fn)(k)

fn−k

)
= m

(
r,
(fn)(k)

fn−k

)
+N

(
r,
(fn)(k)

fn−k

)
≤

≤ km(r, f) +N
(
r,
(fn)(k)

fn−k

)
+ S(r, f) ≤ k(T (r, f)−N(r, f))+

+kN1(r, f) + kN(r, f) + S(r, f) = kT (r, f) + kN1(r, f) + S(r, f).

So

N
(
r,

fn−k

(fn)(k)

)
≤ kT (r, f) + kN1(r, f) + S(r, f).

Lemma 2.6 is proved. �

Lemma 2.7. ([11]) Let f(z) and g(z) be two non-constant entire functions
and n, k be positive integers, n > k. If (fn)(k)(gn)(k) = h, h ∈ C, h �= 0, then
f = l1e

lz and g = l2e
−lz for three non-zero constants l1, l2 and l such that

(−1)k(l1l2)
n(nl)2k = h.

Lemma 2.8. Let f be a non-constant meromorphic function and n, k be positive
integers, n ≥ k + 3, a ∈ C, a �= 0. Then

n− k − 2

n+ k
Tf (r) ≤ N1

(
r,

1

(fn)(k) − a

)
+ S(r, f).

Proof. Since n ≥ k + 3 we have n−k−2
n+k > 0. Because n ≥ k + 3 it follows that

(fn)(k) is not constant.

Applying Lemma 2.1 to (fn)(k) with the values ∞, 0 and a, we obtain

T
(
r, (fn)(k)

)
≤

≤ N1

(
r, (fn)(k)

)
+N1

(
r,

1

(fn)(k)

)
+N1

(
r,

1

(fn)(k) − a

)
+ S(r, f).

By the similar arguments as in the proof of [Lemma 3.4, 7 ] we obtain

N1

(
r,

1

(fn)(k)

)
≤ k + 1

n
N

(
r,

1

(fn)(k)

)
+

k(n− k − 1)

n
N1(r, f) +O(1),

1

n+ k
N
(
r, (fn)(k)

)
≥ N1(r, f), N1

(
r, (fn)(k)

)
= N1(r, f).
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Therefore,

T
(
r, (fn)(k)

)
≤ k + 1

n
N

(
r,

1

(fn)(k)

)
+

(
1 +

k(n− k − 1)

n

)
N1

(
r, (fn)(k)

)
+

+N1

(
r,

1

(fn)(k) − a

)
+ S(r, f).

From this and by

N

(
r,

1

(fn)(k)

)
≤ T

(
r, (fn)(k)

)
+ S(r, f),

N1

(
r, (fn)(k)

)
≤ T

(
r, (fn)(k)

)
+ S(r, f),

we have

T
(
r, (fn)(k)

)
≤

(
k + 1

n
+

n+ k(n− k − 1)

(n+ k)n

)
T
(
r, (fn)(k)

)
+

+N1

(
r,

1

(fn)(k) − a

)
+ S(r, f),

n− k − 2

n+ k
Tf (r) ≤ N1

(
r,

1

(fn)(k) − a

)
+ S(r, f).

Lemma 2.8 is proved. �

3. Proof of Theorem 1

Since n ≥ k + 3, from Lemma 2.8, applying to (fn)(k) with the value 1, it
implies that (fn)(k) = 1 has a solution. So E(fn)(k)(S) �= ∅ and E(gn)(k)(S) �= ∅.
By E(fn)(k)(S) = E(gn)(k)(S) we see that ((fn)(k))d and ((gn)(k))d share the

value 1 CM. Applying Lemma 2.2 to ((fn)(k))d, ((gn)(k))d we arrive to one of
the following cases:

Case 1.

T
(
r, ((fn)(k))d

)
≤ N2

(
r, ((fn)(k))d

)
+N2

(
r,

1

((fn)(k))d

)
+N2

(
r, ((gn)(k))d

)
+

+N2

(
r,

1

((gn)(k))d

)
+ S

(
r, ((fn)(k))d

)
+ S

(
r, ((gn)(k))d

)
,
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T
(
r, ((gn)(k))d

)
≤ N2

(
r, ((fn)(k))d

)
+N2

(
r,

1

((fn)(k))d

)
+N2

(
r, ((gn)(k))d

)
+

(3.1) +N2

(
r,

1

((gn)(k))d

)
+S

(
r, ((fn)(k))d

)
+S

(
r, ((gn)(k))d

)
.

By Lemma 2.6 we obtain

(n− 2k)T (r, f) ≤ T
(
r, (fn)(k)

)
+ S(r, f) ≤ (k + 1)nT (r, f) + S(r, f),

(n− 2k)T (r, g) ≤ T
(
r, (gn)(k)

)
+ S(r, g) ≤ (k + 1)nT (r, g) + S(r, g).

From this and since

T
(
r, ((fn)(k))d

)
= dT

(
r, (fn)(k)

)
+ S

(
r, (fn)(k)

)
,

T
(
r, ((gn)(k))d

)
= dT

(
r, (gn)(k)

)
+ S

(
r, (gn)(k)

)

it is easy to see that

(3.2)

S
(
r, ((fn)(k))d

)
= S

(
r, (fn)(k)

)
= S(r, f),

S
(
r, ((gn)(k))d

)
= S

(
r, (gn)(k)

)
= S(r, g).

On the other hand, if a is a pole of ((fn)(k))d, then f(a) = ∞ with
ν∞
((fn)(k))d

(a) ≥ n + k ≥ 2. Moreover, because d ≥ 2, we see that if a is a

zero of ((fn)(k))d, then (fn)(k)(a) = 0 with ν0
((fn)(k))d

(a) ≥ 2. Therefore,

N2

(
r, ((fn)(k))d

)
= 2N1(r, f) ≤ 2T (r, f) + S(r, f),

N2

(
r,

1

((fn)(k))d

)
= 2N1

(
r,

1

(fn)(k)

)
≤

≤ 2

(
N1

(
r,

1

fn−k

)
++N

(
r,

fn−k

(fn)(k)

))
=

= 2

(
N1

(
r,

1

f

)
+N

(
r,

fn−k

(fn)(k)

))
≤

≤ 2T (r, f) + 2N

(
r,

fn−k

(fn)(k)

)
+ S(r, f) ≤ 2T (r, f) + 2kN1(r, f)+

+2kT (r, f)) + S(r, f) = (2k + 2)T (r, f) + 2kN1(r, f) + S(r, f).
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Similarly,

N2

(
r, ((gn)(k))d

)
≤ 2T (r, g) + S(r, g),

N2

(
r,

1

((gn)(k))d

)
≤ 2(T (r, g) +N

(
r,

gn−k

(gn)(k)
)

)
≤

≤ 2(k + 1)T (r, g) + 2kN1(r, g) + S(r, f).

Set

T (r) = T (r, f) + T (r, g),

S(r) = S(r, f) + S(r, g),

N(r) = N(r, f) +N(r, g),

N1(r) = N1(r, f) +N1(r, g).

Combining (3.1) and (3.2) we get

T
(
r, ((fn)(k))d

)
≤ (4+2k)T (r, f)+4T (r, g)+2kN1(r, f)+2N

(
r,

gn−k

(gn)(k)

)
+S(r).

T
(
r, ((gn)(k))d

)
≤ (4+2k)T (r, g)+4T (r, f)+2kN1(r, g)+2N

(
r,

fn−k

(fn)(k)

)
+S(r).

T
(
r, ((fn)(k))d

)
+ T

(
r, ((gn)(k))d

)
≤ (4 + 2k)T (r) + 4T (r) + 2kN1(r)+

+2N

(
r,

gn−k

(gn)(k)

)
+ 2N

(
r,

fn−k

(fn)(k)

)
+ S(r).

On the other hand, by Lemma 2.6 we have

d((n− 2k)T (r, f) + kN(r, f) +N

(
r,

fn−k

(fn)(k)
)

)
≤ T

(
r, ((fn)(k))d

)
+ S(r, f),

d((n− 2k)T (r, g) + kN(r, g) +N

(
r,

gn−k

(gn)(k)
)

)
≤ T

(
r, ((gn)(k))d

)
+ S(r, g),

Thus,

d(n− 2k)T (r) + dkN(r) + dN

(
r,

fn−k

(fn)(k)

)
+ dN

(
r,

gn−k

(gn)(k)

)
≤

≤ (4+2k)T (r)+4T (r)+2kN1(r)+2N

(
r,

gn−k

(gn)(k)

)
+2N

(
r,

fn−k

(fn)(k)

)
+S(r).
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Moreover, because d ≥ 2, we give

dN

(
r,

fn−k

(fn)(k)

)
≥ 2N

(
r,

fn−k

(fn)(k)

)
,

dN

(
r,

gn−k

(gn)(k)

)
≥ 2N

(
r,

gn−k

(gn)(k)

)
,

dkN(r) ≥ 2kN1(r).

Therefore,

d(n− 2k)T (r) ≤ (2k + 8)T (r) + S(r), d(n− 2k) ≤ 2k + 8.

From this we obtain a contradiction to n > 2k + 2k+8
d .

Case 2. ((fn)(k))d((gn)(k))d = 1. From this we have (fn)(k)(gn)(k) = h with
hd = 1. We are going to prove f(z) �= 0, f(z) �= ∞, g(z) �= 0, g(z) �= ∞ for all
z ∈ C. Assume f has a zero a, and ν0f (a) = α, α ≥ 1. Then a is a pole of g with
ν∞g (a) = β, β ≥ 1 such that nα − k = nβ + k and n(α − β) = 2k. From this

and by n ≥ 2k + 2k+8
d > 2k we obtain a contradiction. By similar arguments

we have g(z) �= 0, f(z) �= ∞, g(z) �= ∞ for all z ∈ C. So f(z) and g(z) are
two non-constant entire functions. Applying Lemma 2.7 to f and g we obtain
f = c1e

cz and g = c2e
−cz for three non-zero constants c1, c2 and c such that

(−1)k(c1c2)
n(nc)2k = h. Because hd = 1 we give (−1)kd(c1c2)

nd(nc)2kd = 1.

Case 3. ((fn)(k))d = ((gn)(k))d. Then (fn)(k) = h(gn)(k) with hd = 1. Set
en = h we have (fn)(k) = ((eg)n)(k). By the similar arguments as in the proof
of [Theorem 1.1, 1] we obtain f = seg with sn = 1. Set t = se. Then we get
tnd = sndend = 1.

Theorem 1 is proved. �
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