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CONTINUATION OF THE LAUDATION TO

Professor Karl-Heinz Indlekofer

on his 75-th birthday

by Imre Kátai (Budapest, Hungary)

What has happened with him on the last five years?

He continued his activity as an organist and leader of the church choir in the
beautiful village Dörenhagen, where they live during more than thirty years.

Thomas, his son and Katharina built a modern, beautiful house close to
their house. He helped in the organization of the construction.

Grand children Lucas and Elias born.

To keep his fitness he runs or has a long walk every day.

He continued his research activity in number theory and in probability.

I. His work in the group of Professor Wolfgang Schwarz

From 1970 during some years he worked in the group of Professor Wolfgang
Schwarz in Frankfurt/Main. In [150] he describes the main topics discussed in
the group of Wolfgang Schwarz: Equivalent power series, spaces of arithmetical
functions, characterization of multiplicative functions, integration via Gelfand
theory. Whereas Indlekofer’s work on equivalent power series and character-
izations of multiplicative functions have been described in Laudation for his
sixtieth birthday, we focus here on topic ”integration”.

W. Schwarz and J. Spilker in their book: Arithmetical Functions (Cam-
bridge University Press, 1994) describe the integration theory for algebra Bu.
Here B denote the space of all even functions and is equal to the space of all
linear combinations of Ramanujan sum cr, where

cr(n) =
∑

1≤a≤r
gcd(a,r)=1

exp
(
2π

a

r
n
)

i.e.
B = LinC{cr : r = 1, 2, . . .}.
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Taking the closure of B with respect to the supremum norm ‖.‖u, defines by

‖f‖u := sup
n∈N

|f(u)| for f ∈ �∞,

we arrive at the space Bu of uniformly almost even functions.

Bu is a B∗-algebra. Therefore the Gelfand Representation Theorem is ap-
plicable and implies that Bu is isomorphic and isometric to the algebra C(X) of
all continuous complex-valued functions on a certain compact Hausdorff space
X – its maximal ideal space. The mean-value M(f) for f ∈ Bu is a nonnega-
tive linear functional on Bu and can extended to a bounded nonnegative linear
functional on C(X). Thus, by Riesz’s Theorem the mean-value M(f) can be
written as an integral over a continuous function on X. Similar conclusions can
be done for the B∗-algebras Du and Au of uniformly limit -periodic and uni-
formly almost periodic functions, respectively. It should be alluded the special
role played by the asymptotic density in the investigation of the space Bu, Du

and Au. Further, despite of the ad hoc constructions of the compactifications,
the ”size” of these spaces is ”restricted”; the Möbius µ function, for example,
is not an element of any of these spaces. To avoid these limitations Indlekofer
described in 1990s an ”integration theory” which is based on the Stone–Cech
compactification of natural numbers.

The main difficulties concerning the immediate application of probabilistic
tools to the investigation of additive and multiplicative functions in number
theory arise from the fact that the asymptotic density defines only a finitely
additive measure on the family of all subsets of Γe having an asymptotic density.
To overcome these difficulties Indlekofer proceeded as follows: N, endowed with
the discrete topology, will be embedded in a compact space βN, the Stone–Cech
compactification of N, and then any algebra A in N with an arbitrary finitely
additive set function, a content or pseudomeasure on N, can be extended to
an algebra A in βN together with an extension of this pseudomeasure. The
integration theory is based on the following result:

Theorem 1. Let A be an algebra in N and δ : A → [0,∞) be a content on A.
Then the map

δ : A → [0,∞), δ(A) = δ(A)

is σ-additive on A and can uniquely extended to a measure on the minimal
σ-algebra over A.

Then, if E denote the family of simple functions on N, the set

E(A) :=
{
s ∈ E : s =

m∑
j=1

αj1Aj
, m ∈ N, αj ∈ C, Aj ∈ A (j = 1, . . . ,m)

}
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of simple functions on A is a vector space, especially an algebra, such that
E(A)u, the ‖.‖u-closure of E(A), is a B∗-algebra.

The connection with Gelfand’s theory is described in the paper [146] with
Wagner and reads as follows:

Theorem 2. Let F be a B∗-algebra of complex-valued functions from �∞ and
let L be a positive linear functional on F with L(1N) = 1. Then there exists an
algebra A of subsets of N and a content δ on A such that

(i) each f ∈ F belongs to the ‖.‖u-closure of E(A)

and

(ii) for each f ∈ F the relation

L(f) =

∫

βN

fdδ

holds

II. On the book [151]

The book [151] written together with Prof. O. K. Klesov, Prof. J. G.
Steinebach and the late Prof. V. V. Buldygin is a very important work in the
renewal theory and its various important applications. It is developed from
the collaboration in several DFG-projects (see Laudation on his seventieth an-
niversary) and its related to a recent common DFG-project ”Ein einheitlicher
Zugang zu Grenzwertsätzen für duale Objekte in Wahrscheinlichkeits- und
Zahlentheorie” (2016-2019). Here, for example the asymptotic behaviour of
means

∑
n≤x f(n) (x → ∞) for (positive) uniformly summable multiplicative

functions f and the asymptotic behaviour of the distributions

�
{
n ∈ N :

n

f(n)
≤ y

}
as y → ∞

if n
f(n) ↗ ∞.

III. Survey article [153]

In the survey article Equivalent power series Indlekofer describes the result
and applications which have been initiated and motivated by Turán’s work on
equivalent power series (for details see Laudation on his sixtieth anniversary).
Further, he extends subject to functions f which are holomorphic in a region
containing D \ {1}.
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IV. Tauberian Theorem for exp-log functions

Indlekofer [144] introduced the class F of exp-log functions. For this let

(1) Z(y) =
∞∑

n=0

γ(n)yn = exp
( ∞∑

m=0

λ(m)

m
ym

)

be holomorphic for |y| < 1, where

(2) 0 ≤ λ(m) = O(1),m ∈ N,

and

(3) |Z(y)| � Z(|y|)
∣∣∣1− |y|
1− y

∣∣∣
ε

, (|y| < 1)

for some ε > 0. Further, putting

B(n) = exp
( ∑

m≤n

λ(m)

m

)
,

we assume that

(4) nγ(n) � B(n)

and

(5) B(m) = o(B(n)) if m = o(n), n → ∞.

Then we say that the function Z given in (1) belongs to exp-log class F in
case (2), (3), (4) and (5) hold.

Now, if the function

(6) F (y) =

∞∑
n=0

f(n)yn = exp
( ∞∑

m=1

λf (m)

m
ym

)

(|y| < 1) is given then the following Tauberian theorem holds:

Theorem 3. Let Z be an element of the exp-log class F and let F (y) in (6)
satisfy |λf (m)| ≤ λ(m) for all m ∈ N. Then the following two assertions hold:

(i) Let

(7)

∞∑
m=1

λ(m)−Reλf (m)eima

m



Continuation of the laudation to Professor Karl-Heinz Indlekofer 39

converge for some a ∈ R. Put

An := exp
(
− ima+

∑
m≤n

λf (m)eima − λ(m)

m

)
.

Then
f(n) = Anγ(n) + o(γ(n)) as n → ∞.

(ii) Let (7) diverge for all a ∈ R. Then

f(n) = o(γ(n)) as n → ∞.

Indlekofer proved in [144]:

Theorem 4. If Z(y) defined in (1), satisfies (2) and has the form

Z(y) =

∞∑
n=0

γ(m)yn =
H(y)

(1− y)δ
,

where δ > 0, H(y) = O(1) for y ∈ D and lim
y→1−

H(y) = A > 0, then Z ∈ F and

γ(n) ∼ A
nδ−1

Γ(δ)
as n → ∞.

V. Uniformly summable multiplicative functions

on additive arithmetical semigroups

Let (G, ∂) be an additive arithmetical semigroup. By definition G is a free
commutative semigroup with identity element 1G, generated by a countable
subset P of primes and admitting an integer valued degree mapping ∂ : G →
→ N ∪ {0}, which satisfies

(i) ∂(1G) = 0 and ∂(p) > 0 for all p ∈ P,

(ii) ∂(ab) = ∂(a) + ∂(b) for all a, b ∈ G,

(iii) the total number G(n) of elements a ∈ G of degree ∂(a) = n is
finite for each n ≥ 0.

Obviously, G(0) = 1 and G is countable.
Let

π(n) := #{p ∈ P : ∂(p) = n}
denote the total number of primes of degree n in G. We obtain the identity, at
least in the formal sense,

Ẑ(z) :=

∞∑
n=0

G(n)zn = exp

( ∞∑
m=1

Λ(m)

m
zm

)
=

∞∏
n=1

(1− zn)−π(n).

Ẑ can be considered as the zeta-function associated with the semigroup (G, ∂).
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We assume that Λ(n) = O(qn), and the generating function of (G, ∂) has
the form

(8) Ẑ(z) =

∞∑
n=0

G(n)zn =
Ĥ(z)

(1− qz)δ
and converges for |z| < q−1,

where

(9) Ĥ(z) = O(1) for |z| < q−1, and lim
z→q−1

Ĥ(z) exists and is positive,

and δ > 0. By a paper of K.-H. Indlekofer (see [144]), the formal power series
Ĥ(z) is convergent for z = q−1 and equals lim

z→q−1
Ĥ(z), and

G(n) ∼ Ĥ(q−1)

Γ(δ)
qnnδ−1

holds.

For each arithmetical function f̃ on G, f̃ : G → C, we associate a power
series F̂ , the generating function F̂ of f̃ , which is defined by

F̂ (z) =
∑
a∈G

f̃(a)z∂(a) =
∞∑

n=0




∑
a∈G

∂(a)=n

f̃(a)


 zn =

∞∑
n=0

f(n)zn.

Further, we introduce the means

M(n, f̃) :=

{
1

G(n)f(n), if G(n) �= 0,

0, if G(n) = 0,

and say that the function f̃ possesses an (arithmetical) mean-value M(f̃), if
the limit

M(f̃) := lim
n→∞

M(n, f̃)

exists.

For 1 ≤ α < ∞, define

∥∥f̃∥∥
α
:=

(
lim sup
n→∞

M(n, |f̃ |α)
)1/α

,

and let

Lα :=
{
f̃ : G → C,

∥∥f̃∥∥
α
< ∞

}
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denote the linear space of functions on G with bounded seminorm ‖ · ‖α. If

�∞ :=
{
f̃ : G → C, sup

g∈G

∣∣f̃(g)∣∣ < ∞
}

is the space of bounded functions on G, we introduce the space L∗(G) of uni-
formly summable functions on G as the ‖ · ‖1-closure of �∞(G).

Obviously, f̃ ∈ L∗ if and only if

lim
K→∞

sup
n≥1

M
(
n,

∣∣f̃K
∣∣) = 0,

where

f̃K(a) =

{
f̃(a), if

∣∣f̃(a)∣∣ ≥ K,

0, otherwise.

It is easy to show that, if 1 < α < ∞,

�∞(G) � Lα � L∗ � L1.

The class of uniformly summable functions has been defined by Indlekofer
(see [21]) for functions defined on N, and he has given a complete characteri-
zation of uniformly summable multiplicative functions (see Indlekofer [30]).

Here, as in the classical case, an arithmetical function f̃ : G → R is called
multiplicative if f̃(ab) = f̃(a)f̃(b) whenever a, b ∈ G are coprime.

If f̃ is a multiplicative function on G, then
∑
a∈G

∂(a)=0

f̃(a) = 1 ( �= 0), and we

assume that its generating function F̂ converges in some neighborhood of z = 0
and satisfies

F̂ (z) =

∞∑
n=0

( ∑
a∈G

∂(a)=n

f̃(a)
)
zn =

∏
p

(
1 +

∞∑
k=1

f̃(pk)zk∂(p)

)
=:

=: exp

( ∞∑
m=1

Λf (m)

m
zm

)
.

In the paper [145] Barát and Indlekofer characterize multiplicative functions
f ∈ L∗ the means of which satisfy M(n, f) � 1 for n ≥ n1. The proofs use
ideas and results from [21], [133] and [144]. As an example we mention

Theorem 5. Let (G, ∂) be an additive arithmetical semigroup satisfying
Λ(n) = O(qn), (8), and (9) with δ > 0. Let f̃ be a multiplicative function,
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and α ≥ 1. If f̃ ∈ L∗ ∩ Lα, and if M(n, f̃) � 1 for n ≥ n1, then the following
assertions hold:

∑
p∈P,∂(p)≤n

|f̃(p)|≤ 3
2

Re f̃(p)− 1

q∂(p)
= O(1),

∑
p∈P,∂(p)≤n

|f̃(p)|≤ 3
2

|f̃(p)| − 1

q∂(p)
= O(1),

∑
p∈P

|f̃(p)|≤3/2

|f̃(p)− 1|2

q∂(p)
converges,

∑
p∈P ;n≥2

|f̃(pn)|λ

(q∂(p))n
converges,

∑
p∈P

||f̃(p)|−1|>1/2

|f̃(p)|λ

q∂(p)
converges for 1 ≤ λ ≤ α,

and for each prime p
∞∑

n=1

f̃(pn)

qn∂(p)
+ 1 �= 0.

VI. Multiplicative functions with small increment

O. Klurman proved an old conjecture of I. Kátai, namely that if f is a
completely multiplicative function, |f(n)| = 1 for every n ∈ N and

1

log x

∑
n≤x

1

n
|f(n+ 1)− f(n)| → 0 x → ∞,

then f(n) = niτ (τ ∈ R).
By using this theorem in [148] it is proved: If f is completely multiplicative

and ∑
n≤x

|f(n+ 1)− f(n)|
n

= O(log x),

then either ∑
n≤x

|f(n)|
n

= O(log x),

or

f(n) = nσ+it, 0 < σ ≤ 1, t ∈ R.
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In [149] it was proved: If f is multiplicative,

lim
∑
n≤x

|f(n)|
n

= ∞

and

lim
1

log x

∑
n≤x

|f(n+K)− f(n)|
n

< ∞,

then there are real numbers σ, t such that 0 < σ ≤ 1, and a Dirichlet character
χ (mod K) such that f(n) = nσ+itχ(n).




