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UNSOLVED PROBLEMS SECTION

CHARACTERIZATION OF SOME

MULTIPLICATIVE FUNCTIONS

Imre Kátai and Bui Minh Phong

(Budapest, Hungary)

Abstract. We state the following problem: Let a < b, a, b ∈ Z and f be
a completely multiplicative function for which

f(n2 + b)− f(n2 + a) = b− a (n2 > a)

is satisfied. Determine all f for which the above relation holds.

1. Introduction

Let, as usual, N, Z, C be the set of positive integers, integers and com-
plex numbers, respectively. Let M∗ be the class of complex-valued completely
multiplicative functions. Let χ3, χ4 be the nonprincipal Dirichlet characters
(mod 3) and (mod 4), that is

χ3(n) =

⎧⎪⎨⎪⎩
1, n ≡ 1 (mod 3)

−1, n ≡ −1 (mod 3)

0, n ≡ 0 (mod 3)

and

χ4(n) =

⎧⎪⎨⎪⎩
1, n ≡ 1 (mod 4)

−1, n ≡ −1 (mod 4)

0, n ≡ 0 (mod 2).

Let I be the identity function, that is I(n) = n for every n ∈ N.
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Theorem 1. Assume that f ∈ M∗, A ∈ C satisfy the condition

(1.1) f(n2) = f(n2 − 1) +A for every n ∈ N, n ≥ 2.

Then

(a1) No solution exists if A �∈ {0, 1}.
(b1) If A = 1, then f ∈ {I, χ3, χ4}
(c1) If A = 0, then either f(n) = 1 for every n ∈ N or f(n) = 0 for

every n ∈ N, n ≥ 2.

We note that the condition f ∈ M∗ implies that f(1) = 1.

Theorem 2. Assume that f ∈ M∗, B ∈ C satisfy the condition

(1.2) f(n2 + 1) = f(n2) +B for every n ∈ N.

Then

(a2) No solution exists if B �∈ {0, 1}.
(b2) If B = 1, then

f(2) = 2, f(p) = p, (p ∈ P) if p ≡ 1 (mod 4)

and

f(q) = ±q (q ∈ P) if q ≡ 3 (mod 4).

(c2) If B = 0, then

f(2) = 1, f(p) = 1, (p ∈ P) if p ≡ 1 (mod 4)

and

f(q) = ±1 (q ∈ P) if q ≡ 3 (mod 4).

If these conditions hold, then (1.2) is satisfied.

Unsolved problem. Let a < b, a, b ∈ Z and f be a completely multiplicative
function for which

(1.3) f(n2 + b) − f(n2 + a) = b − a (n2 > a)

is satisfied. Determine all f for which (1.3) holds.
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2. Proof of Theorem 1

First, by using the fact f ∈ M∗, we obtain from (1.1) that f(1) = 1 and

(2.1) En := f2(n) − f(n − 1)f(n+ 1) − A = 0 for every n ∈ N, n ≥ 2.

For n = 2, 3, 4, 5, 9, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E2 = f2(2) − f(3) − A = 0,

E3 = f2(3) − f3(2) − A = 0,

E4 = f4(2) − f(3)f(5) − A = 0,

E5 = f2(5) − f3(2)f(3) − A = 0,

E9 = f4(3) − f4(2)f(5) − A = 0.

With the help of a Maple program, by solving this system of equations, we
obtain that the solutions are:(

f(2), f(3), f(5), A
) ∈ {

(0, 0, 0, 0), (1, 1, 1, 0),

(2, 3, 5, 1), (−1, 0, −1, 1), (0, −1, 1, 1)
}
.

Therefore the assertion (a1) is proved.

First we consider the case A = 1. Then(
f(2), f(3), f(5), A

) ∈ {
(2, 3, 5, 1), (−1, 0, −1, 1), (0,−1, 1, 1)

}
.

We get from (1.1) that

(2.2) f2(N − 1) = f
(
(N − 1)2

)
= f(N − 2)f(N) +A = f(N − 2)f(N) + 1.

If
(
f(2), f(3), f(5), A

)
= (2, 3, 5, 1), then f(n) = n for every n < N ,

where N ≥ 6 is a prime number. Thus, we infer from (2.2) that

(N − 1)2 = f2(N − 1) = f(N − 2)f(N) + 1 = (N − 2)f(N) + 1,

and so f(N) = N .

If
(
f(2), f(3), f(5), A

)
= (−1, 0, −1, 1), then f(n) = χ3(n) for every

n < N , where N ≥ 6 is a prime number. Thus, we infer from (2.2) that

χ2
3(N − 1) = f2(N − 1) = f(N − 2)f(N) + 1 = χ3(N − 2)f(N) + 1,
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from which we have f(N) = χ3(N) for N �≡ 2 (mod 3). If N ≡ 2 (mod 3),
then 2N − 1 ≡ 0 (mod 3) and 2N−1

3 < N . Consequently

0 = χ2
3(2N − 1) = f

(
(2N − 1)2

)
= f(2N − 2)f(2N) +A =

= χ2
3(2)χ3(N − 1)f(N) + 1

and

χ2
3(2)χ3(N − 1)f(N) + 1 = 0, f(N) = −1.

Hence

f(n) = χ3(n) for every n ∈ N.

If
(
f(2), f(3), f(5), A

)
= (0, −1, 1, 1), then f(n) = χ4(n) for every n < N ,

where N ≥ 6 is a prime number. Thus, we infer from (2.2) that

χ2
4(N − 1) = f2(N − 1) = f(N − 2)f(N) + 1 = χ4(N − 2)f(N) + 1,

which shows that f(N) = χ4(N), consequently f(n) = χ4(n) for every n ∈ N.

Now we consider the case A = 0. Then(
f(2), f(3), f(5), A

) ∈ {
(0, 0, 0, 0), (1, 1, 1, 0)

}
.

It is easy to show from (1.1) and from (2.2) that f(1) = 1 and

f(n) =

{
0, for every n ∈ N, n ≥ 2 if

(
f(2), f(3), f(5)

)
= (0, 0, 0)

1, for every n ∈ N, n ≥ 2 if
(
f(2), f(3), f(5)

)
= (1, 1, 1).

Theorem 1 thus is proved. �

3. Proof of Theorem 2

By using the fact f ∈ M∗, we obtain from (1.2) that f(1) = 1 and

(3.1) Fn := f(n2 + 1) − f2(n) − B = 0 for every n ∈ N, n ≥ 1.

From F1 = f(2)− f(1)−B = 0, we have f(2) = B + 1, and so we obtain from
F2, F4 that

f(5) = B2 + 3B + 1 and f(17) = B4 + 4B3 + 6B2 + 5B + 1.
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Therefore we have

F5 = −(1 +B)(B3 + 5B2 + 6B − f(13) + 1) = 0.

If B = −1, then

F8 = f(13) − 1 = 0 and F18 = f(13) + 1 = 0,

which are impossible. Then

B �= −1 and f(13) = B3 + 5B2 + 6B + 1,

consequently

F8 = −B(B + 2)(B − 1)(B3 + 4B2 + 5B + 1) = 0,

F13 = B(B − 1)(1 +B)(B + 2)2(B2 + 3B + 1) = 0.

These imply that
B(B − 1)(B + 2) = 0.

Since
F3 = B3 + 4B2 − f(3)2 + 3B + 1 = 0

and

F18 = (1 +B)2(B5 + 9B4 − f(3)4 + 28B3 + 33B2 + 9B + 1) = 0,

we have B + 2 �= 0.

Thus we proved that B ∈ {0, 1}.
Case B = 1.

It is clear that f(2) = f(12 + 1) = f(1)2 + 1 = 2, f(5) = f
(
22 + 1

)
=

= f(2)2 + 1 = 5, 10 = f(10) = f(9) + 1, thus f(9) = 9.

Let us assume that f(p) = p, p ≡ 1 (mod 4) and f(q2) = q2 is satisfied
if p < N, q < N , where N > 9. If N is a critical number, then either
N = P (P ∈ P, P ≡ 1 (mod 4)), or N = Q2 (Q ∈ P, Q ≡ 3 (mod 4)).

Assume that N = P . Let n be the smallest positive integer for which
n2 + 1 ≡ 0 (mod P ). Then n ≤ P

2 , consequently, n
2 + 1 = kP and k < N .

Since f(n2) = n2, we have

kf(P ) = f(k)f(P ) = f(kP ) = f(n2 + 1) = f(n2) + 1 = n2 + 1 = kP,

which implies that f(P ) = P .

In the second case, N = Q2, we obtain that 2|Q2+1, and f
(

Q2+1
2

)
= Q2+1

2 ,

since if π ≡ 3 (mod 4), π ∈ P, and π|Q2+1
2 , then πα‖Q2+1

2 and α is even. The
assertion (b2) is proved.
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Case B = 0.

It is clear that f(2) = f(12 + 1) = f(1)2 + B = 1, f(5) = f
(
22 + 1

)
=

= f(2)2 +B = 1, f(9) = f(9) +B = f(92 + 1) = f(2)f(5) = 1.

Similar as in the proof of the case B = 1, we obtain the assertion (c2) of
Theorem 2.

Theorem 2 thus is proved. �
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