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UNSOLVED PROBLEMS SECTION

CHARACTERIZATION OF SOME
MULTIPLICATIVE FUNCTIONS

Imre Katai and Bui Minh Phong

(Budapest, Hungary)

Abstract.

We state the following problem: Let a < b, a,b € Z and f be

a completely multiplicative function for which

fM*+b) —f(n°+a)=b—a (n*>a)

is satisfied. Determine all f for which the above relation holds.

1. Introduction

Let, as usual, N, Z, C be the set of positive integers, integers and com-
plex numbers, respectively. Let M* be the class of complex-valued completely
multiplicative functions. Let x3, x4 be the nonprincipal Dirichlet characters

(mod 3) and (mod 4), that is

L
X3(n) = _17
0)
and
17
X4<n) = 717
0,

n=1 (mod 3)
n=-1 (mod 3)
n=0 (mod 3)
n=1 (mod4)
n=-1 (mod 4)
n=0 (mod 2).

Let I be the identity function, that is I(n) = n for every n € N.
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Theorem 1. Assume that f € M*, A € C satisfy the condition
(1.1) fn®) =f(n®>=1)+A forevery neN, n>2.

Then
(al) No solution exists if A ¢ {0,1}.
(b]') IfA = 1; then f € {I7 X3, X4}

(cl) If A = 0, then either f(n) =1 for every n € N or f(n) =0 for
everyn € Nyn > 2.

We note that the condition f € M* implies that f(1) = 1.
Theorem 2. Assume that f € M*, B € C satisfy the condition
(1.2) f(n?+1)=f(n*)+ B for every n€N.

Then
(a2) No solution exists if B ¢ {0,1}.
(b2) If B =1, then

f2)=2,fp)=p,(peP) if p=1 (mod4)

and
fla)=+q (¢eP) if ¢=3 (mod4).

(c2) If B =0, then
f2)=1f(p)=1,0peP) if p=1 (mod4)

and
fle)==x1(geP) if ¢g=3 (mod4).

If these conditions hold, then (1.2) is satisfied.

Unsolved problem. Leta <b, a,b € Z and f be a completely multiplicative
function for which

(1.3) f(n?+b)—f(n*+a)=b—a (n*>a)

is satisfied. Determine all f for which (1.3) holds.
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2. Proof of Theorem 1

First, by using the fact f € M*, we obtain from (1.1) that f(1) =1 and
(21) E,:=f*n)—f(n—1)f(n+1)—A=0 forevery neN, n>2.
Forn =2, 3,4, 5,9, we have
E, = f*(2)

By = f(3)
Ey =f'(2) - f@3)f(5)-A=0,
Es = f*(5)

f5(3)

Ey =

With the help of a Maple program, by solving this system of equations, we
obtain that the solutions are:

((2), f(3), f(5), A) € {(0,0,0,0), (1,1,1,0),
(2,3,5,1), (-1,0, =1, 1), (0, 1,1, 1)}.
Therefore the assertion (al) is proved.
First we consider the case A = 1. Then
(f(2), f(3), f(5), A) € {(2,3,5,1), (1,0, -1, 1), (0,-1,1,1)}.
We get from (1.1) that

(22) AN =1)=f((N-1)%) =F(N=2)f(N)+A=f(N-2)f(N)+1.

If (f(2), f(3), f(5), A) = (2,3,5,1), then f(n) = n for every n < N,
where N > 6 is a prime number. Thus, we infer from (2.2) that

(N=1?=f*(N-1) = f(N=2)f(N) +1= (N = 2)f(N) +1,

and so f(N) = N.

If (f(z)? f(3)a f(5)7 A) = (_L 07 _17 1)7 then f(n) = X3(n) for every
n < N, where N > 6 is a prime number. Thus, we infer from (2.2) that

X3(N =1) = fAN = 1) = f(N = 2)f(N) + 1= x3(N = 2)f(N) + 1,
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from which we have f(N) = x3(N) for N # 2 (mod 3). If N = 2 (mod 3),
then 2N — 1 =0 (mod 3) and 22=1 < N. Consequently

0=x32N —1) = f (2N = 1)?) = f(2N —2)f(2N) + A =

= x3(2)xs(N —1)f(N) +1
and

X323 (N —1)f(N)+1=0, f(N)=-1.

Hence
f(n) = xs(n) for every neN.

I (£(2), £(3), £(5), A) = (0, —1, 1, 1), then f(n) = xa(n) for every n < N,
where N > 6 is a prime number. Thus, we infer from (2.2) that

XN = 1) = fAN = 1) = f(N = 2)f(N) + 1= xa(N = 2) f(N) + 1,
which shows that f(N) = x4(NN), consequently f(n) = xa(n) for every n € N.
Now we consider the case A = 0. Then
(f(2), £(3), f(5), 4) € {(0,0,0,0), (1,1,1,0)}.
It is easy to show from (1.1) and from (2.2) that f(1) = 1 and
o {0, forevery neN, n>2 if (f(2), f(3), £(5)) = (0, 0, 0)
1, forevery neN, n>2 if (f(2),f(3), f(5)=(1,1,1).

Theorem 1 thus is proved. |
3. Proof of Theorem 2

By using the fact f € M*, we obtain from (1.2) that f(1) = 1 and
(3.1) F,:=f(n*+1)— f*(n) —B=0 forevery necN, n>1.

From Fy = f(2) — f(1) — B =0, we have f(2) = B+ 1, and so we obtain from
FQ, F4 that

f(5)=B?+3B+1 and f(17)=B*+4B%*+6B*+5B + 1.
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Therefore we have
Fs=—(1+ B)(B*+5B*+6B — f(13) +1) = 0.
If B= —1, then
Fg=f(13)—1=0 and Fig=f(13)+1=0,
which are impossible. Then
B# -1 and f(13)=B*+5B?+6B+1,
consequently
Fy=-B(B+2)(B-1)(B*+4B*+5B+1) =0,
Fi3=B(B-1)(1+B)(B+2)?*B*+3B+1)=0.
These imply that
B(B-1)(B+2)=0.
Since
F3=B3+4B?> - f(3)24+3B+1=0

and
Fig=(1+B)*(B® +9B* — f(3)* +28B% +33B* + 9B + 1) = 0,

we have B+ 2 # 0.
Thus we proved that B € {0,1}.

Case B = 1.

It is clear that f(2) = f(12+1) = f(1)2+1 =2, f(5) = f(22+1) =
= f(2)2+1=5,10 = f(10) = £(9) + 1, thus £(9) = 9.

Let us assume that f(p) = p, p = 1 (mod 4) and f(¢?) = ¢° is satisfied
if p < N, g < N, where N > 9. If N is a critical number, then either
N=P(PeP,P=1 (mod4)),or N=@Q* (Q€P,Q =3 (mod 4)).

Assume that N = P. Let n be the smallest positive integer for which
n?+1=0 (mod P). Then n < g, consequently, n2 +1 = kP and k < N.
Since f(n?) = n?, we have

kf(P) = f(k)f(P) = f(kP) = f(n® +1) = f(n®) + 1 =n® +1=kP,
which implies that f(P) = P.
In the second case, N = Q?, we obtain that 2|Q?+1, and f(%) = Q4

2 b

2 2
since if 7 =3 (mod 4), m € P, and 7| Q;l, then WOH% and « is even. The
assertion (b2) is proved.
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Case B = 0.

It is clear that f(2) = f(12+1) = f(1)2+ B =1, f(5) = f(22+1) =
=f(2?+B=1f(9)=f09)+B=f9+1)=f(2)f05) =1

Similar as in the proof of the case B = 1, we obtain the assertion (c2) of
Theorem 2.

Theorem 2 thus is proved. |
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