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Abstract. In this paper we extend the applicability of an iterative method
which converges to the unique solution xδ

α of the Lavrentiev regularization
equation, i.e., F (x) + α(x− x0) = yδ, approximating the solution x̂ of the
ill-posed problem F (x) = y where F : D(F ) ⊆ X −→ X is a nonlinear
monotone operator defined on a real Hilbert space X. We use a center-
Lipschitz instead of a Lipschitz condition used in [8, 15, 22] as well as our
new idea of restricted convergence domains. This idea helps us determine
a smaller ball where the iterates lie leading to smaller Lipschitz constants
which in turn helps us provide a wider convergence domain, tighter error
bounds on the distances involved and an at least as precise information
on the location of the solution. These advantages are obtained under the
same computational cost, since in practice the computation the old con-
stants requires the computation of the new constants as special cases. The
convergence analysis and the stopping rule are based on the majorizing
sequence. The choice of the regularization parameter is the crucial issue.
We show that the adaptive scheme considered by Perverzev and Schock
[19] for choosing the regularization parameter can be effectively used here
for obtaining order optimal error estimate.
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1. Introduction

This paper extends the analysis of the Lavrentiev regularization for nonlin-
ear ill-posed problems

(1.1) F (x) = y,

where F : D(F ) ⊆ X → X is a nonlinear monotone operator considered in [7].
Recall that F is a monotone operator if it satisfies the relation

(1.2) 〈F (x1) − F (x2), x1 − x2〉 ≥ 0, ∀x1, x2 ∈ D(F ).

Here X is a real Hilbert space with inner product 〈., .〉 and norm ‖.‖. Let
U(x,R) and U(x,R), stand respectively, for the open and closed ball in X with
center x and radius R > 0. Let also L(X) be the space of all bounded linear
operators from X into itself.

We assume that (1.1) has a solution, namely x̂ and that F possesses a
locally uniformly bounded Fréchet derivative F ′(.) in a ball around x̂ ∈ X.

In application, usually only noisy data yδ are available, such that

(1.3) ‖y − yδ‖ ≤ δ.

Then the problem of recovery of x̂ from noisy equation F (x) = yδ is ill-posed.

In [7], we considered an iterative regularization method;

(1.4) xδ
n+1,α = xδ

n,α − (F ′(x0) + αI)−1(F (xδ
n,α) − yδ + α(xδ

n,α − x0)),

and proved that (xδ
n,α) converges linearly to the unique solution xδ

α of

(1.5) F (x) + α(x − x0) = yδ.

It is known (cf. [21], Theorem 1.1) that the equation (1.5) has a unique solu-
tion xδ

α for α > 0, provided F is Fréchet differentiable and monotone in the
ball Br(x̂) ⊂ D(F ) with radius r = ‖x̂ − x0‖ + δ/α. However the regularized
equation (1.5) remains nonlinear and one may have difficulties in solving them
numerically.

Many authors (see [8, 9, 10, 11, 12] ) considered iterative regularization
methods for obtaining stable approximate solutions for (1.5). Recall ([22])
that, an iterative method with iterations defined by

xδ
k+1 = Φ(xδ

0, x
δ
1, · · · , xδ

k; y
δ),
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where xδ
0 := x0 ∈ D(F ) is a known initial approximation of x̂, for a known

function Φ together with a stopping rule which determines a stopping index
kδ ∈ N is called an iterative regularization method if ‖xδ

kδ
− x̂‖ → 0 as δ → 0.

In [8], Bakushinskii and Smirnova considered the iteratively regularized
Lavrentiev method

(1.6) xδ
k+1 = xδ

k − (Aδ
k + αkI)

−1(F (xδ
k)− yδ + αk(x

δ
k − x0)), k = 0, 1, 2, . . . ,

where Aδ
k := F ′(xδ

k) and {αk} is a sequence of positive real numbers such that
limk→∞ αk = 0. In fact, the stopping index kδ in [8] was chosen according to
the discrepancy principle

‖F (xδ
kδ
) − yδ‖ ≤ τδ < ‖F (xδ

k) − yδ‖, 0 ≤ k < kδ

for some τ > 1 and showed that xδ
kδ

→ x̂ as δ → 0 under the following
assumptions:

• There exists L1 > 0 such that ‖F ′(x) − F ′(y)‖ ≤ L1‖x − y‖ for all
x, y ∈ D(F ).

• There exists p > 0 such that

(1.7)
αk − αk+1

αkαk+1
≤ p, ∀k ∈ N,

• √
(2 + L1σ)‖x0 − x̂‖td ≤ σ − 2‖x0 − x̂‖t ≤ dα0, where σ := (

√
τ − 1)2,

t := pα0 + 1 and d = 2(t‖x0 − x̂‖ + pσ).

However, no error estimate for ‖xδ
kδ

− x̂‖ was given in [8]. Later in [22],
Mahale and Nair considered method (1.6) and obtained an error estimate for
‖xδ

kδ
− x̂‖ under a weaker condition than (1.7). Precisely they choose the

stopping index kδ as the first nonnegative integer such that xδ
k in (1.7) is defined

for each k ∈ {0, 1, 2, · · · , kδ} and

‖αkδ
(Aδ

kδ
+ αkδ

I)−1(F (xkδ
) − yδ)‖ ≤ c0 with c0 > 4.

In [22], Mahale and Nair showed that xδ
kδ

→ x̂ as δ → 0 and obtained an

optimal order error estimate for ‖xδ
kδ

− x̂‖ under the following assumptions:

Assumption 1. There exists r > 0 such that F is Fréchet differentiable for
all x ∈ U(x̂, r).

Assumption 2. (cf. [20], Assumption 3) There exists a constant K > 0 such
that for every x, u ∈ U0 and v ∈ X there exists an element Φ(x, u, v) ∈ X such
that [F ′(x) − F ′(u)]v = F ′(u)Φ(x, u, v), ‖Φ(x, u, v)‖ ≤ K‖v‖ ‖x − u‖.
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Assumption 3. There exists a continuous, strictly increasing function
ϕ : (0, a] → (0,∞) with a ≥ ‖F ′(x̂)‖ satisfying

1. limλ→0 ϕ(λ) = 0,

2. for α ≤ 1, ϕ(α) ≥ α,

3. supλ≥0
αϕ(λ)
λ+α ≤ cϕϕ(α), ∀λ ∈ (0, a],

4. there exists w ∈ X such that

(1.8) x0 − x̂ = ϕ(F ′(x̂))w.

Assumption 4. There exists a sequence {αk} of positive real numbers such
that limk→∞ αk = 0 and there exists μ > 1 such that

(1.9) 1 ≤ αk

αk+1
≤ μ, ∀k ∈ N.

Note that (1.9) is weaker than (1.7).

In [15] motivated by iteratively regularized Lavrentiev method (see [8] and
[22]), we showed the quadratic convergence of the method defined by

(1.10) xδ
n+1,α = xδ

n,α − (F ′(xδ
n,α) + αI)−1(F (xδ

n,α) − yδ + α(xδ
n,α − x0)),

where xδ
0,α := x0 is a starting point of the iteration. Let Rα(x) = F ′(x) + αI

and

(1.11) G(x) = x − Rα(x)
−1(F (xδ

n,α) − yδ + α(xδ
n,α − x0)).

Note that with the above notation xδ
n+1,α = G(xδ

n,α). The assumptions used
instead of Assumption 1 and Assumption 2 in [15] are, respectively, as:

Assumption 5. Let x0 ∈ D(F ) be fixed. There exists r > 0 such that
U0 := U(x0, r)∪U(x̂, r) ⊆ D(F ) and F is Fréchet differentiable for all x ∈ U0.

Assumption 6. There exists a constant k0 > 0 such that for every x, u ∈
∈ U(x0, r)∪U(x̂, r)) and v ∈ X there exists an element Φ(x, u, v) ∈ X satisfying
[F ′(x) − F ′(u)]v = F ′(u)Φ(x, u, v), ‖Φ(x, u, v)‖ ≤ k0‖v‖‖x − u‖.

The second condition in Assumption 6 is essentially a Lipschitz-type con-
dition. However, it is in general very difficult to verify or may not even be
satisfied [1]–[5].

In order for us to expand the applicability of the method, we consider the
following even weaker assumptions, respectively.
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Assumption 7. Let x0 ∈ D(F ) be fixed. There exists r > ‖x0 − G(x0)‖, if
x0 �= G(x0) such that U1 := U(x1, r − ‖x0 − G(x0)‖) ∪ U(x̂, r) ⊆ D(F ) and F
is Fréchet differentiable for all x ∈ U1.

Assumption 8. Let x0 ∈ X be fixed. There exists a constant L′ > 0 such that
for every x, u ∈ U1 ⊆ D(F ) and v ∈ X there exists an element Φ(x, u, v) ∈ X
satisfying [F ′(x) − F ′(u)]v = F ′(u)Φ(x, u, v), ‖Φ(x, u, v)‖ ≤ L′‖v‖(‖x − x0‖ +
+‖u − x0‖).
Remark 1.1. Note that in view of the estimate

‖x − u‖ ≤ ‖x − x0‖ + ‖x0 − u‖,
Assumption 6 implies Assumption 8 with k0 = L′ but not necessarily vice versa
(see [1–6]). Throughout this paper we assume that the operator F satisfies
Assumptions 7 and 8.

Moreover, we have that U1 ⊆ U0 ⊆ D(F ), so k0 ≤ K. Hence, the con-
vergence analysis of method (1.10) is improved. The advantages are obtained
under the same computational cost as in the preceding works, since in practice
the computation of constant K requires the computation of constants k0 and L′

as special cases. Examples, where k0 < K can also be found in [1, 2, 3, 4, 5, 6]
(see also Section 5).

Remark 1.2. If Assumptions 7 and 8 are fulfilled only for all x, u ∈ U(x1, r−
−‖x0 − G(x0)‖) ∩ Q �= ∅, where Q is a convex closed a priori set for which
x̂ ∈ Q, then we can modify the method (1.10) in the following way:

xδ
n+1,α = PQ(G(xδ

n,α))

to obtain the same estimates in this paper; here PQ is the metric projection
onto the set Q.

The plan of this paper is as follows. In Section 2, we prove the convergence
of the method and in Section 3, we give error bounds under source conditions.
Section 4 deals with the starting point and algorithm.

2. Convergence analysis

We use a majorizing sequence for proving our results. Recall (see [1], Def-
inition 1.3.11) that a nonnegative sequence {tn} is said to be a majorizing
sequence of a sequence {xn} in X if

‖xn+1 − xn‖ ≤ tn+1 − tn, ∀n ≥ 0.
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In the convergence analysis we will use the following Lemma on majoriza-
tion, which is a reformulation of Lemma 1.3.12 in [1].

Lemma 2.1. (cf.[14], Lemma 2.1.) Let {tn} be a majorizing sequence for {xn}
in X. If limn→∞ tn = t∗, then x∗ = limn→∞ xn exists and

(2.1) ‖x∗ − xn‖ ≤ t∗ − tn, ∀n ≥ 0.

We need an auxillary result on majorizing sequences for method (1.10).

Lemma 2.2. Suppose that there exist non-negative numbers L′, η such that

(2.2) 16L′η ≤ 1.

Let

(2.3) q =
1 − √

1 − 16L′η
2

.

Then, scalar sequence {tn} given by
(2.4)

t0 = 0, t1 = η, tn+1 = tn +
L′

2
(5tn + 3tn−1)(tn − tn−1) for each n = 1, 2, . . .

is well defined, nondecreasing, bounded from above by t∗∗ given by

(2.5) t∗∗ =
η

1 − q

and converges to its unique least upper bound t∗ which satisfies

(2.6) η ≤ t∗ ≤ t∗∗.

Moreover the following estimates hold for each n = 1, 2, . . . :

(2.7) tn+1 − tn ≤ q(tn − tn+1)

and

(2.8) t∗ − tn ≤ qn

1 − q
η.

Proof. Note that q ∈ (0, 1). We shall show using mathematical induction
that

(2.9)
L′

2
(5tm + 3tm−1) ≤ q.
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Estimate is true for m = 1 by the definition of sequence {tn} and (2.2). Then,

we have by (2.4) that t2 − t1 ≤ q(t1 − t0) and t2 ≤ η+ qη = (1+ q)η = 1−q2

1−q η <

< η
1−q = t∗∗. Let us assume (2.9) holds for all integers smaller or equal to m.

Hence, we get that

(2.10) tm+1 − tm ≤ q(tm − tm−1)

and

(2.11) tm+1 ≤ 1 − qm+1

1 − q
η.

We shall show that (2.9) holds for m replaced by m+1. Using (2.10) and (2.11),
estimates (2.9) shall be true if

(2.12)
L′

2
[5(

1 − qm

1 − q
) + 3(

1 − qm−1

1 − q
)]η ≤ q.

Estimate (2.12) motivates us to define recurrent functions fm on [0, 1) by

(2.13) fm(t) = L′[5(1 + t+ · · · + tm−1) + 3(1 + t+ · · · + tm−2)]η − 2t.

We need a relationship between two consecutive functions fm. Using (2.13) we
get that

(2.14) fm+1(t) = fm(t) + (5t+ 3)L′ηtm−1 ≥ fm(t).

Define function f∞ on [0, 1) by

(2.15) f∞(t) = lim
m→∞ fm(t).

Then, using (2.13) we get that

(2.16) f∞(t) =
8L′

1 − t
η − 2t.

Evidently, (2.12) is true if

(2.17) f∞(t) ≤ 0,

since

(2.18) fm(q) ≤ fm+1(q) ≤ · · · ≤ f∞(q).

But (2.17) is true by (2.12) and (2.13). The induction for (2.9) is complete.
Therefore, sequence {tn} is nondecreasing, bounded from above by t∗∗ and it
converges to some t∗ which satisfies (2.6). �
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Lemma 2.3. ([15], Lemma 2.3.) For u, v ∈ Br0(x0)

F (u) − F (v) − F ′(u)(u − v) = F ′(u)

1∫
0

Φ(v + t(u − v), u, u − v)dt.

Here, we assume that for r > 0, L′ > 0, for q given in (2.3) and :

(2.19)
δ

α
< η ≤ min{ 1

16L′ , r(1 − q)}

and ‖x̂ − x0‖ ≤ ρ, where

(2.20) ρ ≤ 1

L′ (
√
1 + 2L′(η − δ/α) − 1)

Remark 2.4. Note that (2.19) and (2.20) imply

(2.21)
L′

2
ρ2 + ρ+

δ

α
≤ η ≤ min{ 1

16L′ , r(1 − q)}.

Theorem 2.5. Suppose Assumption 8 holds. Let the assumptions in Lemma 2.2
are satisfied with η as in (2.21). Then the sequence {xδ

n,α} defined in (1.11)

is well defined and xδ
n,α ∈ U(x0, t

∗) for all n ≥ 0. Further {xδ
n,α} is a Cauchy

sequence in U(x0, t
∗) and hence converges to xδ

α ∈ U(x0, t∗) ⊂ U(x0, t
∗∗) and

F (xδ
α) = yδ + α(x0 − xδ

α).

Moreover, the following estimates hold for all n ≥ 0 :

(2.22) ‖xδ
n+1,α − xδ

n,α‖ ≤ tn+1 − tn,

(2.23) ‖xδ
n,α − xδ

α‖ ≤ t∗ − tn ≤ qnη

1 − q

and

(2.24) ‖xδ
n+1,α−xδ

n,α‖ ≤ L′

2

[
5‖xδ

n,α−xδ
0,α‖+3‖xδ

n−1,α−xδ
0,α‖

] ‖xδ
n,α−xδ

n−1,α‖.

Proof. First we shall prove that

(2.25) ‖xδ
n+1,α−xδ

n,α‖ ≤ L′

2
[5‖xδ

n,α−xδ
0,α‖+3‖xδ

n−1,α−xδ
0,α‖]‖xδ

n,α−xδ
n−1,α‖.
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With G as in (1.11), we have for u, v ∈ Bt∗(x0),

G(u) − G(v) = u − v − Rα(u)
−1[F (u) − yδ + α(u − x0)] +Rα(v)

−1 ×
×[F (v) − yδ + α(v − x0)] =

= u − v − [Rα(u)
−1 − Rα(v)

−1](F (v) − yδ + α(v − x0)) −
−Rα(u)

−1(F (u) − F (v) + α(u − v)) =

= Rα(u)
−1[F ′(u)(u − v) − (F (u) − F (v))] −

−Rα(u)
−1[F ′(v) − F ′(u)]Rα(v)

−1(F (v) − yδ + α(v − x0)) =

= Rα(u)
−1[F ′(u)(u − v) − (F (u) − F (v))] −

−Rα(u)
−1[F ′(v) − F ′(u)](v − G(v)) =

= Rα(u)
−1[F ′(u)(u − v) +

∫ 1

0

(F ′(u+ t(v − u))(v − u))dt] −

−Rα(u)
−1[F ′(v) − F ′(u)](v − G(v)) =

=

∫ 1

0

Rα(u)
−1[(F ′(u+ t(v − u)) − F ′(u))(v − u)dt] −

−Rα(u)
−1[F ′(v) − F ′(u)](v − G(v)).

The last step follows from the Lemma 2.1. Then, by Assumption 8 and the
estimate ‖Rα(u)

−1F ′(u)‖ ≤ 1, we have

‖G(u) − G(v)‖ ≤ L′
∫ 1

0

[‖u+ t(v − u) − x0‖ + ‖u − x0‖]dt‖v − u‖ +

+L′[‖v − x0‖ + ‖u − x0‖]‖v − u‖ ≤
≤ L′

2
[3‖u − x0‖ + ‖v − x0‖] + L′[‖v − x0‖ + ‖u − x0‖] ≤

≤ L′

2
[5‖u − x0‖ + 3‖v − x0‖]‖v − G(u)‖.(2.26)

Now by taking u = xδ
n,α and v = xδ

n−1,α in (2.26), we obtain (2.25).

Next we shall prove that the sequence (tn) defined in Lemma 2.1 is a ma-
jorizing sequence of the sequence (xδ

n,α). Note that F (x̂) = y, so by Lemma 2.2,

‖xδ
1,α − x0‖ = ‖Rα(x0)

−1(F (x0) − yδ)‖ =

= ‖Rα(x0)
−1(F (x0) − y + y − yδ)‖ =

= ‖Rα(x0)
−1(F (x0) − F (x̂) − F ′(x0)(x0 − x̂) +

+F ′(x0)(x0 − x̂) + y − yδ)‖ ≤
≤ ‖Rα(x0)

−1(F (x0) − F (x̂) − F ′(x0)(x0 − x̂))‖ +

+‖Rα(x0)
−1F ′(x0)(x0 − x̂)‖ + ‖Rα(x0)

−1(y − yδ)‖ ≤
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≤ ‖Rα(x0)
−1F ′(x0)

∫ 1

0

Φ(x̂+ t(x0 − x̂), x0, (x0 − x̂))dt‖ +

+‖Rα(x0)
−1F ′(x0))(x0 − x̂)‖ +

δ

α
≤

≤ L′

2
‖x0 − x̂‖2 + ‖x0 − x̂‖ +

δ

α
≤

≤ L′

2
ρ2 + ρ+

δ

α
≤

≤ η = t1 − t0.

Assume that ‖xδ
i+1,α − xδ

i,α‖ ≤ ti+1 − ti for all i ≤ k for some k. Then

‖xδ
k+1,α − x0‖ ≤ ‖xδ

k+1,α − xδ
k,α‖ + ‖xδ

k,α − xδ
k−1,α‖ + · · · + ‖xδ

1,α − x0‖ ≤
≤ tk+1 − tk + tk − tk−1 + · · · + t1 − t0 =

= tk+1 ≤ t∗.

So, xδ
i+1,α ∈ Bt∗(x0) for all i ≤ k, and hence, by (2.25),

‖xδ
k+2,α − xδ

k+1,α‖ ≤ L′

2

[
5‖xδ

n,α − xδ
0,α‖ +

+3‖xδ
n−1,α − xδ

0,α‖
]
‖xδ

n,α − xδ
n−1,α‖ ≤

≤ L′

2
(5tk+1 + 3tk−1) = tk+2 − tk+1.

Thus by induction ‖xδ
n+1,α − xδ

n,α‖ ≤ tn+1 − tn for all n ≥ 0 and hence

{tn}, n ≥ 0 is a majorizing sequence of the sequence {xδ
n,α}. In particular

‖xδ
n,α − x0‖ ≤ tn ≤ t∗, i.e., xδ

n,α ∈ U(x0, t
∗), for all n ≥ 0. So, {xδ

n,α}, n ≥ 0 is

a Cauchy sequence and converges to some xδ
α ∈ U(x0, t∗) ⊂ U(x0, t

∗∗) and by
Lemma 2.3

‖xδ
α − xδ

n,α‖ ≤ t∗ − tn ≤ qnη

1 − q
.

To prove (2.24), we observe that G(xδ
α) = xδ

α, so (2.24) follows from (2.26),
by taking u = xδ

n,α and v = xδ
α in (2.26). Now by letting n → ∞ in (1.10) we

obtain F (xδ
α) = yδ + α(x0 − xδ

α). �

Remark 2.6. The convergence order of the method is two [15], under As-
sumption 6. In Theorem 2.5 the error bounds are too pessimistic. That is why
in practice we shall use the computational order of convergence (COC) (see eg.
[4]) defined by

� ≈ ln

(‖xn+1 − xδ
α‖

‖xn − xδ
α‖

)
/ ln

( ‖xn − xδ
α‖

‖xn−1 − xδ
α‖

)
.
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The (COC) � will then be close to 2 which is the order of convergence of the
method.

3. Error bounds under source conditions

The objective of this section is to obtain an error estimate for ‖xδ
n,α − x̂‖

under

Assumption 9. There exists a continuous, strictly increasing function
ϕ : (0, a] → (0,∞) with a ≥ ‖F ′(x0)‖ satisfying;

(i) limλ→0ϕ(λ) = 0,

(ii) supλ≥0
αϕ(λ)
λ+α ≤ ϕ(α) ∀λ ∈ (0, a] and

(iii) there exists v ∈ X with ‖v‖ ≤ 1 (cf. [18]) such that

x0 − x̂ = ϕ(F ′(x0))v.

Proposition 3.1. Let F : D(F ) ⊆ X → X be a monotone operator in X. Let
xδ
α be the solution of (1.5) and xα := x0

α. Then

‖xδ
α − xα‖ ≤ δ

α
.

Proof. The result follows from the monotonicity of F and the relation

F (xδ
α)−F (xα)+α(xδ

α−xα) = yδ −y. �

Theorem 3.2. (cf. [20], Proposition 4.1 or [21], Theorem 3.3.) Suppose that
Assumption 7, 8 and hypotheses of Proposition 3.1 hold. Let x̂ ∈ D(F ) be a
solution of (1.1). Then, the following assertion holds

‖xα − x̂‖ ≤ (L′r + 1)ϕ(α).

Theorem 3.3. Suppose hypotheses of Theorem 2.5 and Theorem 3.2 hold.
Then, the following assertion holds

‖xδ
n,α − x̂‖ ≤ qnη

1 − q
+ c1

(
ϕ(α) +

δ

α

)
where c1 = max{1, (L′

0r + 1)}.
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Let

(3.1) c̄ := max{ η

1 − q
+ 1, (L′

0r + 2)},

and let

(3.2) nδ := min{n : qn ≤ δ

α
}.

Theorem 3.4. Let c̄ and nδ be as in (3.1) and (3.2) respectively. Suppose that
hypotheses of Theorem 3.3 hold. Then, the following assertion holds

(3.3) ‖xδ
nδ,α

− x̂‖ ≤ c̄
(
ϕ(α) +

δ

α

)
.

Note that the error estimate ϕ(α)+ δ
α in (2.21) is of optimal order if α := αδ

satisfies ϕ(αδ)αδ = δ.

Now using the function ψ(λ) := λϕ−1(λ), 0 < λ ≤ a we have δ = αδϕ(αδ) =
= ψ(ϕ(αδ)), so that αδ = ϕ−1(ψ−1(δ)). In view of the above observations and
(2.21) we have the following.

Theorem 3.5. Let ψ(λ) := λϕ−1(λ) for 0 < λ ≤ a, and the assumptions in
Theorem 3.4 hold. For δ > 0, let α := αδ = ϕ−1(ψ−1(δ)) and let nδ be as in
(3.2). Then

‖xδ
nδ,α

− x̂‖ = O
(
ψ−1(δ)

)
.

In this section, we present a parameter choice rule based on the balancing
principle studied in [17], [19], [13]. In this method, the regularization parameter
α is selected from some finite set

DM (α) := {αi = μiα0, i = 0, 1, . . . ,M}
where μ > 1, α0 > 0 and let

ni := min
{
n : e−γ0n ≤ δ

αi

}
.

Then for i = 0, 1, · · · ,M, we have

‖xδ
ni,αi

− xδ
αi

‖ ≤ c
δ

αi
, ∀i = 0, 1, . . .M.

Let xi := xδ
ni,αi

. The parameter choice strategy that we are going to con-
sider in this paper, we select α = αi from DM (α) and operate only with cor-
responding xi, i = 0, 1, · · · ,M. Proof of the following theorem is analogous
to the proof of Theorem 3.1 in [20].
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Theorem 3.6. (cf. [20], Theorem 3.1.) Assume that there exists i ∈ {0, 1, 2,
. . . ,M} such that ϕ(αi) ≤ δ

αi
. Suppose the hypotheses of Theorem 3.3 and

Theorem 3.4 hold and let

l := max{i : ϕ(αi) ≤ δ

αi
} < M,

s := max{i : ‖xi − xj‖ ≤ 4c̄
δ

αj
, j = 0, 1, 2, . . . , i − 1}.

Then l ≤ s and
‖x̂ − xs‖ ≤ cψ−1(δ)

where c = 6c̄μ.

4. Implementation of adaptive choice rule

The main goal of this section is to provide a starting point for the iteration
approximating the unique solution xδ

α of (1.5) and then to provide an algorithm
for the determination of a parameter fulfilling the balancing principle. The
choice of the starting point involves the following steps:

• For q = 1−√
1−16L′η
2 choose 0 < α0 < 1 and μ > 1.

• Choose η such that η satisfies (2.2).

• Choose ρ such that ρ satisfies (2.20).

• Choose x0 ∈ D(F ) such that ‖x0 − x̂‖ ≤ ρ.

• Choose the parameter αM = μMα0 big enough with μ > 1, not too large.

• Choose ni such that ni = min{n : qn ≤ δ
αi

}.
Finally the adaptive algorithm associated with the choice of the parameter

specified in Theorem 3.6 involves the following steps:

4.1. Algorithm

• Set i ← 0.

• Solve xi := xδ
ni,αi

by using the iteration (1.10).

• If ‖xi − xj‖ > 4c
√
δ

μj , j ≤ i, then take s = i − 1.

• Set i = i+ 1 and return to second step.
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5. Numerical example

We present a numerical example where Assumption 2 or Assumption 6 is
not satisfied but our new Assumption 8 does. The example is presented in the
more general setting of a Banach space.

Example 5.1. We consider the integral equation

(5.1) u(s) = f(s) + τ

∫ b

a

G(s, t)u(t)1+1/ndt, n ∈ N.

Here, f is a given continuous function satifying f(s) > 0, s ∈ [a, b], τ is a real
number, and the kernel G is continuous and positive in [a, b] × [a, b].

For example, when G(s, t) is the Green kernel, the corresponding integral
equation is equivalent to the boundary value problem

u′′ = τu1+1/n,(5.2)

u(a) = f(a), u(b) = f(b).(5.3)

These types of problems have been considered in [1, 2, 3, 4, 5].

Equation of the form (5.1) generalizes equations of the form

(5.4) u(s) =

∫ b

a

G(s, t)u(t)ndt

studied in [1, 2, 3, 4, 5]. Instead of (5.1) we can try to solve the equation
F (u) = 0 where

F : Ω ⊆ C[a, b] → C[a, b],Ω = {u ∈ C[a, b] : u(s) ≥ 0, s ∈ [a, b]},
and

F (u)(s) = u(s) − f(s) − τ

∫ b

a

G(s, t)u(t)1+1/ndt.

The norm we consider is the max-norm.

The derivative F ′ is given by

F ′(u)v(s) = v(s) − τ(1 +
1

n
)

∫ b

a

G(s, t)u(t)1/nv(t)dt, v ∈ Ω.

First of all, we notice that F ′ does not satisfy a Lipschitz-type condition in
Ω. Let us consider, for instance, [a, b] = [0, 1], G(s, t) = 1 and y(t) = 0. Then
F ′(y)v(s) = v(s) and

‖F ′(x) − F ′(y)‖ = |τ | (1 + 1

n

) ∫ b

a

x(t)1/ndt.
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If F ′ were a Lipschitz function, then

‖F ′(x) − F ′(y)‖ ≤ L2‖x − y‖,
or, equivalently, the inequality

(5.5)

∫ 1

0

x(t)1/ndt ≤ L3 max
x∈[0,1]

x(s),

would hold for all x ∈ Ω and for a constant L3. But this is not true. Consider,
for example, the functions

xj(t) =
t

j
, j ≥ 1, t ∈ [0, 1].

If these are substituted into (5.5)

1

j1/n(1 + 1/n)
≤ L3

j
⇐⇒ j1−1/n ≤ L3(1 + 1/n), ∀j ≥ 1.

This inequality is not true when j → ∞. Therefore, Assumption 6 or the Lip-
schitz condition on page 2 used in [8] are not satisfied. However, Assumption 8
holds. To show this, let x0(t) = f(t) and γ = mins∈[a,b] f(s), α > 0 Then for
v ∈ Ω,∥∥[F ′(x) − F ′(x0)

]
v
∥∥ = |τ |

(
1 +

1

n

)
×

× max
s∈[a,b]

∣∣∣∫ b

a

G(s, t)
(
x(t)1/n − f(t)1/n

)
v(t)dt

∣∣∣ ≤

≤ |τ |
(
1 +

1

n

)
max
s∈[a,b]

Gn(s, t),

where Gn(s, t) =
G(s, t)|x(t) − f(t)|

x(t)(n−1)/n + x(t)(n−2)/nf(t)1/n + · · · + f(t)(n−1)/n
‖v‖.

Hence, we get that∥∥[F ′(x) − F ′(x0)
]
v
∥∥ =

|τ |(1 + 1/n)

γ(n−1)/n
max
s∈[a,b]

∫ b

a

G(s, t)dt ‖x − x0‖ ≤
≤ L0‖x − x0‖,

where L′ = |τ |(1+1/n)
γ(n−1)/n N with N = maxs∈[a,b]

∫ b

a
G(s, t)dt. Then, by the follow-

ing inequality∥∥[F ′(x) − F ′(u)
]
v
∥∥ ≤ ∥∥[F ′(x) − F ′(x0

]
v
∥∥+

∥∥[F ′(x0) − F ′(u)
]
v
∥∥ ≤

≤ L′‖v‖ (‖x − x0‖ + ‖u − x0‖
)
,

Assumption 8 holds for sufficiently small λ.
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