
Annales Univ. Sci. Budapest., Sect. Comp. 46 (2017) 341–353

BALL CONVERGENCE OF AN EFFICIENT

FIFTH ORDER ITERATIVE METHOD

UNDER WEAK CONDITIONS

Ioannis K. Argyros (Lawton, USA)

P. K. Parida (Ranchi, India)

Salahuddin (Jazan, Saudi Arabia)

Communicated by Ferenc Schipp

(Received July 25, 2017; accepted August 12, 2017)

Abstract. The aim of this paper is to expand the applicability of a
fast iterative method in a Banach space setting. Moreover, we provide
computable radius of convergence, error bounds on the distances involved
and a proof of uniqueness of solution based on Lipschitz-type functions
not given before. Furthermore, we avoid hypotheses on high order deriva-
tives which limit the applicability of the method. Instead, we only use
hypotheses on the first derivative. The convergence order is determined
using the computational order of convergence or the approximate order of
convergence.

1. Introduction

Let F : D ⊆ B1 → B2 be a continuously Fréchet-differentiable operator
between the Banach spaces B1 and B2 and D be a convex set. Let B(x, h) =
= {y ∈ B1 : ‖x − y‖ < h} for h > 0. Denote by B(x, h) the closure of B(x, h).
Let also L(B1,B2) stand for the set of bounded linear operators from B1 to B2.

Key words and phrases: Newton-type method, radius of convergence, local convergence,
computable radius of convergence.
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In this study, we consider the problem of approximating a solution x∗ of
nonlinear equation

(1.1) F (x) = 0,

We can recall that in [16] the authors Sharma and Gupta introduced the fol-
lowing method to increasing the order of convergence of iterative methods and
given by⎧⎪⎪⎨⎪⎪⎩

yn = xn − F
′
(xn)

−1F (xn),
zn = xn + 1

2 (yn − xn),

un = xn − F
′
(zn)

−1F (xn)

xn+1 = un − [2F
′
(zn)

−1 − F
′
(xn)

−1]F (un), if n = 0, 1, 2, . . . .

(1.2)

where x0 ∈ D is an initial point. They considered the above method for solving
system of equations, when B1 = B2 = Ri (i a natural number). Using Taylor
expansion and the assumptions on derivatives of order up to four on F , they
proved the order of convergence of the method (1.2) is five. But one can
clearly see that the assumptions on the higher order Fréchet derivatives of the
operator F restricts the applicability of method (1.2). For example consider
the following:

Example 1.1. Let B1 = B2 = C[0, 1],D = B(x∗, 1) and consider the integral
equation of the mixed Hammerstein-type ([1, 2, 6, 7, 8, 9, 12]) defined by

x(s) =

1∫
0

G(s, t)
(
x(t)3/2 + x(t)2/2

)
dt,

where the kernel G is the Green’s function defined on the interval [0, 1]× [0, 1]
by

G(s, t) =

{
(1 − s)t, t ≤ s,

s(1 − t), s ≤ t.

The solution x∗(s) = 0 is the same as the solution of equation (1.1), where F
is defined by

F (x)(s) = x(s) −
1∫

0

G(s, t)
(
x(t)3/2 + x(t)2/2

)
dt,

Then, we have that

F
′
(x)y(s) = y(s) −

1∫
0

G(s, t)

(
3

2
x(t)1/2 + x(t)

)
dt,
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One can see that, higher order derivatives of F at x∗(s) do not exist in this

example. Since F
′
(x∗(s)) = I and

∥∥∥ 1∫
0

G(s, t)dt
∥∥∥ ≤ 1

8 , we have

‖F ′
(x∗)−1(F

′
(x) − F

′
(y))‖ <

1

8

(
3

2
‖x − y‖1/2 + ‖x − y‖

)
.

Our goal is to weaken the assumptions in [8] and apply the method for
solving equation (1.1) in Banach spaces, so that the applicability of the method
(1.2) can be extended. The study of the local convergence is important because
it shows the degree of difficulty for choosing initial points. Notice that in the
studies using Taylor expansions and high order derivatives the choice of the
initial point is a shot in the dark. The technique introduced in this paper can
be used on other iterative methods ([1]–[17]).

The rest of the paper is structured as follows. In Section 2, we present
the local convergence analysis. We also provide a radius of convergence, com-
putable error bounds and a uniqueness result. Special cases and numerical
examples are given in the concluding Section 3.

2. Local convergence analysis

We shall base the local convergence that follows on some scalar functions
and parameters. Let w0 : [0,+∞) → [0,+∞) be a continuous and nondecreas-
ing function with w0(0) = 0. Suppose that equation

(2.1) w0(t) = 1

has zeros in (0,+∞). Denote by ρ0 the smallest such zero. Let w : [0, ρ0) →
→ [0,+∞) be a continuous and nondecreasing function with w(0) = 0. Define
functions g1, h1, g2 and h2 on [0, ρ0) by

g1(t) =

1∫
0

w
(
(1 − θ)t

)
dθ

1 − w0(t)
,

h1(t) = g1(t) − 1,

g2(t) =
1

2

(
1 +

1∫
0

w
(
(1 − θ)t

)
dθ

1 − w0(t)

)
,
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and
h2(t) = g2(t) − 1.

We have that h1(0) = −1 < 0, h2(0) = −1/2 < 0, h1(t) → +∞ and
h2(t) → +∞ as t → ρ−0 . It then follows from the intermediate value theorem
that functions h1 and h2 have zeros in (0, ρ0). Denote by r1 and r2 the smallest
such zeros, respectively.

Suppose that equation

(2.2) w0

(
g2(t)t

)
= 1

has zeros in (0, r2). Denote by ρ2 the smallest such zero. Let v : [0, ρ2) →
→ [0,+∞) be a continuous and nondecreasing function. Define functions g3
and h3 on the interval [0, ρ2) by

g3(t) = g1(t) +

(
w0

(
g2(t)t

)
+ w0(t)

) 1∫
0

v(θt)dθ(
1 − w0(t)

)(
1 − w0

(
g2(t)t

))
and h3(t) = g3(t) − 1. We get h3(0) = −1 < 0 and h3(t) → +∞ as t → ρ−2 .
Denote by r3 the smallest zero of function h3 on (0, ρ2).

Suppose that equation

(2.3) w0

(
g3(t)t

)
= 1

has zeros in (0, r3). Denote by ρ3 the smallest such zero. Define functions g4
and h4 on [0, ρ) by

g4(t) =

1∫
0

w
(
(1 − θ)g3(t)t

)
g3(t)

1 − w0

(
g3(t)t

) +

(
w0(t) + w0

(
g2(t)t

)) 1∫
0

v
(
θg3(t)t

)
dθg3(t)(

1 − w0(g2(t)t)
)(
1 − w0(t)

) +

+

(
w0

(
g2(t)t

)
+ w0

(
g3(t)t

)) 1∫
0

v
(
θg3(t)t

)
dθg3(t)(

1 − w0

(
g2(t)t

))(
1 − w0

(
g3(t)t

))
and h4(t) = g4(t) − 1, where ρ = min{ρ2, ρ3}. We obtain h4(0) = −1 < 0 and
h4(t) → +∞ as t → ρ. Denote by r4 the smallest zero of function h4 on (0, ρ).
Define the radius of convergence r by

(2.4) r = min{ri}, i = 1, 2, 3, 4.

Then, we have that for each t ∈ [0, r)

0 ≤ gi(t) < 1,(2.5)

0 ≤ w0(t) < 1, 0 ≤ w0

(
g2(t)t

)
< 1(2.6)
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and

(2.7) 0 ≤ w0

(
g3(t)t

)
< 1.

Next, we provide the local convergence analysis of method (1.2) based on
the following set of conditions which is known as condition (A):

(a1) F : D ⊆ B1 → B2 is a continuously Fréchet-differentiable operator.

(a2) There exists x∗ such that F (x∗) = 0 and F
′
(x∗)−1 ∈ L(B2,B1).

(a3) ‖F ′
(x∗)−1

(
F

′
(x) − F

′
(x∗)

)‖ ≤ w0

(‖x − x∗‖) for each x ∈ D, where w0

and ρ0 are given previously. Set D0 = D
⋂
B(x∗, ρ0).

(a4) ‖F ′
(x∗)−1

(
F

′
(x)− F

′
(y)

)‖ ≤ w
(‖x− y‖) for each x, y ∈ D0, where w is

given previously.

(a5) ‖F ′
(x∗)−1F

′
(x)

)‖ ≤ v
(‖x − x∗‖) for each x ∈ D0, where v is given

previously.

(a6) B(x∗, r) ⊆ D, where r is defined by Eq. (2.4).

Theorem 2.1. Suppose that the conditions (A) hold. Then, sequence {xn}
generated for x0 ∈ B(x∗, r) − {x∗} by method (1.2) is well defined in B(x∗, r)
for each n = 0, 1, 2, . . . , remains in B(x∗, r) and converges to x∗. Moreover,
the following error bounds hold

‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < r,(2.8)

‖zn − x∗‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖,(2.9)

‖un − x∗‖ ≤ g3(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖(2.10)

and

(2.11) ‖xn+1 − x∗‖ ≤ g4(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖

where the functions gi = 1, 2, 3, 4 are defined previously. Furthermore, if there
exists R ≥ r, such that

(2.12)

1∫
0

w0(θR)dθ < 1,

then the point x∗ is the only solution of equation F (x) = 0 in D1 = D
⋂

B(x∗, R).
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Proof. We shall show using mathematical induction that sequence {xk} con-
verges to {x∗} so that estimates (2.8) − (2.11) hold. By hypothesis
x0 ∈ B(x∗, r) − {x∗}, (2.4), (2.5), (a2) and (a3), we have that

(2.13) ‖F ′
(x∗)−1

(
F

′
(x0) − F

′
(x∗)

)‖ ≤ w0

(‖x0 − x∗‖) ≤ w0(r) < 1.

It follows from (2.13) and the Banach Lemma on invertible operators [2, 6, 12,
15] that F

′
(x0)

−1 ∈ L(B2,B1) and

(2.14) ‖F ′
(x0)

−1F
′
(x∗)‖ ≤ 1

1 − w0(‖x0 − x∗‖) .

We also have that y0 and z0 are well defined by the first and second sub step
of method (1.2). Using the first sub step of method (1.2) for n = 0 and (a2),
we can write

(2.15) y0 − x∗ = x0 − x∗ − F (x0)
−1F (x0).

Then, by (2.4), (2.5) (for i = 1),(a4), (2.14) and (2.15), we get in turn that

‖y0 − x∗‖ ≤ ‖F ′
(x0)

−1F
′
(x∗)‖

∥∥∥∥∥
1∫

0

F
′
(x∗)−1

(
F

′(
x∗ + θ(x0 − x∗)

) −

−F
′
(x0)

)
(x0 − x∗)dθ

∥∥∥∥∥ ≤

≤

1∫
0

w
(
(1 − θ)‖x0 − x∗‖)‖x0 − x∗‖dθ

1 − w0(‖x0 − x∗‖) =

= g1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r,(2.16)

which shows (2.8) for n = 0 and y0 ∈ B(x∗, r). By (2.4), (2.5) (for i = 2) and
(2.16), we have in turn that

‖z0 − x∗‖ ≤
∥∥∥∥12(y0 − x∗) +

1

2
(x0 − x∗)

∥∥∥∥ ≤

≤ 1

2

(
1 + g1(‖x0 − x∗‖))‖x0 − x∗‖ =

= g2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r,(2.17)

which shows (2.9) for n = 0 and z0 ∈ B(x∗, r). In view of (2.6), (2.13), (2.14)
(for z0 = x0), we get that F

′
(z0)

−1 ∈ L(B2,B1) and

‖F ′
(z0)

−1F
′
(x∗)‖ ≤ 1

1 − w0(‖z0 − x∗‖) ≤

≤ 1

1 − w0

(
g2(‖x0 − x∗‖)‖x0 − x∗‖ .(2.18)
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We also have that u0 and x1 are well defined by the third and fourth sub step
of method (1.2) for n = 0. We can also write by the third sub step of method
(1.2) for n = 0.

u0 − x∗ = x0 − x∗ − F
′
(x0)

−1F (x0) +
(
F

′
(x0)

−1 − F
′
(z0)

−1
)
F (x0) =

= y0 − x∗ + F
′
(x0)

−1
(
F

′
(z0)

−1 − F
′
(x0)

−1
)
F

′
(z0)

−1F (x0).(2.19)

Moreover, we can write

(2.20) F (x0) = F (x0) − F (x∗) =

1∫
0

F
′(
x∗ + θ(x0 − x∗)

)
dθ(x0 − x∗),

so by (a5) and (2.20), we get

(2.21) ‖F ′
(x∗)−1F (x0)‖ ≤

1∫
0

v
(
θ‖x0 − x∗‖)dθ‖x0 − x∗‖.

Using (2.4), (2.5) (for i = 3), (2.14), (2.16), (2.17), (2.18) and (2.21), we obtain
in turn that

‖u0 − x∗‖ ≤ g1(‖x0 − x∗‖)‖x0 − x∗‖ +

+‖F ′
(x0)

−1F
′
(x∗)‖

(
‖F ′

(x∗)−1
(
F

′
(z0) − F

′
(x∗)

)‖ +

+‖F ′
(x∗)−1

(
F

′
(x0) − F

′
(x∗)

)‖) ×
×‖F ′

(z0)
−1F

′
(x∗)‖‖F ′

(x∗)−1F (x0)‖ ≤

≤
[(

w0

(
g2(‖x0 − x∗‖)‖x0 − x∗‖)+ w0(‖x0 − x∗‖)

)
(
1 − w0(‖x0 − x∗‖)) ×

×

1∫
0

v(θ‖x0 − x∗‖)dθ(
1 − w0

(
g2(‖x0 − x∗‖)‖x0 − x∗‖)) +

+g1(‖x0 − x∗‖)
]
‖x0 − x∗‖ =

= g3(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r,(2.22)

which shows (2.10) for n = 0 and u0 ∈ B(x∗, r). Furthermore, from (2.4), (2.5)
(for i = 4), (2.14) (for u0 = x0), (2.16), (2.18) and (2.22) and the last sub step
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of method (1.2) for n = 0, we get in turn that

‖x1 − x∗‖ = ‖u0 − x∗ − F
′
(u0)

−1F (u0) +
(
F

′
(z0)

−1 − F
′
(x0)

−1
)
F (u0) +

+
(
F

′
(z0)

−1 − F
′
(u0)

−1
)
F (u0)‖ ≤

≤ ‖u0 − x∗ − F
′
(u0)

−1F (u0)‖ + ‖F ′
(z0)

−1F
′
(x∗)‖ ×

×
(
‖F ′

(x∗)−1
(
F

′
(x0) − F

′
(x∗)

)‖ +

+‖F ′
(x∗)−1

(
F

′
(z0) − F

′
(x∗)

)‖)‖F ′
(x0)

−1F
′
(x∗)‖ ×

×‖F ′
(x∗)−1F (u0)‖ +

+‖F ′
(z0)

−1F
′
(x∗)‖

(
‖F ′

(x∗)−1
(
F

′
(z0) − F

′
(x∗)‖ +

+‖F ′
(x∗)−1

(
F

′
(u0) − F

′
(x∗)

)‖)‖F ′
(u0)

−1F
′
(x∗)‖ ×

×‖F ′
(x∗)−1F (u0)‖ ≤

≤

1∫
0

w
(
(1 − θ)‖u0 − x∗‖)‖u0 − x∗‖dθ

1 − w0(‖u0 − x∗‖) +

+

(
w0(‖x0 − x∗‖) + w0

(
g2(‖x0 − x∗‖)‖x0 − x∗‖))(

1 − w0

(
g2(‖x0 − x∗‖)‖x0 − x∗‖))(1 − w0(‖x0 − x∗‖)) ×

×
1∫

0

v(θ‖u0 − x∗‖)dθ‖u0 − x∗‖ +

+
(
w0

(
g2(‖x0 − x∗‖)‖x0 − x∗‖) +

+w0

(
g3(‖x0 − x∗‖)‖x0 − x∗‖)

)
×

× 1(
1 − w0

(
g2(‖x0 − x∗‖)‖x0 − x∗‖)) ×

× 1(
1 − w0

(
g3(‖x0 − x∗‖)‖x0 − x∗‖)) ×

×
1∫

0

v(θ‖u0 − x∗‖)dθ‖u0 − x∗‖ ≤

≤ g4(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r,

which shows (2.11) for n = 0 and x1 ∈ B(x∗, r). The induction for (2.8)−(2.11)
is completed by simply replacing x0, y0, z0, u0 and x1 by xk, yk, zk, uk and xk+1



Ball convergence of a fifth order method 349

in the preceding estimates, respectively. Then, from the estimate

(2.23) ‖xk+1 − x∗‖ ≤ c‖xk − x∗‖ < r,

where c = g4(‖x0 − x∗‖) ∈ [0, 1), we deduce that lim
k→+∞

xk = x∗ and xk+1 ∈

∈ B(x∗, r). Finally, let y∗ ∈ D1 with F (y∗) = 0 and define Q =
1∫
0

F
′(
x∗ +

+θ(y∗ − x∗)
)
dθ. Using (a3) and (2.12), we get that

(2.24) ‖F ′
(x∗)−1

(
Q − F

′
(x∗)

)‖ ≤
1∫

0

w0

(
θ‖y∗ − x∗‖)dθ ≤

1∫
0

w0(θR)dθ < 1,

so, Q−1 ∈ L(B2,B1). Then, from the identity

(2.25) Q(y∗ − x∗) = F (y∗) − F (x∗) = 0,

we conclude that x∗ = y∗. �

Remark 2.1. (a) In the case when w0(t) = L0t, w(t) = Lt and D0 = D,
the radius rA = 2

2L0+L was obtained by Argyros in [2] as the convergence
radius for Newton’s method under condition (a1)-(a4) and (a6). Notice that
the convergence radius for Newton’s method given independently by Rheinboldt
[15] and Traub [17] is given by

rTR =
2

3L
< rA(2.26)

As an example, let us consider the function F (x) = ex − 1. Then x∗ = 0. Set
D = B(0, 1). Then, we have that L0 = e − 1 < L = e, so rTR = 0.24252961 <
< rA = 0.324947231.

Moreover, the new error bounds [2] are

‖xn+1 − x∗‖ ≤ L

1 − L0‖xn − x∗‖‖xn − x∗‖2,

whereas the old ones [5, 7]

‖xn+1 − x∗‖ ≤ L

1 − L‖xn − x∗‖‖xn − x∗‖2.

Clearly, the new error bounds are more precise, if L0 < L. Clearly, the radius
of convergence of method (1.2) given by r cannot be larger than rA.

(b) The local results can be used for projection methods such as Arnoldi’s
method, the generalized minimum residual method(GMREM), the generalized



350 I. K. Argyros, P. K. Parida and Salahuddin

conjugate method(GCM) for combined Newton/finite projection methods and
in connection to the mesh independence principle in order to develop the cheap-
est and most efficient mesh refinement strategy [2]–[6].

(c) The results can be also used to solve equations where the operator F
′

satisfies the autonomous differential equation [2]–[6]:

F
′
(x) = P

(
F (x)

)
,

where P : B2 → B2 is a known continuous operator. Since F
′
(x∗) = P

(
F (x∗)

)
=

= P (0), we can apply the results without actually knowing the solution x∗. As
an example let F (x) = ex − 1. Then, we can choose P (x) = x+ 1 and x∗ = 0.

(d) It is worth noticing that method (1.2) is not changing if we use the new
instead of the old conditions [16]. Moreover, for the error bounds in practice
we can use the computational order of convergence (COC)

ξ =
ln ‖xn+2−x∗‖

‖xn+1−x∗‖
ln ‖xn+1−x∗‖

‖xn−x∗‖
, for each n = 1, 2, . . .

or the approximate computational order of convergence (ACOC)

ξ∗ =
ln ‖xn+2−xn+1‖

‖xn+1−xn‖
ln ‖xn+1−xn‖

‖xn−xn−1‖
, for each n = 0, 1, 2, . . .

(e) In view of (a3) and the estimate

‖F ′
(x∗)−1F

′
(x)‖ = ‖F ′

(x∗)−1
(
F

′
(x) − F

′
(x∗)

)
+ I‖

≤ 1 + ‖F ′
(x∗)−1

(
F

′
(x) − F

′
(x∗)

)‖ ≤ 1 + w0(‖x − x∗‖)
condition (a5) can be dropped and can be replaced by

v(t) = 1 + w0(t)

or
v(t) = 1 + w0(ρ0),

since t ∈ [0, ρ0).

3. Numerical examples

We present two numerical examples in this section.
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Example 3.1. Let B1 = B2 = R3, D = U(0, 1), s∗ = (0, 0, 0)T . Define function
F on D for s = (s1, s2, s3)

T by

F (s) =
(
es1 − 1,

e − 1

2
s22 + s2, s3

)T

.

Then, the Fréchet-derivative is given by

F
′
(s) =

⎡⎣es1 0 0
0 (e − 1)s2 + 1 0
0 0 1

⎤⎦ .

Then, we can choose w0(t) = L0t, w(t) = e
1

L0 t, v(t) = e
1

L0 , L0 = e − 1. Then,
r1 = 0.3827, r2 = 0.3827, r3 = 0.1234, r4 = 0.1029 and hence r = 0.1029 is
concluded from (2.4). Also we can check that conditions given in (2.5)-(2.7)
are satisfied. Hence the radius of convergence r is given by r = 0.1029.

Example 3.2. Again coming back to the motivational Example 1.1, we can
choose (see also Remark 2.1(e) for function v) w0(t) = w(t) = 1

8

(
3
2

√
t+ t

)
and

v(t) = 1 + w0(r0), r0 � 4.7354. Then, r1 = 2.6303, r2 = 2.6303, r3 = 0.4491,
r4 = 0.3152 and hence r = 0.3152 is concluded from (2.4). Also we can
check that conditions given in (2.5)–(2.7) are satisfied. Hence the radius of
convergence r is given by r = 0.3152.

4. Conclusions

In this paper we have studied the local convergence of an efficient fifth order
method by assuming only conditions on the first derivative of the operator. We
also provided computable radius of convergence, error bounds on the distances
involved and a uniqueness of the solution result based on Lipschitz-type func-
tions not given before. Numerical examples are computed to give computable
radius of convergence.
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[11] Grau-Sánchez, M., À. Grau and M. Noguera, On the computa-
tional efficiency index and some iterative methods for solving systems of
nonlinear equations, J. Comput. Appl. Math., 236 (2011), 1259–1266.

[12] Gutiérrez, J. M. and M. A. Hernández, Newton’s method under
weak Kantorovich conditions, IMA J. Numer. Anal., 20 (2000), 521–532.
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