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Abstract. We prove the Segre’s upper bound for the regularity index of
2n+2 non-degenerate double points that do not exist n+1 points lying on
a (n− 2)-plane in Pn.

1. Introduction

Let P1, ..., Ps be a set of distinct points in a projective space with n-
dimension Pn := Pn

k , with k as an algebraically closed field. Let ℘1, ..., ℘s

be the homogeneous prime ideals of the polynomial ring R := k[x0, ..., xn]
corresponding to the points P1, ..., Ps. Let m1, ...,ms be positive integers and
I = ℘m1

1 ∩ · · · ∩ ℘m1
1 . Denote Z = m1P1 + · · · +msPs the zero-scheme defined

by I, and we call Z a set of s fat points in Pn.

The homogeneous coordinate ring of Z is

A = R/(℘m1
1 ∩ · · · ∩ ℘ms

s ).

The ring A = ⊕t≥0At is a one-dimension Cohen-Macaulay k-graded alge-

bra whose multiplicity is e(A) =
s∑

i=1

(
mi+n−1

n

)
. The Hilbert function HA(t) =
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= dimk At increases strictly until it reaches the multiplicity e(A), at which it
stabilizes. The regularity index of Z is defined to be the least integer t such
that HA(t) = e(A), and we denote it by reg(Z) (or reg(A)).

In 1961, Segre (see [10]) showed the upper bound for regularity index of
generic fat points Z = m1P1 + · · · +msPs in P2:

reg(Z) ≤ max
{
m1 +m2 − 1,

[m1 + · · · +ms

2

]}
with m1 ≥ · · · ≥ ms.

For arbitrary fat points Z = m1P1 + · · · +msPs in P2, in 1969 Fulton (see
[9]) gave the following upper bound:

reg(Z) ≤ m1 + · · · +ms − 1.

This bound was later extended to arbitrary fat points in Pn by Davis and
Geramita (see [6]). They also showed that this bound is attained if and only if
points P1, ..., Ps lie on a line in Pn.

A set of fat points Z = m1P1 + · · · + msPs in Pn is said to be in general
position if no j + 2 of the points P1, . . . , Ps are on any j-plane for j < n. A
set of fat points Z = m1P1 + · · · + msPs of Pn is said to be non-degenerate
if all points P1, . . . , Ps do not lie on a hyperplane of Pn. In 1991, Catalisano
(see [3], [4]) extended Segre’s result to fat points in general position in P2, and
later Catalisano, Trung and Valla (see [5]) extended the result to fat points in
general position in Pn, they proved:

reg(Z) ≤ max
{
m1 +m2 − 1,

[m1 + · · · +ms + n − 2

n

]}
.

In 1996, N.V. Trung gave the following conjecture: Let Z = m1P1 + · · · +
+msPs be arbitrary fat points in Pn. Then

reg(Z) ≤ max
{
Tj | j = 1, ..., n

}
,

where

Tj = max
{[∑q

l=1 mil + j − 2

j

]
| Pi1 , ..., Piq lie on a j-plane

}
.

This upper bound nowadays is called the Segre’s upper bound.

The Segre’s upper bound is proved right in projective spaces with n = 2,
n = 3 (see [12], [13]), for the case of double points Z = 2P1 + · · · + 2Ps in Pn

with n = 4 (see [14]) by Thien; also for case n = 2, n = 3, independently by
Fatabbi and Lorenzini (see [7], [8]).
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In 2012, Benedetti, Fatabbi and Lorenzini proved the Segre’s bound for any
set of n+ 2 non-degenerate fat points Z = m1P1 + · · ·+mn+2Pn+2 of Pn (see
[1]), and independently Thien also proved the Segre’s bound for a set of s+ 2
fat points which is not on a (s − 1)-space in Pn, s ≤ n (see [15]).

Recently, Ballico, Dumitrescu and Postinghen proved the Segre’s upper
bound for the case n+3 non-degenerate fat points Z = m1P1+ · · ·+mn+3Pn+3

in Pn (see [2]) and Sinh proved the Segre’s upper bound for the regularity index
of 2n+ 1 double points Z = 2P1 + · · ·+ 2P2n+1 that do not exist n+ 1 points
lying on a (n − 2)-plane in Pn (see [11]). Up to now, there have not been any
other result of Trung’s conjecture published yet.

In this article, we prove the Segre’s upper bound in the case 2n + 2 non-
degenerate double points Z = 2P1+ · · ·+2P2n+2 that do not exist n+1 points
lying on a (n − 2)-plane in Pn.

2. Preliminaries

We will use the following lemmas which have been proved. The first lemma
allows us to compute the regularity index by induction.

Lemma 2.1. [5, Lemma 1]. Let P1, ..., Pr, P be distinct points in Pn, and
let ℘ be the defining ideal of P. If m1, ...,mr and a are positive integers,
J = ℘m1

1 ∩ · · · ∩ ℘mr
r , and I = J ∩ ℘a, then

reg(R/I) = max
{
a − 1, reg(R/J), reg(R/(J + ℘a))

}
.

To compute reg(R/(J + ℘a)), we need the following lemma.

Lemma 2.2. [5, Lemma 3]. Let P1, ..., Pr be distinct points in Pn and a,m1, ...,mr

positive integers. Put J = ℘m1
1 ∩ · · · ∩ ℘mr

r and ℘ = (x1, ..., xn). Then

reg(R/(J + ℘a)) ≤ b

if and only if xb−i
0 M ∈ J+℘i+1 for every monomial M of degree i in x1, ..., xn,

i = 0, ..., a − 1.

To find such a number b, we will find t hyperplanes L1, ..., Lt avoiding P
such that L1 · · ·LtM ∈ J. For j = 1, ..., t, since we can write Lj = x0 +Gj for
some linear form Gj ∈ ℘, we get xt

0M ∈ J + ℘i+1. Therefore, if we put

δ = max
{
t+ i|M is a monomial of degree i, 0 ≤ i ≤ a − 1

}
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then
reg(R/(J + ℘a)) ≤ δ.

The hyperplanes L1, ..., Lt will be constructed by the help of the following
lemma.

Lemma 2.3. [5, Lemma 4]. Let P1, ..., Pr, P be distinct points in general posi-
tion in Pn, let m1 ≥ · · · ≥ mr be positive ingeters, and let J = ℘m1

1 ∩ · · ·∩℘mr
r .

If t is an integer such that nt ≥
r∑

i=1

mi and t ≥ m1, we can find t hyper-

planes, say L1, ..., Lt avoiding P such that for every Pl, l = 1, ..., r, there exist
ml hyperplanes of {L1, ..., Lt} passing through Pl.

The two following lemmas are used to prove main results by induction.

Lemma 2.4. [11, Proposition 2.1]. Let X = {P1, ..., P2n+1} be a set of 2n+ 1
distinct points that do not exist n + 1 points of X lying on a (n − 2)-plane in
Pn. Let ℘i be the homogeneous prime ideal corresponding Pi, i = 1, ..., 2n + 1.
Let

Z = 2P1 + · · · + 2P2n+1.

Put

Tj = max{[ 1
j
(2q + j − 2)]| Pi1 , ..., Piq lie on a j-plane},

TZ = max{Tj | j = 1, ..., n}.
Then, there exists a point Pi0 ∈ X such that

reg(R/(J + ℘2
i0)) ≤ TZ ,

where
J =

⋂
k �=i0

℘2
k.

Lemma 2.5. [11, Proposition 2.2]. Let X = {P1, ..., P2n+1} be a set of 2n+ 1
distinct points which do not exist n + 1 points of X lying on a (n − 2)-plane
in Pn. Let Y = {Pi1 , ..., Pis}, 2 ≤ s ≤ 2n, be a subset of X. Let ℘i be the
homogeneous prime ideal corresponding Pi, i = 1, ..., 2n+ 1. Let

Z = 2P1 + · · · + 2P2n+1.

Put

Tj = max{[ 1
j
(2q + j − 2)]| Pi1 , ..., Piq lie on a j-plane},

TZ = max{Tj | j = 1, ..., n}.
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Then, there exists a point Pi0 ∈ Y such that

reg(R/(J + ℘2
i0)) ≤ TZ ,

where
J =

⋂
Pk∈Y \{Pi0}

℘2
k.

3. Segre’s upper bound for the regularity index of 2n + 2
non-degenerate double points in Pn

From now on, we consider a hyperplane and its identical defining linear
form. These following propositions are important for proving of Segre’ upper
bound.

Proposition 3.1. Let X = {P1, ..., P2n+2} be a non-degenerate set of 2n + 2
distinct points that do not exist n + 1 points of X lying on a (n − 2)-plane in
Pn. Let ℘i be the homogeneous prime ideal corresponding Pi, i = 1, ..., 2n + 2,
and

Z = 2P1 + · · · + 2P2n+2.

Put
Tj = max

{[
1
j (2q + j − 2)

]
| Pi1 , ..., Piq lie on a j-plane

}
,

TZ = max{Tj | j = 1, ..., n}.
Then, there exists a point Pi0 ∈ X such that

reg(R/(J + ℘2
i0)) ≤ TZ ,

where
J =

⋂
k �=i0

℘2
k.

Proof. We denote |H| by the number points of X lying on a j-plane H. The
proposition was proved in projective spaces with n ≤ 4 (see [7], [8], [12]–[14]).
Thus, we will prove the case with n ≥ 5.

We can see that there are (n−1)-planes H1, ..., Hd in Pn with d as the least
integer such that the two following conditions satisfied:

(i) X ⊂ ∪d
i=1Hi,

(ii) | Hi∩(X)\⋃i−1
j=1 Hj |= max{|H∩(X\⋃i−1

j=1 Hj)| | H is an (n − 1)-plane}.
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Since X non-degenerate and n + 1 points do not lie on a (n − 2)-plane,
2 ≤ d ≤ 3. We consider the following cases:

Case 1. d = 3. Since a hyperplane always passes through at least n points of
X and d = 3, we have the two following cases:

(i) |H1| = n, |H2| = n, |H3| = 2.

(ii) |H1 = n+ 1| = |H2\H1| = n, |H3| = 1.

Case 1.1. |H1| = n, |H2| = n, |H3| = 2. Since |H1| = n, there do not exist
n+ 1 points of X lying on a hyperplane. Therefore, X is general position. By
Lemma 2.3 and Lemma 2.2 we have

reg(R/(J + ℘2
i0)) ≤ TZ .

Case 1.2. |H1| = n + 1, |H2| = n, |H3| = 1. We may assume that P1 ∈ H3.
Choose P1 = Pi0 = (1, 0, ..., 0), then ℘i0 = (x1, ..., xn). Clearly, H1, H2 avoiding
Pi0 . We have H1H1H2H2 ∈ J for every monomial M = xc1

1 · · ·xcn
n , c1 + · · · +

+cn = i, i = 0, 1. By Lemma 2.2 we have

reg(R/(J + ℘2
i0)) ≤ 4 + i ≤ 5 ≤ TZ .

Case 2. d = 2. We have X ⊂ H1∪H2. Therefore, |H1| ≥ n+1 and H1 ≥ |H2|.
We call q the number points of X lying on H2\H1, we have 1 ≤ q ≤ n + 1,
without loss of generality, we assume P1, ..., Pq ∈ H2\H1. Put Y = {P1, ..., Pq}.
Since n + 1 points of X do not lie on a (n − 2)-plane, Y does not lie on a
(q − 3)-plane. We consider the following cases:

Case 2.1. Y lies on a (q − 1)-plane and Y does not lie on a (q − 2)-plane.
Choose Pq = Pi0 = (1, 0, ..., 0), P1 = (0, 1︸︷︷︸

2

, ..., 0), ..., Pq−1 = (0, ..., 1︸︷︷︸
q

, ..., 0),

then ℘i0 = (x1, ..., xn). Since we always have a (q − 2)-plane, say K, pass-
ing through P1, ..., Pq−1 and avoiding Pi0 ; therefore, we always have a hyper-
plane, say L, containing K and avoiding Pi0 . We have H1H1LL ∈ J. Thus
H1H1LLM ∈ J for every monomial M = xc1

1 · · ·xcn
n , c1 + · · ·+ cn = i, i = 0, 1.

By Lemma 2.2 we have

reg(R/(J + ℘2
i0)) ≤ 4 + i ≤ 5 ≤ TZ .

Case 2.2. Y lies on a (q − 2)-plane α, q ≥ 3. We consider the following cases
of Y :
Case 2.2.1. There are q− 1 points of Y lying on a (q− 3)-plane. Assume that
P1, ..., Pq−1 lying on a (q − 3)-plane, say K and Pq /∈ K. Choose Pq = Pi0 =
= (1, 0, ..., 0), then ℘i0 = (x1, ..., xn). Since q ≤ n + 1, we have q − 3 ≤ n − 2
and Pi0 /∈ K, we always have a hyperplane L containing K and avoiding
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Pi0 . We have H1H1LL ∈ J, thus H1H1LLM ∈ J for every monomial M =
xc1
1 · · ·xcn

n , c1 + · · · + cn = i, i = 0, 1. By Lemma 2.2 we have

reg(R/(J + ℘2
i0)) ≤ 4 + i ≤ 5 ≤ TZ .

Case 2.2.2. There are not q − 1 points of Y lying on a (q − 3)-plane. We
consider the three following cases of q :
Case 2.2.2.1. q ≥ 5. Since any (q − 3)-planes only pass through q − 2
points of Y. Choose Pq = Pi0 = (1, 0, ..., 0), P1 = (0, 1︸︷︷︸

2

, 0..., 0), ..., Pq−2 =

= (0, ...0, 1︸︷︷︸
q−1

, 0, ..., 0). Put ml = 2− i+ cl, l = 1, ..., q − 2,mq−1 = 2 and

t = max
{
2, [(

q−1∑
i=1

ml + (q − 2) − 1)/(q − 2)]
}
.

We have

t+ i = max{2, [(
q−1∑
i=1

ml + q − 3)/(q − 2)]} + i ≤

≤ max{2 + i, [(
q−1∑
i=1

ml + (q − 2)i+ q − 3)/(q − 2)]} ≤
≤ max{2 + i, [(3q − 4)/(q − 2)] ≤ 3.

Therefore,
t ≤ 3 − i.

By Lemma 2.2, we can find t (q − 3)-planes, say G1, ..., Gt avoiding Pi0 such
that for every point Pl, l = 1, ..., q − 1, there are ml (q − 3)-planes of G1, ..., Gt

passing through Pl. With j = 1, ..., t we find a hyperplane Lj containing Gj

and avoiding Pi0 . Therefore

L1 · · ·Lt ∈ ℘m1
1 ∩ · · · ∩ ℘

mq−2

q−2 ∩ ℘2
q−1.

Moreover, since H1H1 ∈ ℘2
q+1∩· · ·∩℘2

2n+2 and M ∈ ℘i−c1
1 ∩· · ·∩℘

i−cq−2

q−2 , then

H1H1L1 · · ·LtM ∈ J.

By Lemma 2.2 we have

reg(R/(J + ℘2
i0)) ≤ 2 + (3 − i) + i ≤ TZ .

Case 2.2.2.2. q = 4. We have P1, P2, P3, P4 /∈ H1. Choose P1 = Pi0 =
= (1, 0, ..., 0), P3 = (0, 1︸︷︷︸

2

, 0, ..., 0), P4 = (0, 0, 1︸︷︷︸
3

, 0, ..., 0), ..., Pn+1 =

= (0, ..., 0, 1︸︷︷︸
n

, 0), Pn+2 = (0, ..., 0, 1︸︷︷︸
n+1

), therefore ℘i0 = (x1, ..., xn). We



334 T.N. Sinh and P.V. Thien

call l1 a line passing through P2, P3; l2 a line passing through P3, P4; l3 a line
passing through P2, P4. We consider the two following cases of i:

a) i = 0. With j = 1, 2, 3, since Pi0 /∈ lj , then we always have a hyper-
plane Lj containing lj and avoiding Pi0 . We have H1H1L1L2L3 ∈ J, thus
H1H1L1L2L3M ∈ J. By Lemma 2.2 we have

reg(R/(J + ℘2
i0)) ≤ 5 ≤ TZ .

b) i = 1. Since c1 + · · · + cn = 1, then there exists j ∈ {1, ..., n} such that
cj = 1, ck = 0, k ∈ {1, ..., n}\{j}.

◦ If j ∈ {1, 2}, assume that c1 = 1 then

M ∈ ℘4 ∩ ℘5 ∩ · · · ∩ ℘n+2.

We have a (n − 2)-plane, say K1 passing through Pn+3, ..., P2n−1 and l1, a
(n − 2)-plane, say K2 passing through P2n, P2n+1 and l1, a (n − 2)-plane, say
K3 passing through P4, P2n+2 avoiding Pi0 . With i = 1, 2, 3, we always have
hyperplanes Li containing Ki and avoiding Pi0 . We have

H1L1L2L3 ∈ ℘2
2 ∩ ℘2

3 ∩ ℘4 ∩ ℘5 ∩ · · · ∩ ℘n+2 ∩ ℘2
n+3 ∩ · · · ∩ ℘2

2n+2.

Therefore
H1L1L2L3M ∈ J.

By Lemma 2.2 we have

reg(R/(J + ℘2
i0)) ≤ 4 + i ≤ TZ .

◦ If j ∈ {3, ..., n}, assume that c3 = 1 then

M ∈ ℘3 ∩ ℘4 ∩ ℘6 ∩ · · · ∩ ℘n+2.

We call l1 a line passing through P2, P3 and l2 a line passing through P2, P4.
With i = 1, 2, since Pi0 /∈ li, then we always have hyperplanes Li containing li
and avoiding Pi0 . We have

L1L2 ∈ ℘2
2 ∩ ℘3 ∩ ℘4

Since H1H1 ∈ ℘2
5 ∩ · · · ∩ ℘2

2n+2 then

H1H1L1L2M ∈ J.

By Lemma 2.2 we have

reg(R/(J + ℘2
i0)) ≤ 4 + i ≤ TZ .
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Case 2.2.2.3. q = 3. We have P1, P2, P3 /∈ H1. We call l a line passing through
P1, P2, P3 and W = {P4, ..., P2n+2} are the points of X lying on H1 ∩ X, then
there are (n− 2)-planes Q1, ..., Qr in Pn such that the two following conditions
satisfied:

(i) W ⊂ ∪r
i=1Qi,

(ii) | Qi∩(W\⋃i−1
j=1 Qj) |= max{|Q∩(W\⋃i−1

j=1 Qj)| | Q is a (n − 2)-plane}.
Since n + 1 of X do not lie on a (n − 2)-plane, then we consider the two

following cases of Q1:

a) |Q1| = n. We have r = 2 and |Q2| = n− 1. Put U = {P4, ..., Pn+2} to be
n − 1 points lying on Q2 v T = {P1, ..., Pn+2}. We consider the two following
cases of T :

a.1) T does not lie on a (n− 1)-plane. Since P1, P2, P3 lie on a line l, then
we always have a hyperplane containing l and passing through n− 2 points of
U. Assume that L to be a hyperplane containing l and passing through points
P4, ..., Pn+1. Clearly, the hyperplane L avoiding Pn+2 (if not, then T lies on
a (n − 1)-plane). Choose Pn+2 = Pi0 = (1, 0, ..., 0), then ℘i0 = (x1, ..., xn).
Since Pi0 /∈ Q1, therefore we always have a hyperplane L1 containing Q1 and
avoiding Pi0 . We have LLL1L1 ∈ J then LLL1L1M ∈ J for every monomial
M = xc1

1 · · ·xcn
n , c1 + · · · + cn = i, i = 0, 1. By Lemma 2.2 we have

reg(R/(J + ℘2
i0)) ≤ 4 + i ≤ 5 ≤ TZ .

a.2) T lies on a (n−1)-plane, say H. Assume that |Q1 ∩H ∩X| = s. When
hyperplane H passing through n + 2 + s points of X. Consider n − s points
lying on Q1\H, say Pi1 , ..., Pin−s ∈ Q1\H.

a.2.1) Case Pi1 , ..., Pin−s lie on a (n − s − 1)-plane and they do not lie on
a (n − s − 2)-plane. Choose Pi1 = Pi0 = (1, 0, ..., 0), then ℘i0 = (x1, ..., xn).
Since we always have a (n−s−2)-plane, say β passing through Pi2 , ..., Pin−s−1 .
Moreover, since n − s − 2 ≤ n − 2 then we always have a hyperplane L con-
taining β and avoiding Pi0 . We have HHLL ∈ J then HHLLM ∈ J for every
monomial M = xc1

1 · · ·xcn
n , c1 + · · · + cn = i, i = 0, 1. By Lemma 2.2 we have

reg(R/(J + ℘2
i0)) ≤ 4 + i ≤ 5 ≤ TZ .

a.2.2) Case Pi1 , ..., Pin−s lie on a (n− s−2)-plane. Since P1, P2, P3 lie on a
line, then P1, P2, P3, Pi1 , ..., Pin−s lie on a (n− s)-plane. So, n− 1 ≤ n− s ≤ n
or 0 ≤ s ≤ 1.

• If {Pi1 , ..., Pin−s
} has n − s − 1 points lying on a (n − s − 3)-plane, say

γ. Assume that Pi1 /∈ γ, then choose Pi1 = Pi0 = (1, 0, ..., 0), then ℘i0 =
= (x1, ..., xn). Since Pi0 /∈ γ therefore we always have a hyperplane L contain-
ing γ and avoiding Pi0 . We have LLHH ∈ J then LLHHM ∈ J for every
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monomial M = xc1
1 · · ·xcn

n , c1 + · · · + cn = i, i = 0, 1. By Lemma 2.2 we have

reg(R/(J + ℘2
i0)) ≤ 4 + i ≤ 5 ≤ TZ .

• If {Pi1 , ..., Pin−s
} without n−s−1 points lying on a (n−s−3)-plane, then

any (n−s−3)-plane only pass through n−s−2 points of {Pi1 , ..., Pin−s
}. Choose

Pi1 = Pi0 = (1, 0, ..., 0), Pi2 = (0, 1︸︷︷︸
2

, 0, ..., 0), ..., Pin−s−1 = (0, ..., 0, 1︸︷︷︸
n−s−1

, 0,

..., 0) then ℘i0 = (x1, ..., xn). Put ml = 2− i+ cl, l = 2, ..., n− s− 1,mn−s = 2
and

t = max
{
2, [(

n−s−1∑
i=1

ml + (n − s − 2) − 1)/(n − s − 2)]
}
.

We have

t+ i = max{2, [(
n−s−1∑
i=1

ml + n − s − 3)/(n − s − 2)]} + i ≤

≤ max{2+i, [(
n−s−1∑
i=1

ml+(n−s−2)i+n−s−3)/(n−s−2)]} ≤
≤ max{2 + i, [(3(n − s − 2) + 2)/(n − s − 2)].

� s = 0 or n ≥ 6, we have
t ≤ 3 − i.

By Lemma 2.3 we can find t (q − 3)-planes, say G1, ..., Gt avoiding Pi0 such
that for every point Pl, l = 1, ..., q − 1, there are ml (q − 3)-planes of G1, ..., Gt

passing through. With j = 1, ..., t we find a hyperplane Lj containing Gj and
avoiding Pi0 . Therefore

L1 · · ·Lt ∈ ℘m2
i2

∩ · · · ∩ ℘
mn−s−1

in−s−1
∩ ℘2

in−s
.

So, HHL1 · · ·LtM ∈ J for every monomial M = xc1
1 · · ·xcn

n , c1 + · · · + cn =
i, i = 0, 1. By Lemma 2.2 we have

reg(R/(J + ℘2
i0)) ≤ 4 + i ≤ 5 ≤ TZ .

� s = 1 and n = 5. Then hyperplane H pass through eight points of X and
there are four points Pi1 , Pi2 , Pi3 , Pi4 lying on a 2-plane, say γ1\H. According
to Case 2.2.2.2 we have proved it.

b) If |Q1| = n − 1, then W = {P4, ..., P2n+2} lie on the general position in
H1. We call H a hyperplane containing l and passing through n− 3+ u points
of W ∩ H1. We have u ≥ 1.

• If u = 1, then consider n+ 1 points of H1\H. Without loss of generality,
assume that Pn+2, ..., P2n+2 ∈ H1\H. Put V = {Pn+2, ..., P2n+2}. Since there
do not exist n points of V lying on a (n − 2)-plane. Choose Pn+2 = Pi0 =
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= (1, 0, ..., 0), Pn+3 = (0, 1︸︷︷︸
2

, 0, ..., 0), ..., P2n+1 = (0, , ..., 0, 1︸︷︷︸
n

, 0) then ℘i0 =

= (x1, ..., xn). Put ml = 2 − i+ cl, l = n+ 3, ..., 2n+ 1, m2n+2 = 2 and

t = max
{
2, [(

2n+2∑
i=n+3

ml + (n − 1) − 1)/(n − 1)]
}
.

We have

t+ i = max{2, [(
2n+2∑
i=n+3

ml + n − 2)/(n − 1)]} + i ≤

≤ max{2 + i, [(
2n+2∑
i=n+3

ml + (n − 1)i+ n − 2)/(n − 1)]} ≤
≤ max{2 + i, [(3n − 1)/(n − 1)]} ≤ 3.

Therefore
t ≤ 3 − i.

By Lemma 2.3 we can find t (n−2)-planes G1, ..., Gt avoiding Pi0 such that for
every Pl, l = n+ 3, ..., 2n+ 2, there are ml (n− 2)-planes of G1, ..., Gt passing
through. With j = 1, ..., t we find a hyperplane Lj containing Gj and avoiding
Pi0 . Therefore

L1 · · ·Lt ∈ ℘
mn+3

n+3 ∩ · · · ∩ ℘
m2n+1

2n+1 ∩ ℘2
2n+2.

Moreover, since HH ∈ ℘2
1 ∩ · · · ∩ ℘2

n+1 and M ∈ ℘i−c1
n+3 ∩ · · · ∩ ℘

i−cn−1

2n+1 then

H1H1L1 · · ·LtM ∈ J.

By Lemma 2.2 we have

reg(R/(J + ℘2
i0)) ≤ 2 + (3 − i) + i ≤ TZ .

• If u ≥ 2, then there are n+2−u points, assume that Pi1 , ..., Pn+2−u ∈ H1\H.
Since u ≥ 2 then n+2−u ≤ n.Moreover, since Pi1 , ..., Pn+2−u lie on the general
position in H1, then we have a (n− u)-plane, say π, passing through n+1− u
points Pi2 , ..., Pn+2−u and avoiding Pi1 . Choose Pi1 = Pi0 = (1, 0, ..., 0), then
℘i0 = (x1, ..., xn). Since Pi0 /∈ π, we always have a hyperplane, say L, containing
π and avoiding Pi0 . We have HHLL ∈ J, therefore HHLLM ∈ J for every
monomial M = xc1

1 · · ·xcn
n , c1 + · · · + cn = i, i = 0, 1. By Lemma 2.2 we have

reg(R/(J + ℘2
i0)) ≤ 4 + i ≤ 5 ≤ TZ .

The proof of proposition 3.1 is completed. �

From Lemma 2.4, Lemma 2.5 and Proposition 3.1, we get the following
remark.
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Remark 3.1. Let X = {P1, ..., P2n+2} be a non-degenerate set of 2n + 2
distinct points that do not exist n+ 1 points of X lying on a (n − 2)-plane in
Pn. Let Y = {Pi1 , ..., Pis}, 2 ≤ s ≤ 2n + 1, be a subset of X. Let ℘i be the
homogeneous prime ideal corresponding Pi, i = 1, ..., 2n+ 1, and

Z = 2P1 + · · · + 2P2n+2.

Put

Tj = max
{[1

j
(2q + j − 2)

]
| Pi1 , ..., Piq lie on a j-plane

}
,

TZ = max{Tj | j = 1, ..., n}.
Then, there exists a point Pi0 ∈ Y such that

reg(R/(J + ℘2
i0)) ≤ TZ ,

where
J =

⋂
Pk∈Y \{Pi0}

℘2
k.

The theorem below is the main result of this paper.

Theorem 3.2. Let X = {P1, ..., P2n+2} be a non-degenerate set of 2n + 2
distinct points that do not exist n + 1 points of X lying on a (n − 2)-plane in
Pn. Let

Z = 2P1 + · · · + 2P2n+2.

Then
reg(Z) ≤ max

{
Tj | j = 1, ..., n

}
= TZ ,

where

Tj =
{[2q + j − 2

j

]
| Pi1 , ..., Piq lie on a j-plane

}
.

Proof. Firstly, we have the following claim:

Let X = {P1, ..., P2n+2} in Pn, Y = {Pi1 , ..., Pis} be a subset of X, 1 ≤ s ≤
≤ 2n+ 1. Then

reg(R/Js) ≤ TZ ,

where
Js =

⋂
Pi∈Y

℘2
i .

We will prove this claim by induction on number points of Y.
If s = 1. Let ℘1 be the defining homogeneous prime ideal of P1. Put J1 =
= ℘2

1, A = R/J1. Then,
reg(R/J1) = 1 ≤ TZ .



Segre’s upper bound for the regularity index 339

Assume that the claim is right for all subsets Y of X, whose number points
are smaller or equal s − 1. Let Y = {Pi1 , ..., Pis}. By Remark 3.1, there exists
a point Pi0 ∈ Y such that

(1) reg(R/(Js−1 + ℘2
i0)) ≤ TZ ,

where Js−1 =
⋂

Pi∈Y \{Pi0
}
℘2
i . Note that, Js−1 is the intersection of ideals con-

taining s − 1 double points of Y. By conjecture of induction, we have

(2) reg(R/Js−1) ≤ TZ .

By Lemma 2.1 we have

(3) reg(R/Js) =
{
1, reg(R/(Js−1), reg(R/(Js−1 + ℘2

i0))
}
.

From (1), (2) and (3) we have

reg(R/Js) ≤ TZ .

The proof of the above claim is completed.

Now, we prove Theorem 3.2. Let X = {P1, ..., P2n+2} in Pn, by Proposition
3.1, there exists a point Pi0 ∈ X such that

(4) reg(R/(J + ℘2
i0)) ≤ TZ .

where J =
⋂

Pi∈X\{Pi0}
℘2
i . Note that, J is the intersection of ideals containing

2n+ 1 double points of X. Therefore, by the above claim with s = 2n+ 1, we
have

(5) reg(R/J) ≤ TZ .

By Lemma 2.1 we have

(6) regR/I =
{
1, reg(R/J), reg(R/(J + ℘2

i0))
}

where I = J ∩ ℘2
i0
.

From (4), (5) and (6) we have

reg(Z) ≤ TZ .

The proof of Theorem 3.2 is completed. �
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