THE PELL EQUATION $x^2 - (k^2 - 2)y^2 = 1$ AND THE CORRESPONDING INTEGER SEQUENCE

Arzu Akın and Ahmet Tekcan

(Bursa, Turkiye)

Communicated by Bui Minh Phong (Received April 5, 2017; accepted August 15, 2017)

Abstract. In [11], the second author considered the positive integer solutions of the Pell equation $x^2 - Dy^2 = 1$ for some specific values of D including $D = k^2 - 2$ for an integer $k \ge 2$. In this paper, we are able to give the n^{th} integer solution (x_n, y_n) of $x^2 - (k^2 - 2)y^2 = 1$ by a different method and then we set an integer sequence $W_n = pW_{n-1} - qW_{n-2}$ with parameters $p = k^2 - 2$ and q = 1 and derive some algebraic relations on it.

1. Preliminaries

Let p and q be non–zero integers such that $d=p^2-4q\neq 0$ (to exclude a degenerate case). We set the sequences U_n and V_n to be

(1.1)
$$U_n = U_n(p,q) = pU_{n-1} - qU_{n-2},$$
$$V_n = V_n(p,q) = pV_{n-1} - qV_{n-2}$$

for $n \ge 2$ with $U_0 = 0, U_1 = 1, V_0 = 2$ and $V_1 = p$. The characteristic equation of them is $x^2 - px + q = 0$ and hence the roots of it are $\alpha = \frac{p + \sqrt{d}}{2}$ and $\beta = \frac{p - \sqrt{d}}{2}$.

2010 Mathematics Subject Classification: 11D04, 11D09, 11D75, 05A19, 11B37, 11B39.

Key words and phrases: Pell equation, Fibonacci numbers, Lucas numbers, Pell numbers, Binet's formula, simple continued fraction expansion, cross–ratio, circulant matrices and spectral norms.

Their Binet formulas are $U_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$ and $V_n = \alpha^n + \beta^n$. For the companion matrix $M = \begin{bmatrix} p & -q \\ 1 & 0 \end{bmatrix}$, one has

$$\left[\begin{array}{c} U_n \\ U_{n-1} \end{array}\right] = M^{n-1} \left[\begin{array}{c} 1 \\ 0 \end{array}\right] \text{ and } \left[\begin{array}{c} V_n \\ V_{n-1} \end{array}\right] = M^{n-1} \left[\begin{array}{c} p \\ 2 \end{array}\right]$$

for $n \ge 1$. It is easy to verify the following formal power series developments for any p and q,

$$\sum_{n=0}^{\infty} U_n x^n = \frac{x}{1 - px + qx^2} \quad \text{and} \quad \sum_{n=0}^{\infty} V_n x^n = \frac{2 - px}{1 - px + qx^2}.$$

In (1.1), we note that

$$\begin{split} &U_n(1,-1)=F_n \quad \text{Fibonacci numbers (A000045 in OEIS),} \\ &V_n(1,-1)=L_n \quad \text{Lucas numbers (A000032 in OEIS),} \\ &U_n(2,-1)=P_n \quad \text{Pell numbers (A000129 in OEIS),} \\ &V_n(2,-1)=Q_n \quad \text{Pell-Lucas numbers (A002203 in OEIS).} \end{split}$$

(For further details see [2, 4, 6, 8, 9, 10, 12]).

2. The Pell equation $x^{2} - (k^{2} - 2)y^{2} = 1$

In [11], the second author considered the integer solutions of the Pell equation $x^2 - Dy^2 = 1$ (for further details on Pell equations see [1, 5, 7]) for some specific values of D including $D = k^2 - 2$ for some positive integer $k \geq 2$ and proved the following theorem.

Theorem 2.1. ([11, Theorem 2.4]) Let $k \geq 2$ be any integer and $D = k^2 - 2$.

1. The continued fraction expansion of \sqrt{D} is

$$\sqrt{D} = \begin{cases} [1, \overline{2}], & \text{if } k = 2\\ [k-1; \overline{1, k-2, 1, 2k-2}], & \text{if } k > 2. \end{cases}$$

2. $(x_1, y_1) = (k^2 - 1, k)$ is the fundamental solution. Set $\{(x_n, y_n)\}$, where

$$\frac{x_n}{y_n} = \left[k-1; \underbrace{1, k-2, 1, 2k-2, \cdots, 1, k-2, 1, 2k-2}_{n-1 \ times}, 1, k-1\right]$$

for $n \ge 2$. Then (x_n, y_n) is a solution of $x^2 - (k^2 - 2)y^2 = 1$.

3. The consecutive solutions (x_n, y_n) and (x_{n+1}, y_{n+1}) satisfy

$$x_{n+1} = (k^2 - 1)x_n + (k^3 - 2k)y_n$$
 and $y_{n+1} = kx_n + (k^2 - 1)y_n$
for $n > 1$.

4. The solutions (x_n, y_n) satisfy the following recurrence relations

$$x_n = (2k^2 - 3)(x_{n-1} + x_{n-2}) - x_{n-3},$$

$$y_n = (2k^2 - 3)(y_{n-1} + y_{n-2}) - y_{n-3}$$

for $n \geq 4$.

In this section, we aim to give a different method (based on binomial expansion) for finding the integer solutions of $x^2 - (k^2 - 2)y^2 = 1$. But we first give the following theorem which we need it.

Theorem 2.2. Let $k \ge 2$ be any integer. Set $H = \begin{bmatrix} k^2 - 1 & k^3 - 2k \\ k & k^2 - 1 \end{bmatrix}$. Then the n^{th} power of H is $H^n = \begin{bmatrix} H_{11}^n & H_{12}^n \\ H_{21}^n & H_{22}^n \end{bmatrix}$, where

$$H_{11}^{n} = \sum_{i=0}^{\frac{1}{2}} {n \choose 2i} (k^{2} - 1)^{n-2i} k^{i} (k^{3} - 2k)^{i} = H_{22}^{n},$$

$$H_{12}^{n} = \sum_{i=0}^{\frac{n-2}{2}} {n \choose 2i+1} (k^{2} - 1)^{n-1-2i} k^{i} (k^{3} - 2k)^{i+1},$$

$$H_{21}^{n} = \sum_{i=0}^{\frac{n-2}{2}} {n \choose 2i+1} (k^{2} - 1)^{n-1-2i} k^{i+1} (k^{3} - 2k)^{i}$$

for even $n \ge 2$ or

$$\begin{split} H_{11}^n &= \sum_{i=0}^{\frac{n-1}{2}} \binom{n}{2i} (k^2 - 1)^{n-2i} k^i (k^3 - 2k)^i = H_{22}^n, \\ H_{12}^n &= \sum_{i=0}^{\frac{n-1}{2}} \binom{n}{2i+1} (k^2 - 1)^{n-1-2i} k^i (k^3 - 2k)^{i+1}, \\ H_{21}^n &= \sum_{i=0}^{\frac{n-1}{2}} \binom{n}{2i+1} (k^2 - 1)^{n-1-2i} k^{i+1} (k^3 - 2k)^i \end{split}$$

for odd $n \geq 1$.

Proof. We prove by induction. Let n=2. Then since $H_{11}^2=2k^4-4k^2+1$, $H_{12}^2=2k^5-6k^3+4k$, $H_{21}^2=2k^3-2k$ and $H_{22}^2=2k^4-4k^2+1$, it is true for n=2. Let us assume that it is satisfied for n-2. Then

$$H^{2} \cdot H^{n-2} = \begin{bmatrix} (k^{2} - 1)^{2} + k(k^{3} - 2k) & 2(k^{2} - 1)(k^{3} - 2k) \\ 2k(k^{2} - 1) & (k^{2} - 1)^{2} + k(k^{3} - 2k) \end{bmatrix} \times$$

$$(2.1) \times \begin{bmatrix} H_{11}^{n-2} & H_{12}^{n-2} \\ H_{21}^{n-2} & H_{22}^{n-2} \end{bmatrix}.$$

Applying (2.1), we deduce that

$$\begin{split} &[(k^2-1)^2+k(k^3-2k)]H_{11}^{n-2}+[2k(k^2-1)]H_{12}^{n-2}=\\ &=[(k^2-1)^2+k(k^3-2k)]\times\\ &\times \left[\begin{array}{c} (k^2-1)^{n-2}+\binom{n-2}{2}(k^2-1)^{n-4}k(k^3-2k)+\cdots\\ &+\binom{n-2}{n-4}(k^2-1)^2k^{\frac{n-4}{2}}(k^3-2k)^{\frac{n-4}{2}} \end{array}\right] +\\ &\times \left[\begin{array}{c} (k^2-1)^{n-2}+\binom{n-2}{2}(k^2-1)^{n-4}k(k^3-2k)+\cdots\\ &+k^{\frac{n-2}{2}}(k^3-2k)^{\frac{n-2}{2}} \end{array}\right] +\\ &+k^{\frac{n-2}{2}}(k^3-2k)^{\frac{n-2}{2}} \\ &+\binom{n-2}{3}(k^2-1)^{n-3}(k^3-2k)\\ &+\binom{n-2}{3}(k^2-1)^{n-5}k(k^3-2k)^{2}+\cdots\\ &+\binom{n-2}{n-5}(k^2-1)^3k^{\frac{n-6}{2}}(k^3-2k)^{\frac{n-4}{2}} \\ &+\binom{n-2}{n-3}(k^2-1)k^{\frac{n-4}{2}}(k^3-2k)^{\frac{n-2}{2}} \end{array}\right] =\\ &=(k^2-1)^n+\binom{n}{2}(k^2-1)^{n-2}k(k^3-2k)+\binom{n}{4}(k^2-1)^{n-4}k^2(k^3-2k)^2+\\ &+\cdots+\binom{n}{n-4}(k^2-1)^4k^{\frac{n-4}{2}}(k^3-2k)^{\frac{n-4}{2}}+\\ &+\binom{n}{n-2}(k^2-1)^2k^{\frac{n-2}{2}}(k^3-2k)^{\frac{n-2}{2}}+k^{\frac{n}{2}}(k^3-2k)^{\frac{n}{2}}=\\ &=\sum_{i=0}^{\frac{n}{2}}\binom{n}{2i}(k^2-1)^{n-2i}k^i(k^3-2k)^i=\\ &=H_{11}^n. \end{split}$$

Similarly it can be shown that $[2(k^2-1)(k^3-2k)]H_{11}^{n-2}+[(k^2-1)^2+k(k^3-2k)]H_{12}^{n-2}=H_{12}^n, [(k^2-1)^2+k(k^3-2k)]H_{21}^{n-2}+[2k(k^2-1)]H_{22}^{n-2}=H_{21}^n$ and $[2(k^2-1)(k^3-2k)]H_{21}^{n-2}+[(k^2-1)^2+k(k^3-2k)]H_{22}^{n-2}=H_{22}^n$ as we wanted.

The other case can be proved similarly.

From Theorem 2.2, we can give the following main theorem.

Theorem 2.3. Let $k \ge 2$ be any integer. Then the set of all positive integer solutions of $x^2 - (k^2 - 2)y^2 = 1$ is $\{(x_n, y_n)\}$, where

$$x_n = \begin{cases} \sum_{i=0}^{\frac{n}{2}} {n \choose 2i} (k^2 - 1)^{n-2i} k^i (k^3 - 2k)^i & \text{for even } n \ge 2\\ \\ \frac{\frac{n-1}{2}}{\sum_{i=0}^{2}} {n \choose 2i} (k^2 - 1)^{n-2i} k^i (k^3 - 2k)^i & \text{for odd } n \ge 1 \end{cases}$$

and

$$y_n = \begin{cases} \sum_{i=0}^{\frac{n-2}{2}} {n \choose 2i+1} (k^2 - 1)^{n-1-2i} k^{i+1} (k^3 - 2k)^i & \text{for even } n \ge 2\\ \\ \sum_{i=0}^{\frac{n-1}{2}} {n \choose 2i+1} (k^2 - 1)^{n-1-2i} k^{i+1} (k^3 - 2k)^i & \text{for odd } n \ge 1. \end{cases}$$

Proof. It can be proved by induction on n as in Theorem 2.2.

3. The integer sequence W_n

Even if, in the previous chapter, we had considered the solutions of the Pell equation $x^2 - Dy^2 = 1$, where $D = k^2 - 2$ for an integer $k \ge 2$, we do not have such a restriction on k in this chapter. Therefore, the properties of the integer sequence can be investigated for all integers k.

Now we set the integer sequence $W = W_n(k)$ as $W_0 = 0, W_1 = 1$ and

$$(3.1) W_n = pW_{n-1} - qW_{n-2}$$

for $n \ge 2$, where $p = k^2 - 2$ and q = 1. Here one can easily notice the followings:

- 1. If k = 0, then $W_n = -2W_{n-1} W_{n-2}$ and hence $W_n = (-1)^{n+1}n$.
- 2. If $k = \pm 1$, then $W_n = -W_{n-1} W_{n-2}$ and so $W_n = 1$ for $n \equiv 1 \pmod{3}$; -1 for $n \equiv 2 \pmod{3}$ or 0 for $n \equiv 0 \pmod{3}$.
- 3. If $k = \pm 2$, then $W_n = 2W_{n-1} W_{n-2}$ and hence $W_n = n$.

The characteristic equation of (3.1) is $x^2 - (k^2 - 2)x + 1 = 0$ and hence the roots of it are $\alpha = \frac{k^2 - 2 + \sqrt{\Delta}}{2}$ and $\beta = \frac{k^2 - 2 - \sqrt{\Delta}}{2}$, where $\Delta = k^4 - 4k^2$. Hence the Binet formula for W_n is $W_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$ for $k \neq 0, \pm 2$ (Note that, if $k = 0, \pm 2$, then $\alpha = \beta$ and so W_n is undefined, that is, this formula can not be used).

3.1. Sums

Theorem 3.1. For the sums of first n-terms of W_n , we have

1. if
$$k = 0$$
, then $\sum_{i=1}^{n} W_i = \frac{-n}{2}$ for even $n \ge 2$ or $\sum_{i=1}^{n} W_i = \frac{n+1}{2}$ for odd $n \ge 1$;

- 2. if $k = \pm 1$, then $\sum_{i=1}^{n} W_i = 0$ for $n \equiv 0, 2 \pmod{3}$ or $\sum_{i=1}^{n} W_i = 1$ for $n \equiv 1 \pmod{3}$:
- 3. if $k = \pm 2$, then $\sum_{i=1}^{n} W_i = \frac{n^2 + n}{2}$;
- 4. if |k| > 2, then

$$\sum_{i=1}^{n} W_i = \frac{W_{n+1} - W_n - 1}{k^2 - 4}.$$

Proof. 1. Let k = 0. Then as we said above $W_n = (-1)^{n+1}n$. So clearly, the sum of first n-terms of W_n is $\frac{-n}{2}$ if n is even or $\frac{n+1}{2}$ if n is odd.

- 2. Let $k = \pm 1$. Then $W_n = -W_{n-1} W_{n-2}$, that is, $W_n = 1$ for $n \equiv 1 \pmod{3}$; -1 for $n \equiv 2 \pmod{3}$ or 0 for $n \equiv 0 \pmod{3}$. So if $n \equiv 0, 2 \pmod{3}$, then the sum of first n-terms of W_n is 0 and if $n \equiv 1 \pmod{3}$, then the sum of first n-terms of W_n is 1.
- 3. Let $k = \pm 2$. Then $W_n = 2W_{n-1} W_{n-2}$, that is, $W_n = n$. So the sum of first n-terms of W_n is $\frac{n(n+1)}{2} = \frac{n^2+n}{2}$.
 - 4. Let |k| > 2. Notice that $W_{n+2} = (k^2 3)W_{n+1} + W_{n+1} W_n$ and hence

$$(3.2) W_{n+2} - W_{n+1} = (k^2 - 3)W_{n+1} - W_n.$$

Applying (3.2), we deduce that

$$W_2 - W_1 = (k^2 - 3)W_1 - W_0,$$

$$W_3 - W_2 = (k^2 - 3)W_2 - W_1,$$

$$W_4 - W_3 = (k^2 - 3)W_3 - W_2,$$

If we sum both sides of (3.3), then we obtain

$$(3.4) W_{n+2} - W_1 = (k^2 - 4)(W_1 + W_2 + \dots + W_n) - W_0 + (k^2 - 3)W_{n+1}.$$

Since $W_0=0$ and $W_1=1$, (3.4) becomes $W_{n+2}-1=(k^2-4)(W_1+W_2+\cdots+W_n)+(k^2-3)W_{n+1}$. Taking $W_{n+2}\mapsto (k^2-2)W_{n+1}-W_n$, we conclude that $W_1+W_2+\cdots+W_n=\frac{W_{n+1}-W_n-1}{k^2-4}$ as we wanted.

In 1876, the French mathematician François Edouard Anatole Lucas discovered an explicit formula for the Fibonacci numbers, namely,

$$F_n = \sum_{i=0}^{\lfloor (n-1)/2 \rfloor} {n-1-i \choose i},$$

and for the Lucas numbers,

$$L_n = \sum_{i=0}^{\lfloor n/2 \rfloor} \left[\binom{n-i}{i} + \binom{n-1-i}{i-1} \right].$$

Similarly we can give the following theorem which can be proved as in Theorem 2.2.

Theorem 3.2. Let W_n denote the n^{th} number. Then

$$W_n = \sum_{i=0}^{\lfloor (n-1)/2 \rfloor} (-1)^i \binom{n-1-i}{i} (k^2-2)^{n-1-2i}$$

for $n \geq 1$.

Also we can give the following result which can be proved similarly.

Theorem 3.3. Let W_n denote the n^{th} number. Then for every k

1. the sum of $(2i-1)^{st}$ W_n numbers from 1 to n is a perfect square and is

$$\sum_{i=1}^{n} W_{2i-1} = W_n^2,$$

 $2. \ also$

$$\begin{split} &\sum_{i=1}^{2n} W_i = W_n(W_n + W_{n+1}), \\ &\sum_{i=1}^{2n+1} W_i = W_{n+1}(W_n + W_{n+1}), \\ &\sum_{i=1}^{n} W_{2i} = W_n W_{n+1}, \\ &\sum_{i=1}^{2n} (W_i + W_{i+1}) = W_{n+1}(W_{n+1} + 2W_n + W_{n-1}), \end{split}$$

$$\sum_{i=1}^{2n+1} (W_i + W_{i+1}) = (W_n + W_{n+1})(W_{n+1} + W_{n+2}),$$

$$\sum_{i=0}^{2n} (W_{2i+1} + W_{2i+2}) = W_{2n+1}(W_{2n+1} + W_{2n+2}).$$

3.2. Relations

Theorem 3.4. Let W_n denote the n^{th} number.

- 1. If $k = 0, \pm 2$, then $W_{2n} = 2W_{2n-2} W_{2n-4}$ and $W_{2n+1} = 2W_{2n-1} W_{2n-3}$ for $n \ge 2$.
- 2. If $k = \pm 1$, then $W_{2n} = -W_{2n-2} W_{2n-4}$ and $W_{2n+1} = -W_{2n-1} W_{2n-3}$ for $n \ge 2$.
- 3. If |k| > 2, then $W_{2n} = (k^4 4k^2 + 2)W_{2n-2} W_{2n-4}$ and $W_{2n+1} = (k^4 4k^2 + 2)W_{2n-1} W_{2n-3}$ for $n \ge 2$.

Proof. We only prove 3. The others can be proved similarly. Let |k| > 2. Then $W_{2n} = (k^2 - 2)W_{2n-2} - W_{2n-4}$ and hence

$$\begin{split} W_{2n} &= (k^2-2) \left[(k^2-2) W_{2n-2} - W_{2n-3} \right] - W_{2n-2} = \\ &= W_{2n-2} (k^4-4k^2+3) - (k^2-2) \left[(k^2-2) W_{2n-4} - W_{2n-5} \right] = \\ &= W_{2n-2} (k^4-4k^2+3) - (k^2-2)^2 W_{2n-4} + (k^2-2) W_{2n-5} = \\ &= W_{2n-2} (k^4-4k^2+2) + (k^2-2) \left[(k^2-2) W_{2n-4} - W_{2n-5} \right] + \\ &+ W_{2n-4} \left[-1 - (k^2-2)^2 \right] + (k^2-2) W_{2n-5} = \\ &= W_{2n-2} (k^4-4k^2+2) + (k^2-2)^2 W_{2n-4} - (k^2-2) W_{2n-5} + \\ &+ W_{2n-4} \left[-1 - (k^2-2)^2 \right] + (k^2-2) W_{2n-5} = \\ &= (k^4-4k^2+2) W_{2n-2} - W_{2n-4}. \end{split}$$

The other assertions can be proved similarly.

Further we can give the following result.

Theorem 3.5. Let W_n denote the n^{th} number. Then for every k

- 1. $(W_{n+1} + W_n)(W_{n+1} W_n) = W_{2n+1}$ for every integer $n \ge 1$,
- 2. $W_nW_{m+1} W_{n-1}W_m = W_{n+m}$ for every positive integers n, m,
- 3. $(W_n + W_m)(W_n W_m) = W_{n+m}W_{n-m}$ for every integers $n \ge m \ge 1$.

4. The product of $(n+1)^{st}$ and $(n-1)^{st}$ terms of W_n numbers and adding 1 is a perfect square and is

$$\sqrt{W_{n+1}W_{n-1}+1} = W_n$$

for $n \geq 1$. In fact,

$$W_n = \sqrt{1 + \sum_{i=1}^{n-1} W_{2i+1}}.$$

Proof. 1. Let $k \neq 0, \pm 2$. Since $W_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$, we easily deduce that

$$(3.5) (W_{n+1} + W_n)(W_{n+1} - W_n) = W_{n+1}^2 - W_n^2 =$$

$$= \left(\frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta}\right)^2 - \left(\frac{\alpha^n - \beta^n}{\alpha - \beta}\right)^2 =$$

$$= \frac{\alpha^{2n}(\alpha^2 - 1) + \beta^{2n}(\beta^2 - 1)}{k^4 - 4k^2}.$$

Note that $\frac{\alpha^2 - 1}{k^4 - 4k^2} = \frac{\alpha}{\sqrt{k^4 - 4k^2}}$ and $\frac{\beta^2 - 1}{k^4 - 4k^2} = \frac{-\beta}{\sqrt{k^4 - 4k^2}}$. So (3.5) becomes

$$(W_{n+1} + W_n)(W_{n+1} - W_n) = \frac{\alpha^{2n}(\alpha^2 - 1) + \beta^{2n}(\beta^2 - 1)}{k^4 - 4k^2} =$$
$$= \frac{\alpha^{2n+1} - \beta^{2n+1}}{\sqrt{k^4 - 4k^2}} =$$
$$= W_{2n+1}.$$

Let k = 0. Then $W_n = (-1)^{n+1}n$. So

$$(W_{n+1} + W_n)(W_{n+1} - W_n) = (-1)^{2n+2}(2n+1) = W_{2n+1}.$$

Similarly let $k = \pm 2$. Then since $W_n = n$, we get

$$(W_{n+1} + W_n)(W_{n+1} - W_n) = 2n + 1 = W_{2n+1}.$$

The others can be proved similarly.

Theorem 3.6. Let W_n denote the n^{th} number.

- 1. (a) If k = 0, then $\alpha^n + \beta^n = (-1)^n 2$ for $n \ge 0$.
 - (b) If $k = \pm 1$, then $\alpha^n + \beta^n = 2$ when $n \equiv 0 \pmod{3}$ or -1 otherwise.
 - (c) If $k = \pm 2$, then $\alpha^n + \beta^n = 2$ for $n \ge 0$.

(d) If |k| > 2, then

$$\alpha^{n} + \beta^{n} = \begin{cases} W_{n+1} - W_{n-1} & \text{for } n \ge 1\\ 2W_{n+1} - (k^{2} - 2)W_{n} & \text{for } n \ge 0\\ (k^{2} - 2)W_{n} - 2W_{n-1} & \text{for } n \ge 1. \end{cases}$$

- 2. (a) If k = 0, then $W_{n+1} W_{n-1} = (-1)^n 2$ for $n \ge 1$.
 - (b) If $k = \pm 1$, then $W_{n+1} W_{n-1} = 2$ for $n \equiv 0 \pmod{3}$ or $W_{n+1} W_{n-1} = -1$ otherwise.
 - (c) If $k = \pm 2$, then $W_{n+1} W_{n-1} = 2$ for $n \ge 1$.
 - (d) If |k| > 2, then

$$W_{n+1} - W_{n-1} = \frac{\sum_{i=0}^{\frac{n}{2}} {n \choose 2i} (k^2 - 2)^{n-2i} (k^4 - 4k^2)^i}{2^{n-1}}$$

for even $n \geq 2$; or

$$W_{n+1} - W_{n-1} = \frac{\sum_{i=0}^{\frac{n-1}{2}} \binom{n}{2i} (k^2 - 2)^{n-2i} (k^4 - 4k^2)^i}{2^{n-1}}$$

for odd $n \geq 1$.

Proof. 1. (a) Let k=0. Then $\alpha=\beta=-1$. So $\alpha^n+\beta^n=(-1)^n2$ for $n\geq 0$.

- 1. (b) Let $k=\pm 1$. Then $\alpha=\frac{-1+i\sqrt{3}}{2}$ and $\beta=\frac{-1-i\sqrt{3}}{2}$. Hence clearly $\alpha^n+\beta^n=2$ when $n\equiv 0 \pmod 3$ or -1 otherwise.
 - 1. (c) Let $k = \pm 2$. Then $\alpha = \beta = 1$. So $\alpha^n + \beta^n = 2$ for $n \ge 0$.
 - 1. (d) Let |k| > 2. Since $W_{n+1} = (k^2 2)W_n W_{n-1}$, we easily get

$$W_{n+1} - W_{n-1} = (k^2 - 2) \left(\frac{\alpha^n - \beta^n}{\alpha - \beta}\right) - 2 \left(\frac{\alpha^{n-1} - \beta^{n-1}}{\alpha - \beta}\right) =$$

$$= \frac{(k^2 - 2)}{\sqrt{\Delta}} (\alpha^n - \beta^n) - \frac{2}{\sqrt{\Delta}} (\beta \alpha^n - \alpha \beta^n) =$$

$$= \alpha^n \left(\frac{k^2 - 2 - 2\beta}{\sqrt{\Delta}}\right) + \beta^n \left(\frac{2 - k^2 + 2\alpha}{\sqrt{\Delta}}\right) =$$

$$= \alpha^n + \beta^n$$

since $k^2 - 2 - 2\beta = 2 - k^2 + 2\alpha = \sqrt{\Delta}$.

- 2. (a) Let k=0. If n is even, then $W_{n+1}-W_{n-1}=n+1-(n-1)=2$ and if n is odd, then $W_{n+1}-W_{n-1}=-(n+1)-(1-n)=-2$. So in both cases, $W_{n+1}-W_{n-1}=(-1)^n 2$ for $n\geq 1$.
- 2. (b) Let $k = \pm 1$. Then $W_{n+1} = -1$ if $n \equiv 1 \pmod{3}$, $W_{n+1} = 1$ if $n \equiv 0 \pmod{3}$, $W_{n+1} = 0$ if $n \equiv 2 \pmod{3}$ and $W_{n-1} = -1$ if $n \equiv 0 \pmod{3}$, $W_{n-1} = 1$ if $n \equiv 2 \pmod{3}$, $W_{n-1} = 0$ if $n \equiv 1 \pmod{3}$. So $W_{n+1} W_{n-1} = 2$ if $n \equiv 0 \pmod{3}$ or -1 otherwise.
- 2. (c) Let $k=\pm 2$. Then $W_{n+1}=n+1$ and $W_{n-1}=n-1$. So $W_{n+1}-W_{n-1}=n+1-(n-1)=2$ for $n\geq 1$.
- 2. (d) Let |k| > 2. Then by binomial series expansion, we easily get the desired result.

3.3. Greatest common divisor

Theorem 3.7. Let W_n denote the n^{th} number. Then

1. Any two consecutive W_n numbers are relatively prime, that is,

$$(W_n, W_{n-1}) = 1$$

for every k.

(a) If k = 0, then

$$(W_n, W_m) = \left\{ \begin{array}{ll} W_{(n,m)} & \text{for odd } m \ge 1 \\ (-1)^{n+1} W_{(n,m)} & \text{for even } m \ge 2. \end{array} \right.$$

(b) Let $k = \pm 1$. If $m \equiv 1, 2 \pmod{3}$, then

$$(W_n, W_m) = 1$$

and if $m \equiv 0 \pmod{3}$, then

$$(W_n, W_m) = \begin{cases} 0 & n \equiv 0 \pmod{3} \\ 1 & otherwise. \end{cases}$$

(c) If $|k| \geq 2$, then

$$(W_n, W_m) = W_{(n,m)}$$

for every integer $m \geq 1$.

2. If $m \ge 1$ is odd, then

$$(W_{nm-1},W_{nm+1}) = \left\{ \begin{array}{ll} 1 & \textit{for even } n \geq 2 \\ |k^2 - 2| & \textit{for odd } n \geq 1 \end{array} \right.$$

and if $m \geq 2$ is even, then

$$(W_{nm-1}, W_{nm+1}) = 1$$

for every k.

3. (a) If $k = \pm 1$, then

$$(W_n, W_{n+p}) = \begin{cases} 0 & if \ n = 3t \\ 1 & otherwise \end{cases}$$

for prime p = 3 or

$$(W_n, W_{n+p}) = |W_p|$$

for other primes $p \geq 5$.

(b) For other values of k,

$$(W_n, W_{n+p}) = \begin{cases} W_p & if \ n = pt \\ 1 & otherwise \end{cases}$$

for every primes $p \geq 3$ and every integers $t \geq 1$.

4. (a) If k = 0, then

$$\frac{W_{mn}}{W_{m}} = m$$

for odd m > 1, or

$$\frac{W_{mn}}{W_m} = (-1)^n m$$

for even m > 2.

(b) Let $k = \pm 1$. If $m \equiv 1 \pmod{3}$, then

$$\frac{W_{mn}}{W_n} = \left\{ \begin{array}{ll} 1 & \textit{for } n \equiv 1, 2 (\textit{mod } 3) \\ \textit{undefined} & \textit{for } n \equiv 0 (\textit{mod } 3), \end{array} \right.$$

if $m \equiv 2 \pmod{3}$, then

$$\frac{W_{mn}}{W_n} = \left\{ \begin{array}{ll} -1 & \textit{for } n \equiv 1, 2 (\textit{mod } 3) \\ \textit{undefined} & \textit{for } n \equiv 0 (\textit{mod } 3), \end{array} \right.$$

and if $m \equiv 0 \pmod{3}$, then

$$\frac{W_{mn}}{W_n} = undefined$$

for every $n \geq 1$.

(c) If $k = \pm 2$, then

$$\frac{W_{mn}}{W_n} = m$$

for every integer $m \geq 1$.

(d) If |k| > 2, then

$$W_n|W_{mn}$$

for every positive integer $m \geq 1$.

5. (a) If k = 0, then

$$\frac{W_{mn}}{W_m W_n} = 1$$

for odd $m \geq 1$, or

$$\frac{W_{mn}}{W_m W_n} = (-1)^{n+1}$$

for even $m \geq 2$.

(b) Let $k = \pm 1$. If $m \equiv 1, 2 \pmod{3}$, then

$$\frac{W_{mn}}{W_mW_n} = \left\{ \begin{array}{ll} 1 & \textit{for } n \equiv 1,2 (\textit{mod } 3) \\ \textit{undefined} & \textit{for } n \equiv 0 (\textit{mod } 3) \end{array} \right.$$

and if $m \equiv 0 \pmod{3}$, then

$$\frac{W_{mn}}{W_m W_n} = undefined$$

for every n > 1.

(c) If $k = \pm 2$, then

$$\frac{W_{mn}}{W_m W_n} = 1$$

for every integer $m \geq 1$.

(d) If |k| > 2, then

$$W_mW_n \mid W_{mn}W_{(m,n)}$$

for every integer $m \geq 1$.

Proof. 1. Applying the Euclidean algorithm and the relation $W_n = (k^2 - 2)W_{n-1} - W_{n-2}$, we get

$$\begin{split} W_n &= (k^2-2)W_{n-1} + (-W_{n-1} + W_{n-1}) - W_{n-2}, \\ W_{n-1} &= (W_{n-1} - W_{n-2}) \times 1 + W_{n-2}, \\ (W_{n-1} - W_{n-2}) &= (k^2-4)W_{n-2} + (W_{n-2} - W_{n-3}), \\ W_{n-2} &= (W_{n-2} - W_{n-3}) \times 1 + W_{n-3}, \end{split}$$

$$(W_{n-2} - W_{n-3}) = (k^2 - 2)W_{n-3} + (W_{n-3} - W_{n-4}),$$

$$\vdots$$

$$W_2 = (k^2 - 3)W_1 + (W_1 - W_0),$$

$$(k^2 - 3) = 1 \times (k^2 - 3) + 0.$$

Since $W_1 = 1$ and $W_0 = 0$ we conclude that $(W_n, W_{n-1}) = W_1 = 1$. The others can be proved similarly.

3.4. Matrices

Theorem 3.8. Let

$$M = \left[\begin{array}{cc} k^2 - 2 & -1 \\ 1 & 0 \end{array} \right], N = \left[\begin{array}{cc} k^2 - 2 & 1 \\ 1 & 0 \end{array} \right] \ and \ S = \left[\begin{array}{cc} 1 & 0 \end{array} \right].$$

(M is the companion matrix for W_n). Then for every k we have

1.
$$M^n = \begin{bmatrix} W_{n+1} & -W_n \\ W_n & -W_{n-1} \end{bmatrix}$$
 for $n \ge 1$,

- 2. $W_{n+1} = SM^nS^t$ for $n \ge 0$,
- 3. $W_n = SM^{n-2}NS^t$ for $n \ge 2$,

4.
$$M^{n-1}N = \begin{bmatrix} W_{n+1} & W_n \\ W_n & W_{n-1} \end{bmatrix}$$
 and $\det(M^{n-1}N) = -1$ for $n \ge 1$.

Proof. 1. We prove it by induction on n. Let n = 1. Then

$$M^1 = \left[\begin{array}{cc} W_2 & -W_1 \\ W_1 & -W_0 \end{array} \right] = \left[\begin{array}{cc} k^2 - 2 & -1 \\ 1 & 0 \end{array} \right].$$

So it is true for n = 1. Let us assume that this relation is satisfied for n - 1. Since $M^n = M^{n-1} \cdot M$, we get

$$\left[\begin{array}{cc} W_n & -W_{n-1} \\ W_{n-1} & -W_{n-2} \end{array} \right] \left[\begin{array}{ccc} k^2 - 2 & -1 \\ 1 & 0 \end{array} \right] = \left[\begin{array}{ccc} (k^2 - 2)W_n - W_{n-1} & -W_n \\ (k^2 - 2)W_{n-1} - W_{n-2} & -W_{n-1} \end{array} \right] =$$

$$= \left[\begin{array}{ccc} W_{n+1} & -W_n \\ W_n & -W_{n-1} \end{array} \right] =$$

$$= M^n$$

2. It is easily seen that

$$SM^{n}S^{t} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} W_{n+1} & -W_{n} \\ W_{n} & -W_{n-1} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} W_{n+1} \\ W_{n} \end{bmatrix} = W_{n+1}.$$

3.

$$SM^{n-2}NS^{t} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} W_{n-1} & -W_{n-2} \\ W_{n-2} & -W_{n-3} \end{bmatrix} \begin{bmatrix} k^{2} - 2 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} =$$

$$= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} W_{n-1} & -W_{n-2} \\ W_{n-2} & -W_{n-3} \end{bmatrix} \begin{bmatrix} k^{2} - 2 \\ 1 \end{bmatrix} =$$

$$= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} (k^{2} - 2)W_{n-1} - W_{n-2} \\ (k^{2} - 2)W_{n-2} - W_{n-3} \end{bmatrix} =$$

$$= (k^{2} - 2)W_{n-1} - W_{n-2} =$$

$$= W_{n}.$$

4. Finally,

$$\begin{split} M^{n-1}N &= \left[\begin{array}{cc} W_n & -W_{n-1} \\ W_{n-1} & -W_{n-2} \end{array} \right] \left[\begin{array}{cc} k^2 - 2 & 1 \\ 1 & 0 \end{array} \right] = \\ &= \left[\begin{array}{cc} (k^2 - 2)W_n - W_{n-1} & W_n \\ (k^2 - 2)W_{n-1} - W_{n-2} & W_{n-1} \end{array} \right] = \\ &= \left[\begin{array}{cc} W_{n+1} & W_n \\ W_n & W_{n-1} \end{array} \right], \end{split}$$

and $\det(M^{n-1}N) = \det(M^{n-1})\det(N) = (1)^{n-1}(-1) = -1$. This completes the proof.

3.5. Continued fraction expansion

Theorem 3.9. Let W_n denote the n^{th} number.

1. If k = 0, then

$$\frac{W_{n+1}}{W_n} = [-2; 1, n-1] \quad for \ n \ge 3,$$

$$\frac{W_{2n+1}}{W_{2n-1}} = [1; n-1, 2] \quad for \ n \ge 2,$$

$$\frac{W_{2n+2}}{W_{2n}} = [1; n] \quad for \ n \ge 2.$$

2. If $k = \pm 1$, then

$$\frac{W_{n+1}}{W_n} = \frac{W_{2n+2}}{W_{2n}} = \begin{cases} & [-1] & \text{if } n \equiv 1 (\bmod \ 3) \\ & [0] & \text{if } n \equiv 2 (\bmod \ 3) \end{cases},$$
 undefined if $n \equiv 0 (\bmod \ 3)$
$$\frac{W_{2n+1}}{W_{2n-1}} = \begin{cases} & [0] & \text{if } n \equiv 1 (\bmod \ 3) \\ & \text{undefined} & \text{if } n \equiv 2 (\bmod \ 3) \end{cases}$$

$$[-1] & \text{if } n \equiv 0 (\bmod \ 3)$$

for $n \geq 1$.

3. If $k = \pm 2$, then

$$\frac{W_{n+1}}{W_n} = \frac{W_{2n+2}}{W_{2n}} = [1;n] \quad and \quad \frac{W_{2n+1}}{W_{2n-1}} = [1;n-1,2]$$

for n > 2.

4. If |k| > 2, then

$$\frac{W_{n+1}}{W_n} = [k^2 - 2; \underbrace{-k^2 + 2, k^2 - 2}_{(n-2)/2 \ times}, -k^2 + 2]$$

for even $n \geq 2$, or

$$\frac{W_{n+1}}{W_n} = \left[k^2 - 2; \underbrace{-k^2 + 2, k^2 - 2}_{(n-1)/2 \ times}\right]$$

for odd $n \geq 3$. Also

$$\frac{W_{2n+1}}{W_{2n-1}} = \left[k^4 - 4k^2 + 2; \underbrace{-k^4 + 4k^2 - 2, k^4 - 4k^2 + 2}_{(n-2)/2 \text{ times}}, -k^4 + 4k^2 - 3\right]$$

for even $n \ge 2$, or

$$\frac{W_{2n+1}}{W_{2n-1}} = \left[k^4 - 4k^2 + 2; \underbrace{-k^4 + 4k^2 - 2, k^4 - 4k^2 + 2}_{(n-3)/2 \ times}, -k^4 + 4k^2 - 2, k^4 - 4k^2 + 3\right]$$

for odd $n \geq 3$, and finally

$$\frac{W_{2n+2}}{W_{2n}} = \left[k^4 - 4k^2 + 2; \underbrace{-k^4 + 4k^2 - 2, k^4 - 4k^2 + 2}_{(n-2)/2 \text{ times}}, -k^4 + 4k^2 - 2\right]$$

for even $n \geq 2$, or

$$\frac{W_{2n+2}}{W_{2n}} = \left[k^4 - 4k^2 + 2; \underbrace{-k^4 + 4k^2 - 2, k^4 - 4k^2 + 2}_{(n-1)/2 \text{ times}}\right]$$

for odd $n \geq 3$.

Proof. 1. Let k = 0. Then $W_n = (-1)^{n+1}n$. So

$$\frac{W_{n+1}}{W_n} = \frac{(-1)^{n+2}(n+1)}{(-1)^{n+1}n} = -2 + \frac{n-1}{n} = -2 + \frac{1}{1 + \frac{1}{n-1}} = [-2; 1, n-1].$$

Similarly, we deduce that

$$\frac{W_{2n+1}}{W_{2n-1}} = \frac{2n+1}{2n-1} = 1 + \frac{2}{2n-1} = 1 + \frac{1}{n-1+\frac{1}{2}} = [1; n-1, 2]$$

and
$$\frac{W_{2n+2}}{W_{2n}} = \frac{2n+2}{2n} = 1 + \frac{1}{n} = [1; n].$$

- 2. Let $k = \pm 1$, then $W_n = 1$ for $n \equiv 1 \pmod{3}$; -1 for $n \equiv 2 \pmod{3}$ or 0 for $n \equiv 0 \pmod{3}$. Hence the result is clear.
 - 3. Let $k = \pm 2$. Then $W_n = n$. So clearly,

$$\begin{split} \frac{W_{n+1}}{W_n} &= \frac{n+1}{n} = 1 + \frac{1}{n} = [1;n] \\ \frac{W_{2n+1}}{W_{2n-1}} &= \frac{2n+1}{2n-1} = 1 + \frac{1}{n-1+\frac{1}{2}} = [1;n-1,2] \\ \frac{W_{2n+2}}{W_{2n}} &= \frac{2n+2}{2n} = \frac{n+1}{n} = 1 + \frac{1}{n} = [1;n]. \end{split}$$

4. Let |k|>2. We prove it by induction on n. Let n=2. Then $W_2=k^2-2$ and $W_3=k^4-4k^2+3$ and hence

$$\frac{W_3}{W_2} = \frac{k^4 - 4k^2 + 3}{k^2 - 2} = k^2 - 2 + \frac{1}{-k^2 + 2} = [k^2 - 2; -k^2 + 2].$$

So it is true for n = 2. Let us assume that it is true for n - 2, that is,

$$\frac{W_{n-1}}{W_{n-2}} = [k^2 - 2; \underbrace{-k^2 + 2, k^2 - 2}_{(n-4)/2 \text{ times}}, -k^2 + 2].$$

Then

$$[k^{2}-2;\underbrace{-k^{2}+2,k^{2}-2}_{(n-2)/2 \text{ times}},-k^{2}+2] = k^{2}-2+\frac{1}{-k^{2}+2+\frac{1}{k^{2}-2+\frac{1}{-k^{2}+2}}}$$

$$k^{2}-2+\frac{1}{-k^{2}+2}$$

$$\begin{split} &=k^2-2+\frac{1}{-k^2+2+\frac{1}{\frac{W_{n-1}}{W_{n-2}}}}=\\ &=\frac{(k^4-4k^2+3)W_{n-1}-(k^2-2)W_{n-2}}{(k^2-2)W_{n-1}-W_{n-2}}=\\ &=\frac{(k^2-2)[(k^2-2)W_{n-1}-W_{n-2}]-W_{n-1}}{(k^2-2)W_{n-1}-W_{n-2}}=\\ &=\frac{(k^2-2)W_n-W_{n-1}}{(k^2-2)W_{n-1}-W_{n-2}}=\\ &=\frac{W_{n+1}}{W_{n-1}}. \end{split}$$

The other cases can be proved similarly.

3.6. Cross-ratio

Theorem 3.10. Let $[W_n, W_{n+1}; W_{n+2}, W_{n+3}]$ denote the cross-ratio of four consecutive W_n numbers.

1. If k = 0, then

$$[W_n, W_{n+1}; W_{n+2}, W_{n+3}] = \frac{4}{(2n+3)^2}.$$

2. If $k = \pm 1$, then

$$[W_n, W_{n+1}; W_{n+2}, W_{n+3}] = \begin{cases} \infty & \text{for } n \equiv 0 \pmod{3} \\ -\infty & \text{for } n \equiv 1, 2 \pmod{3}. \end{cases}$$

3. If $k = \pm 2$, then

$$[W_n, W_{n+1}; W_{n+2}, W_{n+3}] = \frac{4}{3}.$$

4. If |k| > 2, then

$$\lim_{n \to \infty} [W_n, W_{n+1}; W_{n+2}, W_{n+3}] = \frac{k^2}{k^2 - 1}.$$

Proof. Recall that the cross–ratio of four different real numbers a, b, c, d is denoted by [a, b; c, d] and is defined to be

(3.6)
$$[a, b; c, d] = \frac{(a-c)(b-d)}{(b-c)(a-d)}.$$

1. Let k=0. Then since $W_n=(-1)^{n+1}n$, we have

$$\begin{split} &[W_n,W_{n+1};W_{n+2},W_{n+3}] = \frac{(W_n - W_{n+2})(W_{n+1} - W_{n+3})}{(W_{n+1} - W_{n+2})(W_n - W_{n+3})} = \\ &= \frac{[(-1)^{n+1}n - (-1)^{n+3}(n+2)][(-1)^{n+2}(n+1) - (-1)^{n+4}(n+3)]}{[(-1)^{n+2}(n+1) - (-1)^{n+3}(n+2)][(-1)^{n+1}n - (-1)^{n+4}(n+3)]} = \\ &= \frac{4}{(2n+3)^2}. \end{split}$$

- 2. Let $k=\pm 1$. Then $W_n=1$ if $n\equiv 1 \pmod 3$, -1 if $n\equiv 2 \pmod 3$ or 0 if $n\equiv 0 \pmod 3$. So $W_n-W_{n+2}=1$ if $n\equiv 0,1 \pmod 3$ or -2 if $n\equiv 2 \pmod 3$; $W_{n+1}-W_{n+3}=1$ if $n\equiv 0,2 \pmod 3$ or -2 if $n\equiv 1 \pmod 3$; $W_{n+1}-W_{n+2}=-1$ if $n\equiv 1,2 \pmod 3$ or 2 if $n\equiv 0 \pmod 3$ and $W_n-W_{n+3}=0$ for every n. Hence $(W_n-W_{n+2})(W_{n+1}-W_{n+3})=1$ if $n\equiv 0 \pmod 3$ or -2 if $n\equiv 1,2 \pmod 3$. So the result is obvious.
 - 3. Let $k = \pm 2$. Then $W_n = n$ and hence

$$[W_n, W_{n+1}; W_{n+2}, W_{n+3}] = \frac{[n - (n+2)][n+1 - (n+3)]}{[n+1 - (n+2)][n - (n+3)]} = \frac{4}{3}.$$

4. Let |k| > 2. Then $W_n = (k^2-2)W_{n-1} - W_{n-2}$. So $W_{n+2} = (k^2-2)W_{n+1} - W_n$ and $W_{n+3} = (k^4-4k^2+3)W_{n+1} - (k^2-2)W_n$. Hence

$$W_n - W_{n+2} = -(k^2 - 2)W_{n+1} + 2W_n,$$

$$W_{n+1} - W_{n+3} = (-k^4 + 4k^2 - 2)W_{n+1} + (k^2 - 2)W_n,$$

$$W_{n+1} - W_{n+2} = (-k^2 + 3)W_{n+1} + W_n,$$

$$W_n - W_{n+3} = -(k^4 - 4k^2 + 3)W_{n+1} + (k^2 - 1)W_n.$$

So (3.6) becomes

$$(3.7) [W_n, W_{n+1}; W_{n+2}, W_{n+3}]$$

$$= \frac{[-(k^2 - 2)W_{n+1} + 2W_n][(-k^4 + 4k^2 - 2)W_{n+1} + (k^2 - 2)W_n]}{[(-k^2 + 3)W_{n+1} + W_n][-(k^4 - 4k^2 + 3)W_{n+1} + (k^2 - 1)W_n]}.$$

Taking the limit of both sides of (3.7), we deduce that

$$\lim_{n \to \infty} [W_n, W_{n+1}; W_{n+2}, W_{n+3}] = \frac{k^2}{k^2 - 1}$$

since
$$W_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$$
.

3.7. Circulant matrix and spectral norm

Theorem 3.11. Let |k| > 2 and let W denote the circulant matrix of W_n numbers. Then

1. The eigenvalues of W are

$$\lambda_j(W) = \frac{(W_{n-1} + 1)w^{-j} - W_n}{w^{-2j} - (k^2 - 2)w^{-j} + 1}$$

for $j = 0, 1, 2, \dots, n - 1$.

2. The spectral norm of W is

$$||W||_{spec} = \frac{W_n - W_{n-1} - 1}{k^2 - 4}$$

for $n \geq 1$.

Proof. 1. Recall that a circulant matrix (see [3]) is a matrix M defined as

$$M = \begin{bmatrix} m_0 & m_1 & m_2 & \cdots & m_{n-2} & m_{n-1} \\ m_{n-1} & m_0 & m_1 & \cdots & m_{n-3} & m_{n-2} \\ m_{n-2} & m_{n-1} & m_0 & \cdots & m_{n-4} & m_{n-3} \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ m_2 & m_3 & m_4 & \cdots & m_0 & m_1 \\ m_1 & m_2 & m_3 & \cdots & m_{n-1} & m_0 \end{bmatrix},$$

where m_i are constant. In this case, the eigenvalues of M are

(3.8)
$$\lambda_j(M) = \sum_{n=0}^{n-1} m_u w^{-ju},$$

where $w = e^{\frac{2\pi i}{n}}$, $i = \sqrt{-1}$ and $j = 0, 1, \dots, n-1$. Since $W_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$, we get from (3.8) that

$$\lambda_{j}(W) = \sum_{u=0}^{n-1} W_{u} w^{-ju} =$$

$$= \sum_{u=0}^{n-1} \left(\frac{\alpha^{u} - \beta^{u}}{\alpha - \beta} \right) w^{-ju} =$$

$$= \frac{1}{\alpha - \beta} \left[\sum_{u=0}^{n-1} (\alpha w^{-j})^{u} - \sum_{u=0}^{n-1} (\beta w^{-j})^{u} \right] =$$

$$\begin{split} &= \frac{1}{\alpha - \beta} \left[\frac{\alpha^n - 1}{\alpha w^{-j} - 1} - \frac{\beta^n - 1}{\beta w^{-j} - 1} \right] = \\ &= \frac{1}{\alpha - \beta} \left[\frac{w^{-j} (\alpha^n \beta - \beta - \beta^n \alpha + \alpha) - \alpha^n + \beta^n}{w^{-2j} - (k^2 - 2)w^{-j} + 1} \right] = \\ &= \frac{w^{-j} \left[(\alpha \beta) \left(\frac{\alpha^{n-1} - \beta^{n-1}}{\alpha - \beta} \right) + \frac{\alpha - \beta}{\alpha - \beta} \right] - \frac{\alpha^n - \beta^n}{\alpha - \beta}}{w^{-2j} - (k^2 - 2)w^{-j} + 1} = \\ &= \frac{(W_{n-1} + 1)w^{-j} - W_n}{w^{-2j} - (k^2 - 2)w^{-j} + 1} \end{split}$$

as we claimed.

2. The spectral norm of a matrix $M = [m_{ij}]_{n \times n}$ is defined to be

$$||M||_{spec} = \max_{0 \le j \le n-1} \{\sqrt{\lambda_j}\},$$

where λ_j are the eigenvalues of M^*M and M^* denotes the conjugate transpose of M. For the circulant matrix for W_n numbers, we have

$$W^*W = \left[\begin{array}{cccccc} W_{11} & W_{12} & \cdots & W_{1(n-1)} & W_{1n} \\ W_{21} & W_{22} & \cdots & W_{2(n-1)} & W_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ W_{(n-1)1} & W_{(n-1)2} & \cdots & W_{(n-1)(n-1)} & W_{(n-1)n} \\ W_{n1} & W_{n2} & \cdots & W_{n(n-1)} & W_{nn} \end{array} \right],$$

where

$$\begin{split} W_{11} &= W_0^2 + W_{n-1}^2 + \dots + W_2^2 + W_1^2, \\ W_{12} &= W_0 W_1 + W_{n-1} W_0 + \dots + W_2 W_3 + W_1 W_2, \\ \dots \\ W_{1(n-1)} &= W_0 W_{n-2} + W_{n-1} W_{n-3} + \dots + W_2 W_0 + W_1 W_{n-1}, \\ W_{1n} &= W_0 W_{n-1} + W_{n-1} W_{n-2} + \dots + W_2 W_1 + W_1 W_0, \\ W_{21} &= W_1 W_0 + W_0 W_{n-1} + \dots + W_3 W_2 + W_2 W_1, \\ W_{22} &= W_1^2 + W_0^2 + \dots + W_3^2 + W_2^2, \\ \dots \\ W_{2(n-1)} &= W_1 W_{n-2} + W_0 W_{n-3} + \dots + W_3 W_0 + W_2 W_{n-1}, \\ W_{2n} &= W_1 W_{n-1} + W_0 W_{n-2} + \dots + W_3 W_1 + W_2 W_0, \\ \dots \\ W_{(n-1)1} &= W_{n-2} W_0 + W_{n-3} W_{n-1} + \dots + W_0 W_2 + W_{n-1} W_1, \end{split}$$

$$W_{(n-1)2} = W_{n-2}W_1 + W_{n-3}W_0 + \dots + W_0W_3 + W_{n-1}W_2,$$

$$\dots$$

$$W_{(n-1)(n-1)} = W_{n-2}^2 + W_{n-3}^2 + \dots + W_0^2 + W_{n-1}^2,$$

$$W_{(n-1)n} = W_{n-2}W_{n-1} + W_{n-3}W_{n-2} + \dots + W_0W_1 + W_{n-1}W_0,$$

$$W_{n1} = W_{n-1}W_0 + W_{n-2}W_{n-1} + \dots + W_1W_2 + W_0W_1,$$

$$W_{n2} = W_{n-1}W_1 + W_{n-2}W_0 + \dots + W_1W_3 + W_0W_2,$$

$$\dots$$

$$W_{n(n-1)} = W_{n-1}W_{n-2} + W_{n-2}W_{n-3} + \dots + W_1W_0 + W_0W_{n-1},$$

$$W_{nn} = W_{n-1}^2 + W_{n-2}^2 + \dots + W_1^2 + W_0^2.$$

The eigenvalues of W^*W are $\lambda_0, \lambda_1, \dots, \lambda_{n-1}$. Here λ_0 is maximum and is

$$\lambda_0 = W_0^2 + W_1^2 + \dots + W_{n-2}^2 + W_{n-1}^2$$

$$+ 2 \begin{bmatrix} W_0(W_1 + W_2 + \dots + W_{n-2} + W_{n-1}) \\ + W_1(W_2 + \dots + W_{n-2} + W_{n-1}) \\ + \dots \\ + W_{n-2}W_{n-1} \end{bmatrix}$$

$$= (W_0 + W_1 + \dots + W_{n-1})^2.$$

Thus the spectral norm of W is hence $||W||_{spec} = \sqrt{\lambda_0} = W_0 + W_1 + \dots + W_{n-1}$. So $||W||_{spec} = \frac{W_n - W_{n-1} - 1}{k^2 - 4}$ by Theorem 3.1.

References

- [1] Barbeau, E. J., Pell's Equation, Springer-Verlag New York, Inc, 2003.
- [2] Conway, J. H. and R. K. Guy, Fibonacci Numbers, In The Book of Numbers, New York, Springer-Verlag 1996.
- [3] Davis, P. J., Circulant Matrices, John Wiley, New York, 1979.
- [4] Hilton, P., D. Holton and J. Pedersen, Fibonacci and Lucas Numbers, Ch. 3 in Mathematical Reflections in a Room with Many Mirrors, New York, Springer-Verlag 1997.
- [5] Jacobson, M. and H. Williams, Solving the Pell Equation, CMS Books in Mathematics, Springer, 2010.
- [6] Koshy, T., Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, 2001.

- [7] Mollin, R.A., Quadratics, CRS Press, Boca Raton, New York, London, Tokyo, 1996.
- [8] Niven, I., H. S. Zuckerman and H. L. Montgomery, An Introduction to the Theory of Numbers, Fifth ed., John Wiley & Sons. Inc., New York, 1991.
- [9] Ogilvy, C. S. and J. T. Anderson, Fibonacci Numbers, Ch. 11 in Excursions in Number Theory, New York, Dover 1988.
- [10] **Ribenboim**, **P.**, My Numbers, My Friends, Popular Lectures on Number Theory, Springer-Verlag, New York, Inc. 2000.
- [11] **Tekcan, A.,** Continued fractions expansion of \sqrt{D} and Pell equation $x^2 Dy^2 = 1$, Math. Moravica, **15(2)** (2011), 19–27.
- [12] Vorobiev, N. N., Fibonacci Numbers, Birkhauser, Basel, Boston, 2002.

A. Akın and A. Tekcan

Uludag University
Faculty of Science
Department of Mathematics
Gorukle, Bursa-Turkiye
arzuakin504@gmail.com
tekcan@uludag.edu.tr