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Abstract. In [11], the second author considered the positive integer so-
lutions of the Pell equation z? — Dy? = 1 for some specific values of D
including D = k? — 2 for an integer k > 2. In this paper, we are able to
give the n™ integer solution (xn,y») of 2% — (k* — 2)y? = 1 by a different
method and then we set an integer sequence W,, = pW,,_1 — ¢W,_2 with
parameters p = k> — 2 and ¢ = 1 and derive some algebraic relations on it.

1. Preliminaries

Let p and ¢ be non-zero integers such that d = p*> — 4q # 0 (to exclude a
degenerate case). We set the sequences U,, and V,, to be
(11) U, = Un(pv q) =pUp_1 — qUn_2,
‘/n = V!L(p) Q) = pvn—l - an—2
for n > 2 with Uy = 0,U; = 1,Vy = 2 and V; = p. The characteristic equation
of them is 22 —pzr+q = 0 and hence the roots of it are o = LQ\/& and g = p_T‘/E
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Their Binet formulas are U,, = O‘Z:gn and V,, = o™ + . For the companion

matrix M = { ‘21) _Oq } one has

Un _ n—1 1 Vn _ n—1 p
o e [ [ [ 8]

for n > 1. It is easy to verify the following formal power series developments
for any p and g,

= T s 2 —px
Uz = ——M— d Vo' = ——.
HZ:% T g2 nzz;) " T T pr + qa?

In (1.1), we note that

Un(1,—1) = F,, Fibonacci numbers (A000045 in OEIS),
Vo (1,-1) » Lucas numbers (A000032 in OEIS),
Un(2,—1) = P, Pell numbers (A000129 in OEIS),
Va(2,-1) = @, Pell-Lucas numbers (A002203 in OEIS).

(For further details see [2, 4, 6, 8, 9, 10, 12]).

2. The Pell equation z? — (k? — 2)y? =1

In [11], the second author considered the integer solutions of the Pell equa-
tion 22 — Dy? = 1 (for further details on Pell equations see [1, 5, 7]) for some
specific values of D including D = k% — 2 for some positive integer k£ > 2 and
proved the following theorem.

Theorem 2.1. ([11, Theorem 2.4]) Let k > 2 be any integer and D = k? — 2.

1. The continued fraction expansion of /D is

[1,2], ifk =2
VD —

k—1;T,k—2,1,2k—2], ifk>2.
2. (z1,y1) = (k* — 1,k) is the fundamental solution. Set {(xn,yn)}, where

In o k1L k—21,2k -2, L k—2,1,2k—2,1,k—1
Yn

n—1 times

for n>2. Then (,,y,) is a solution of z? — (k* — 2)y? = 1.
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3. The consecutive solutions (Tp,yn) and (Tpi1,Ynt1) satisfy
Tpy1 = (B2 = Dy + (K = 2k)y, and yny1 = kxp, + (B2 — Dy,
forn > 1.
4. The solutions (x,,yn) satisfy the following recurrence relations

Tn = (2k2 - 3) (-Tn—l + xn—Q) — Tn-3,
Yn = (2k2 - 3) (ynfl + yn—2) — Yn-3
forn > 4.
In this section, we aim to give a different method (based on binomial ex-

pansion) for finding the integer solutions of 22 — (k* — 2)y? = 1. But we first
give the following theorem which we need it.

. k2 —1 K> —2k
Theorem 2.2. Let k > 2 be any integer. Set H = k o1 | Then
HY, HY
th on 11 12
the n'™ power of H is H" = { Hy  Hj, } , where
=3 () 0 - kG 2’ = i
i=0
2
H™ — k2 -1 n7172zk7, kS — 9% i+1
N B [ e A
e
HM = k2 -1 n7172zk1+1 k?) — 92k)¢
R ] (R [CE (k° ~2%)

©
I
=3

for evenn > 2 or

3
|
[

n -— n n—217.2 (1.2 [ n
Hll = Z(QZ) (k2 - 1) ? k (k‘3 - 2k) = H22’
=0
n—1
n /[ n n—1-2i1.i i
H12:Z(21+1>(k}2—1) 1 2]€(/€3—2k) +1’

©
I
- O

3
|

2
H = (Qin 1) (k2 — )" 120+ (33 _ op)

for oddn > 1.
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Proof. We prove by induction. Let n = 2. Then since Hf; = 2k* — 4k* + 1,
H?, = 2k% — 6k3 + 4k, H3, = 2k3 — 2k and H3, = 2k*— 4k? + 1, it is true for
n = 2. Let us assume that it is satisfied for n — 2. Then

g2 | (B =102k —2k) 20k - 1)K —-2k) ]
- 2k(k? — 1) (k* —1)* + k(k® — 2k)
Hn—2 Hn—Q :l
2.1 X I 12,0,
( ) [ H21 ? H22 ?

Applying (2.1), we deduce that

[(k* —1)? + k(K® — 2k)|H} % + [2k(K* — 1)]H5 % =
= [(k* = 1) + k(k® — 2k)]x
(k> = 1) =2 4+ (",?) (K = D)4k (k% — 2k) + - -
x F(U T2 (R - 1)2k" (KB - 2k) " -
FEUT (KB - 2k)" T

(;;2) (k2 _ 1)n73(k3 _ 2k>
+("3%) (K = )" k(K — 2k)% + - - -
F(UT2) (K2 - 1Pk (KB - 2k) T

4 n—2

+(P (R = kT (K - 2k) "5

+ [2k(k* — 1)]

n

= (21" + ( 2) (k2 — 1)" 2k (k® — 2k) + (Z) (k2 — 1)" 42 (k% — 2k)2+

+o ( " 4)(k2 DA (K - 2k) T +

n —

+ ( " 2)(k2 — 12T (K = 2k) "7 + kB (KD — 2k)% =

3

(2i> (K? = )" 2k (k® — 2k)" =

I
*Mw\:

I
3 o

7

—
[,

Similarly it can be shown that [2(k%—1) (k% —2k)|H]'" 24 [(k? —1)2 + k (k> — 2k)]
Hi5? = Hiy, [(k* = 1)° + k(k* — 2k)|H37? + [2k(k® — 1)]H35° = HE, and
[2(k% — 1)(k® — 2k)| Hyy 2 + (k% — 1) + k(k® — 2k)|HYy ? = HY, as we wanted.

The other case can be proved similarly. |

From Theorem 2.2, we can give the following main theorem.
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Theorem 2.3. Let k > 2 be any integer. Then the set of all positive integer
solutions of #2 — (k* — 2)y*> = 1 is {(wn,yn)}, where

KMw\s

(50) (K* = 1)" =21k (k® — 2k)"  for even n > 2

2%

=0
T =
n;l
> (5) (k2 = )" 2kH(k® — 2k)" for odd n > 1
i=0
and
%
. (2;’11)(1‘52 — )2 (3 — 2k) for even n > 2
Yn =
n—1
> (21‘11)(1‘52 — 1) 1=20ki (k3 — 2k) for odd n > 1.
Proof. It can be proved by induction on n as in Theorem 2.2. [ |

3. The integer sequence W,

Even if, in the previous chapter, we had considered the solutions of the Pell
equation z? — Dy? = 1, where D = k2 — 2 for an integer k > 2, we do not have
such a restriction on k in this chapter. Therefore, the properties of the integer
sequence can be investigated for all integers k.

Now we set the integer sequence W = W, (k) as Wy = 0, W; = 1 and
(3.1) Wy =pWn_1 — qWpn_
for n > 2, where p = k?—2 and ¢ = 1. Here one can easily notice the followings:
1. If k = 0, then W,, = —2W,,_1 — W,,_5 and hence W,, = (—1)"*!n.

2. If k =41, then W, = —-W,,_; — W,,_5 and so W,, = 1 for n = 1(mod 3);
—1 for n = 2(mod 3) or 0 for n = 0(mod 3).

3. If k = %2, then W,, = 2W,,_1 — W,,_> and hence W,, = n.

The characteristic equation of (3.1) is 22 — (k? — 2)x + 1 = 0 and hence the
roots of it are o = % and 8 = %, where A = k* —4k2. Hence the
Binet formula for W,, is W,, = O‘a:g for k # 0,42 (Note that, if &k = 0,42,
then a = 8 and so W, is undefined, that is, this formula can not be used).
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3.1. Sums
Theorem 3.1. For the sums of first n—terms of W,,, we have

i=1 %

L if k=0, then > W; = = for evenn >2 or > W; = %L for odd n > 1;
— i—1

2. if k= %1, then > W; =0 forn = 0,2(mod 3) or > W; =1 forn =1
i=1 i=1
(mod 3);

3. if k=42, then > W, = 2230,
=1

4. if |k| > 2, then

- Woar — W, — 1
W=~ -

Proof. 1. Let k = 0. Then as we said above W,, = (=1)"*1n. So clearly, the
sum of first n—terms of W,, is 5" if n is even or ”74'1 if n is odd.

2. Let Kk = +1. Then W,, = —-W,,_1 — W,,_o, that is, W,, = 1 forn =1
(mod 3); —1 for n = 2(mod 3) or 0 for n = 0(mod 3). So if n = 0,2(mod 3),
then the sum of first n—terms of W,, is 0 and if n = 1(mod 3), then the sum
of first n—terms of W,, is 1.

3. Let k = £2. Then W,, = 2W,,_1 — W,,_o, that is, W,, = n. So the sum

of first n—terms of W,, is w _ n’4n

4. Let |k| > 2. Notice that W, 1o = (k* —3)W,, 41 + W, 11 — W,, and hence
(3.2) Whio — Wyi1 = (B = 3) W1 — Wi
Applying (3.2), we deduce that
Wy — W1 = (k% = 3)W, — Wy,
Wy — Wy = (k% — 3)Wy — W7,
Wy — Wz = (k* = 3)W5 — Wh,
(3.3) :
Wn+1 -Wy = (k2 - S)Wn - Wn—l;
Whio — Wogr = (% = 3) Wy — W,
If we sum both sides of (3.3), then we obtain
(34) Wipo = Wi = (K —4)(W1 + Wa + -+ W) = Wo + (K = 3)Wp 1.



Pell equation and integer sequence 309

Since Wy = 0 and Wi = 1, (3.4) becomes Wy, 1o —1 = (k* —4) (Wi + W+ -+
+W,) + (k? = 3)W,,41. Taking W, 1o — (k% —2)W,, 1 — W,,, we conclude that
W1+W2+...+Wn:%aswewanted. u

In 1876, the French mathematician Francois Edouard Anatole Lucas dis-
covered an explicit formula for the Fibonacci numbers, namely,

Ln=)/2)
Fn: 5
> (")

and for the Lucas numbers,

w S0 (20
"« i i—1 '
=0
Similarly we can give the following theorem which can be proved as in
Theorem 2.2.

Theorem 3.2. Let W,, denote the n'™ number. Then

[(n—1)/2] n—1—i
W, — 1y 2 o\n—1-2i
D R C I G IR
1=0
form > 1.
Also we can give the following result which can be proved similarly.

Theorem 3.3. Let W,, denote the n'™ number. Then for every k

1. the sum of (2i — 1)t W,, numbers from 1 to n is a perfect square and is

ZWQi—l =W,
i=1
2. also
2n
> Wi = W (Wy, + Wipa),
i=1
2n-+1

ZW Wit Wy 4+ Whp1),

ZW% =W, Wyi1,

2n

Z(Wz + Wig1) = Wopt (Whgr +2W, + W, 1),
i=1
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2n+1

D (Wit Wist) = (W 4+ Woi) W + Waga),
i=1

2n

> (Waig1 + Waiga) = Wani1(Wan g1 + Wanga).
i=0

3.2. Relations

Theorem 3.4. Let W,, denote the n'™ number.

1. If/f = O, :t?, then Wgn = 2W2n_2 - Wgn_4 and W2n+1 = 2W2n_1 - WQn_3
form > 2.

2. Ifk = :|:1, then Wgn = —Wgn,Q — W2n74 and W2n+1 = —Wgnfl - Wgn,;),
form > 2.

3. If |k“ > 2, then W, = (k4 — 4k + Q)Wzn_g — Won—q4 and Wopi11 =
= (k’4 —4k? + 2)W2n_1 — Waon_3 f07’ n > 2.

Proof. We only prove 3. The others can be proved similarly. Let |k| > 2.
Then Wa,, = (k? — 2)Wa,,_o — Wa,,_4 and hence
Wan = (k* = 2) [(k* = 2)Wap_3 — Wap_3] — Wap_s =
= Won_o(k* — 4k* +3) — (k* = 2) [(K* — 2)Wap_a — Way_5] =
= Wan_o(k* — 4k* 4+ 3) — (k* — 2)°Wap_a + (k* — 2)Way,_5 =
= Wap_o(k"* — 4k +2) + (K — 2)[(k* — 2)Wap_s — Wap_5]+
+ Wan—a[—1— (k* = 2)%] + (k* — 2)Way_5 =
= Wan_o(k* — 4k* +2) + (E* — 2)°Wa,_4 — (k* — 2)Way_5+
+ Won_a[-1 — (k* — 2)?] + (k* — 2)Wa,_5 =
= (k* — 4k* + 2)Way o — Wayp_4.
The other assertions can be proved similarly. |

Further we can give the following result.

Theorem 3.5. Let W,, denote the n'™® number. Then for every k
1. Whi1 + Wo) Wy — W) = Wap i1 for every integer n > 1,
2. WoWps1 — Wi 1Wo, = Wi for every positive integers n,m,

3. Wy + Wi ) (W, — Wi) = WoamWh—im for every integers n > m > 1.
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4. The product of (n + 1)t and (n — 1)%* terms of W,, numbers and adding 1
1s a perfect square and is

V Wn+1Wn—1 +1=W,

forn > 1. In fact,
n—1

1+ Z Wait1.

i=1

Proof. 1. Let k # 0,£2. Since W,, = O‘Z:gn, we easily deduce that

(3:5) W1 + W) (Whpr — Wy) = W3+1 - Wr% =

an-}-l_Bn-ﬁ-l 2 an_ﬂn 2
:< a—p )_<a—ﬁ>:

a2n<a2 _ 1) + 6277,(52 _ 1)

k4 — 4k2
2 2 4 _
Note that 7§~ = -2 and e = \/k47’84k2. So (3.5) becomes

02 (a? ~ 1) + F21(8% 1) _

(Wn+l + Wn)(Wn—i-l - Wn) =

k4 — 4k2
Oé2n+1 _ BQn—l—l
VR 4k
= Wany1.

Let k= 0. Then W,, = (—1)""!n. So
(Woga + W) Wgr = W) = (=1)*"2(2n + 1) = Wap .
Similarly let & = +2. Then since W,, = n, we get
Woa1 + Wo ) (W1 — Wy) =2n+1 = Wayyg.

The others can be proved similarly. |

Theorem 3.6. Let W,, denote the n'* number.

1. (a) If k=0, then o™ + ™ = (=1)"2 forn > 0.
(b) If k = £1, then o™ + ™ = 2 when n = 0(mod 3) or —1 otherwise.
(¢) If k=42, then o™ + 8" =2 forn > 0.
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(d) If |k| > 2, then

Wit — (kK> —=2)W,, forn>0
(k2 =2)W,, —2W,,_1 forn > 1.

Wit1 — Wi form>1

2. (a) If k=0, then Wy4q1 — Wy_q = (=1)"2 forn > 1.

b ]fk—:l:l then L[’I’L _Linf —2 ’()1 n= () m()d?) or L[/’I’L+ _[/[’nf ==
) +
- _1 015h€7 wiSe.

(¢) If k = £2, then Wy —Wy,_1 =2 forn>1.
(d) If |k| > 2, then

Z (;)(k2 _ 2)n72i(k4 _ 4k2)z
Wn+1 —-Wh1= =0

anl

for evenn > 2; or

22: (2nz) (k2 _ 2)n—2i(l€4 _ 4/{2)1
Wn+1 - Wn—l - =0

gn—1
for oddn > 1.
Proof. 1. (a) Let k =0. Then o =8 = —1. So a™+ 5" = (—1)"2 for n > 0.

Let k = +1. Then a = ’HT“/g and 3 = 71%“/5 Hence clearly o+

L (b)
= 2 when n = 0(mod 3) or —1 otherwise.

g
1. (¢) Let k==42. Thena=p=1. Soa™ 4+ 4" =2 for n > 0.

1. (d) Let |k| > 2. Since W11 = (k* — 2)W,, — W,,_1, we easily get
e n—1
o2 (525) ()
o (atﬂ"%%(ﬂa ~af) =
7 n<k2225>+5n<2k2+2a>
= 7& 7& =

since k2 —2 — 28 =2 — k? + 20 = VA.
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2. (a) Let k=0. If nis even, then Wpy1 — W,y =n+1—-(n—1) =2
and if n is odd, then W11 — W,,_1 = —(n+1) — (1 —n) = —2. So in both
cases, Wyp41 — Wy_1 = (=1)"2 for n > 1.

2. (b) Let k = +1. Then W, 41 = =1 if n = 1(mod 3), W41 =1 if n
= 0(mod 3), Wy11 = 0 if n = 2(mod 3) and W,,_; = —1 if n = 0(mod 3),
Wn—l =1lifn= Q(HlOd 3), Wn—l =0ifn= l(mod 3) So W7L+1 — Wn—l =2
if n = 0(mod 3) or —1 otherwise.

2. (¢) Let k=42. Then Wy,py =n+1and W,,_; =n—1. So W,y1 —
Wpoi=n+1—(n—-1)=2forn>1.

2. (d) Let |k| > 2. Then by binomial series expansion, we easily get the
desired result. [ |

3.3. Greatest common divisor

Theorem 3.7. Let W,, denote the n'™ number. Then
1. Any two consecutive W,, numbers are relatively prime, that is,
Wy Whoq) =1
for every k.
(a) If k=0, then

_ Winm) for odd m >'1
(W, Wi) = { (_1)n+1W(n7m) for even m > 2.

(b) Let k= +£1. If m = 1,2(mod 3), then

(Wo, W) =1
and if m = 0(mod 3), then
/0 n=0(mod 3)
(W, Won) _{ 1 otherwise.

(c) If |k| > 2, then
(Wna Wm) = W(n,m)

for every integer m > 1.
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2. If m > 1 is odd, then

B 1 for even n > 2
(an_l, an+1) - { |k-2 — 2| for oddn >1

and if m > 2 is even, then
Wam—1, Wam+1) =1
for every k.
3. (a) If k = £1, then

_J 0 ifn=3t
(W, Wayp) —{ 1 otherwise

for prime p =3 or
(Wi, Wayp) = Wy

for other primes p > 5.
(b) For other values of k,

_ I Wy ifn=pt
(W, Whpp) = { 1 otherwise

for every primes p > 3 and every integers t > 1.

4. (a) If k=0, then

for odd m > 1, or

for even m > 2.
(b) Let k =+£1. If m = 1(mod 3), then

W?nn _ { 1 fO’F n= 1, 2(m0d 3)

W, undefined  for n = 0(mod 3),
if m = 2(mod 3), then
Win { -1 forn=1,2(mod 3)
W, undefined  for n = 0(mod 3),
and if m = 0(mod 3), then
Winn

= undefined

n

for every n > 1.
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(c) If k = £2, then

Wmn =m
W,
for every integer m > 1.
(d) If |k| > 2, then
for every positive integer m > 1.
5. (a) If k=0, then
Wmn _ 1
WW,
for odd m >1, or
w,
mn__ 1 n+1
o, — b

for even m > 2.
(b) Let k =+£1. If m = 1,2(mod 3), then

Win 1 for n=1,2(mod 3)
W,,W,, | undefined  for n =0(mod 3)

and if m = 0(mod 3), then
Wmn

W, = undefined
for every n > 1.
(c) If k = £2, then
Wmn _ 1
W W,

for every integer m > 1.

(d) If |k| > 2, then

for every integer m > 1.
Proof. 1. Applying the Euclidean algorithm and the relation W,, = (k? —
—2)W,—1 — W, _o, we get
Wn (kQ ) n— 1+( Wn 1+Wn—1)_Wn—27
Wn 1—(Wn 1 n2)X1+Wn 2
(Wn—l - W ) (kz 4) n—2 + (W Wn 3),
Wn 2—(Wn 2= n3)X1+Wn 3
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(Wn72 - an?)) = (kQ - 2)Wn73 + (Wn73 - Wn74)7

Wy = (k* — 3)Wy + (Wy — W),
(k* —=3) =1x (k* — 3) +0.
Since W7 = 1 and Wy = 0 we conclude that (W,,, W, _1) = W; = 1.

The others can be proved similarly. |
3.4. Matrices

Theorem 3.8. Let

k-2 -1 -2 1
M_{ 1 0},]\7_[ 1 O}andS—[l 0].
(M is the companion matriz for Wy,). Then for every k we have
Wper =W,
n — >
1. M [ W,  —W, . } forn>1,

2. Wpy1 = SM™St forn >0,
3. W,, = SM" 2NS* forn>2,

Wn+ 1 Wn

n—1 —
4. M™"'N = { W, W,

} and det(M™" IN) = —1 forn > 1.

Proof. 1. We prove it by induction on n. Let n = 1. Then

o - )

o 1 0

1 _
M _[Wl ~Wo

So it is true for n = 1. Let us assume that this relation is satisfied for n — 1.
Since M™ = M™~'. M, we get

W, —Wih1 -2 -1
anl _Wn72 1 0

(K2 =Wy —Wooy  —W,
(k2 - 2)Wn71 - Wn72 _anl

_ Wn +1 - Wn
o Wn - Wn —1

2. It is easily seen that

SMrSt = [ 1 o]{”;;ﬂ _‘WW"1HH:[1 o][Wnﬂ}:WnH.
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3.
n—2 t [ anl —Wn—92 k2 -2 1 1 o
SM"2NS'=[1 o}_Wn_z_n_S L ollol=
[ anl —VVn-2 k2 -2 :|
[ } L n—2 ~ VWn-3 :| |: 1
—(1 o) B2 —Waa ]
L (k2 - Z)Wn72 - Wn73
=k =2)Wpoy = Wyp =
= W,.
4. Finally,
n—1 _ [ Wn —VWn-1 k2—2 1 -
MEN= 1w, —Wn_gH 1 0"
_ (kQ - 2)WTL - anl Wn o
N (k2 - 2)I/Vn—l - Wn—2 Wn—l N
_ WnJrl Wn
n Wn anl

and det(M"1N) = det(M" 1) det(N) = (1)""1(-1) = —1. This completes
the proof. [

3.5. Continued fraction expansion
Theorem 3.9. Let W,, denote the n'™ number.

1. If k=0, then

Wa
WZI =[-2;1,n—1] forn >3,
W2n+1
=|1;n—1,2| forn > 2,
Wap o

——= =[I;n] forn>2.
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2. If k = #£1, then

[—1] if n = 1(mod 3)
WM’;“ = V;i"” 0]  ifn=2(mod3) ,
n n undefined if n = 0(mod 3)
[0] if n = 1(mod 3)
% = ¢ undefined if n = 2(mod 3)
n—1 [-1] if n = 0(mod 3)

forn > 1.
3. If k = %2, then

WnJrl W2n+2
=———==[;n] and —/——— =
Wn WQn [ ] W2n—1

form > 2.

4. If |k| > 2, then

=[k* =2, —k* +2,k* — 2, —k* + 2]
N———

(n—2)/2 times

for evenn > 2, or

W,
W“ =k =2 —k*+2,k* -2
—_———
" (n—1)/2 times

for odd n > 3. Also

W2n+1

e = [k* — 4k + 2; —k* +4K% — 2, k% — 4k + 2, -k + 4k% - 3]
2n—1

(n—2)/2 times

for evenn > 2, or

W2n+1
W2n—1

= [k*—4k%42; —k* 4+ 4k — 2,k — 4k 4 2,—k* +4k% -2, k* 4k +3]

(n—3)/2 times

for odd n > 3, and finally

W2n+2
Wan

= [k* — 4k% 4+ 2; —k* + 4k? — 2,k — 4k? + 2, —k* + 4K% — 2]

(n—2)/2 times
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for evenn > 2, or

% = [k* — 4k% 4+ 2; —k* + 4k? — 2, k" — 4K* 4 2]
2n

(n—1)/2 times
for oddn > 3.

Proof. 1. Let k=0. Then W, = (=1)""!n. So

_1\n+2 _
Wn+1:( 1) (n+1):_2+n 1: 5 1
W, (=1)ntin n 1+ =

Similarly, we deduce that

W2n+1 2n+1 2 1
=l+—=14+—
T +n—1+%

=[Lin—1,2]

Wgn_l 2n —1 -

Wanta _ 2n42 _ 1 _ 1.
and 32 = 2= =1+ & = [I;n].

2. Let k = +£1, then W,, =1 for n = 1(mod 3); —1 for n = 2(mod 3) or 0
for n = 0(mod 3). Hence the result is clear.

3. Let k = +£2. Then W,, = n. So clearly,

Wn+1 n+1 1
W, + o= [n]
W2n+1 2n+1 1
Wona “2n-1 ' poggr Hin- LA
Wan+2 2n + 2 n+1 1

— = :1 —_ = 1' .
Wan, 2n n +n [1:m]

4. Let |k| > 2. We prove it by induction on n. Let n = 2. Then Wy = k? -2
and Wy = k* — 4k2 + 3 and hence

Ws  k*—4k2+3 1 ) )
A kP -2+ [k -2 —k 2|.
Wa 22 t o T B
So it is true for n = 2. Let us assume that it is true for n — 2, that is,
Wn—l

=[k* =2, —k*+2,k* — 2, —k* + 2].
~——

Wn72
(n—4)/2 times
Then
1
k% =2 —k? 4+ 2,k =2, k> +2] =k? -2+ -
\ = s Ea— 1
(n—2)/2 times + A
1
B =24 o
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1
k2924 =
_k2+2+wn%

W,

1

n—2

(k* — 4k% + 3)W, 1 — (k%2 — 2)W,,_»
(kQ - 2)Wn—1 - Wn—2 B
(2 = 2)[(k ~ Wiy — Woa] ~ Way _
(k2 — 2)Wn_1 — Wn_s

(k2 — 2>Wn - anl .
(k2 =2)Wy 1 =Wy p
Wn+1

W,

The other cases can be proved similarly. |
3.6. Cross-ratio

Theorem 3.10. Let [W,,, W, 11; W10, W,i3] denote the cross—ratio of four
consecutive W,, numbers.

1. If k=0, then
4

[Wn7 Wn+1; Wn+27 Wn+3] = m
2. If k = +£1, then

oo forn=0(mod 3)

[Wn7W7L+1;WTL+27Wn+3} = { —00 fOT?’L = 1,2(m0d 3).

3. If k= %2, then

W, W, W 4
[ ny Wnt1; Wni2, ”n+3] = g
4. If |k| > 2, then
k2
B W W W)=

Proof. Recall that the cross-ratio of four different real numbers a, b, ¢, d is
denoted by [a, b; ¢, d] and is defined to be

(3.6) [a,b; ¢, d] = laz)(b=d)
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1. Let k= 0. Then since W,, = (—1)"*1n, we have

. _ (Wn - Wn 2)(Wn 1 — Wn 3) _
[Wn, Wn+17 Wn+27 Wn+3] N (Wn+1 - V‘J;n+2)(v;;n - WniS) B
(D)™ e — (~D)" P+ 2)J[(-D)"2(n+ 1) — (-1)""(n + 3)]

~ DM A1) = (D) (4 2)][(— 1) e — (<1 (0 + 3)]

4
(2n+3)2°

2. Let k= =+1. Then W,, =1 if n = 1(mod 3), —1 if n = 2(mod 3) or 0 if
n = 0(mod 3). So W,, — W, 412 =1 if n =0,1(mod 3) or —2 if n = 2(mod 3);
Wht1—Wpys =1ifn=0,2(mod 3) or —2if n = 1(mod 3); Wy41—Wyyo = —1
if n =1,2(mod 3) or 2 if n = 0(mod 3) and W,, —W,, 43 = 0 for every n. Hence
Wy, — Wn+2)(Wn+1 — Wyys) =1if n = 0(mod 3) or —2 if n = 1,2(mod 3).
So the result is obvious.

3. Let k = £2. Then W,, = n and hence

. = +2)]n+1-(n+3)] 4
(W Wh1; Wogo, Weis] = mrl—mt (13 3

4. Let |k| > 2. Then W, = (k2 —2)W,,_1 —Wy_2. S0 Wyt = (2 —2)W,41
~W,, and W, 43 = (k* — 4k® + 3)W,41 — (k% — 2)W,,. Hence
Wy — Whgo = —(k% = 2)Wyy1 + 2W,,,
Wit — Whgs = (=k* + 4k? — 2)W,p1 + (K2 — 2)W,,,
Wit1 — Wago = (=K 4 3)Wop1 + Wy,
Wy = Wigs = —(k* — 42 + 3)Wop1 + (% — 1)W,.

So (3.6) becomes

(37) [Wrn WnJrl; Wn+27 Wn+3]
(B2 = 2) Wiy + 2WJ[(—k + 42 — )W,y + (K2 — 2)W,]
T [(—R2 4 3) Wiy + Wl [—(k* — 4k2 + 3)Wpiq + (K2 — )W, ]

Taking the limit of both sides of (3.7), we deduce that

k2

HILH;O[Wm Whg1; Whyo, W3] = w1

since W,, = %
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3.7. Circulant matrix and spectral norm

Theorem 3.11. Let |k| > 2 and let W denote the circulant matriz of W,
numbers. Then

1. The eigenvalues of W are

(Wn—l + l)w_j - W,

AW) =D (k2 = 2w + 1

forj=0,1,2,--- n—1.
2. The spectral norm of W is

W, —=W,_-1 -1

W lapee = =2

forn > 1.

Proof. 1. Recall that a circulant matrix (see [3]) is a matrix M defined as

mo my ma T Mp—2 Mp—1
mMp—1 mo mi o Mp—-3 Mp_2
Mp—2 Mp-1 Mo o Mp—4 Mp-3
M= ,
ma ms my s mo my
|y my  m3z - Mpo1 Mo |

where m; are constant. In this case, the eigenvalues of M are

n—1
(3.8) Aj(M) =" mw",
u=0

2mi

where w = e™

from (3.8) that

m

,i=+/—land j=0,1,--- ,n — 1. Since W,, = a;:gn,weget

n—1
W)= Ww it =
u=0

n—1 u u
Z <aa—g > wI =

u=0

Il
Q
| —
=
| —|
3
M1
5
IS
1
=
|
3
M1
=
IS
1
IS
| I
Il
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1 a” —1 g —1
- a—f [awj—l _ﬁwj—l] -
1 [w‘j(a"ﬁ—ﬁ—ﬂna—i—a)—a"—i—ﬁ"}

a—p w2 — (k2 —2)wI +1

w [(0f) (Cas ) + 28] - et
- w2 — (k2 — 2w +1

(Wn,1 + 1)w‘j - W,

T w2 — (k2 — 2w+ 1

as we claimed.

2. The spectral norm of a matrix M = [m;;],xn is defined to be
[M[[spec = | max {v/ A},

where \; are the eigenvalues of M*M and M™ denotes the conjugate transpose
of M. For the circulant matrix for W,, numbers, we have

Wi Wiz - Witn—1) Wi, ]
Way Waa o --- Wan-1) Wan,
W*W = ,
Wao-1y1 Wa-n2 - Wanm-1) Wmn-n
Wnl WnQ e Wn(n—l) Wnn

where

Wi =WG+Wi_y+- -+ Wi+ W7,
Wia = WoWi + W, aWo + - - - + Woll3 + W1 Wa,

Wl(n—l) =WoWho+ Wy 1Wy_3+ -+ WolWy + W1 W, _q,
Win =WoWpn 1 + Wy aWy o+ + WalWq + W1 Wy,
War = WiWo + WoWy_1 + - - - + W3Wa + WolW7y,

Wos = WP + W5 + -+ W3 + W3,

Watn—1) = WilWp_o + WoW,—5 + - + WsWo + WolW;,_q,
Wap = WilWp 1 + WoWp o + -+ + W3W1 + Wy,

W11 = WnaoWo+ Wy 3sWy 1+ + WoWa + W, 1 W7,
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W12 = WnoWi + Wy _sWo + - + WoWs3 + W, 1 Wa,

Win-1)n-1) = Wp o + Wi s+ + W5 + W74,
Wi—tyn = WonoWy 1 + Wy sWy 2 + - + WoW1 + W, 1 Wy,
Wpi = WoaWo + Wy oWyq + - + Wi Wy + W1,
Who = Wp_aWi + Wy oWy + - + Wi W3 4+ Wy,

Wn(n—l) =Wy iWho + Wy oWy +---+ W Wy + WOanla
Wnn :W3_1+W,%_2+"'+W12+W02.

The eigenvalues of W*W are Ag, A1, -+, Ap—1. Here )\g is maximum and is

No=WE+WE+- + W2, + W2,

Wo(Wl +Wod -+ Wy_o+ Wn—l)
+Wi(Wot -+ Wypo+W,_1)

2
* +

+ Wn72Wn71
=Wo+ Wi+ +Wy_1)

Thus the spectral norm of W is hence ||W||spec = VAo = Wo+Wi+---+W,,_1.

So [[W{[spec = % by Theorem 3.1. m
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