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Abstract. In this work we deduce some algebraic relations on integer
sequence an and its relationship with Pell, Pell–Lucas and balancing num-
bers. Further we formulate the eigenvalues and spectral norm of the circu-
lant matrix of an numbers.

1. Preliminaries

Let p and q be two non–zero integers and let d = p2 − 4q �= 0 (to exclude a
degenerate case). We set the sequences Un and Vn to be

Un = Un(p, q) = pUn−1 − qUn−2

Vn = Vn(p, q) = pVn−1 − qVn−2

for n ≥ 2 with U0 = 0, U1 = 1, V0 = 2, V1 = p. The characteristic equ-

ation of them is x2 − px + q = 0 and hence the roots are α = p+
√
d

2 and

β = p−√
d

2 . Their Binet formulas are Un = αn−βn

α−β and Vn = αn + βn. Note
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that Un(1,−1) = Fn Fibonacci numbers (A000045 in OEIS), Vn(1,−1) = Ln

Lucas numbers (A000032 in OEIS), Un(2,−1) = Pn Pell numbers (A000129 in
OEIS) and Vn(2,−1) = Qn Pell–Lucas numbers (A002203 in OEIS) (for further
details see [2, 5, 6, 7, 12]).

Recently, balancing numbers have been defined by Behera and Panda in [1].
A positive integer n is called a balancing number if the Diophantine equation

(1.1) 1 + 2 + · · · + (n − 1) = (n+ 1) + (n+ 2) + · · · + (n+ r)

holds for some positive integer r which is called cobalancing number (or balan-

cer). From (1.1) one has (n−1)n
2 = rn+ r(r+1)

2 and so

(1.2) r =
−(2n+ 1) +

√
8n2 + 1

2
and n =

2r + 1 +
√
8r2 + 8r + 1

2
.

Let Bn denote the nth balancing number, and let bn denote the nth cobalancing
number. Then from (1.2) we see that Bn is a balancing number iff 8B2

n + 1 is
a perfect square, and bn is a cobalancing number iff 8b2n + 8bn + 1 is a perfect
square. So Cn =

√
8B2

n + 1 and cn =
√

8b2n + 8bn + 1 are integers called the
nth Lucas–balancing and nth Lucas–cobalancing number, respectively. Binet

formulas for all balancing numbers are Bn = α2n−β2n

4
√
2

, bn = α2n−1−β2n−1

4
√
2

− 1
2 ,

Cn = α2n+β2n

2 and cn = α2n−1+β2n−1

2 , where α = 1+
√
2 and β = 1−√

2 which
are the roots of the characteristic equation of Pell numbers (for further details
see [8, 9, 10, 11]).

2. Main results

In [13], Santana and Diaz–Barrero set a sequence

(2.1) an = P2n + P2n+1

in order to determine the sum of first 4n + 1 nonzero terms of Pell numbers.
They proved that an+1 = 6an − an−1 for n ≥ 1, where a0 = 1, a1 = 7. Since
Pn = αn−βn

α−β for α = 1+
√
2 and β = 1−√

2, the Binet formula for an numbers
is

(2.2) an =
α2n+1 + β2n+1

2

for n ≥ 0. For the sums of an numbers, we can give the following result.
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Theorem 2.1. Let an denote the nth number. Then

n∑
i=0

ai =
an+1 − an − 2

4
for n ≥ 1,

n∑
i=1

a2i−1 =
33a2n−1 − a2n−3 − 8

32
for n ≥ 2,

n∑
i=0

a2i =
33a2n − a2n−2 − 8

32
for n ≥ 1.

Proof. Since an = α2n+1+β2n+1

2 , we easily get

n∑
i=0

ai = a0 + a1 + · · · + an =

=
α+ β

2
+

α3 + β3

2
+ · · · + α2n+1 + β2n+1

2
=

=
α2n+2 + β2n+2 − 2

4
=

=
α2n+1[2(1+

√
2)]+β2n+1[2(1−√

2)]
2 − 2

4
=

=
α2n+1(α2−1)+β2n+1(β2−1)

2 − 2

4
=

=
α2n+3+β2n+3

2 − α2n+1+β2n+1

2 − 2

4
=

=
an+1 − an − 2

4
.

The others can be proved similarly. �

For the relationship with Pell, Pell–Lucas and balancing numbers, we can
give the following result.

Theorem 2.2. Let an denote the nth number. Then for n ≥ 1, we have

1. The sum of (n+1)st and nth balancing numbers is equal to the nth an number,
that is,

Bn+1 +Bn = an.

2. The half of the difference of (n+ 2)nd and nth cobalancing numbers is equal
to the nth an number, that is,

bn+2 − bn
2

= an.
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3. The half of the difference of (n + 1)st and nth Lucas–balancing numbers is
equal to the nth an number, that is,

Cn+1 − Cn

2
= an.

4. The (n+1)st Lucas–cobalancing number is equal to the nth an number, that
is,

cn+1 = an.

5. The half of (2n+1)st Pell–Lucas number is equal to the nth an number, that
is,

Q2n+1

2
= an.

Proof. 1. Since Bn = α2n−β2n

4
√
2

, we easily get

Bn+1 +Bn =
α2n+2 − β2n+2

4
√
2

+
α2n − β2n

4
√
2

=

=
α2n(α2 + 1) + β2n(−β2 − 1)

4
√
2

=

=
α2n(1 +

√
2) + β2n(1 − √

2)

2
=

=
α2n+1 + β2n+1

2
=

= an

since α2 + 1 = 2
√
2(1 +

√
2) and −β2 − 1 = 2

√
2(1 − √

2).

The other cases can be proved similarly. �

We have already P2n+P2n+1 = an by (2.1). Also we can give the following
theorem.

Theorem 2.3. Let an denote the nth number. Then for n ≥ 0,

1. The sum of (2n+1)st balancing and cobalancing numbers is a perfect square
and is

B2n+1 + b2n+1 = a2n.

2. The sum of (2n + 1)st Lucas–balancing and Lucas–cobalancing numbers is
equal to product of four times of nth an number and (2n+1)st Pell number,
that is,

C2n+1 + c2n+1 = 4anP2n+1.
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Proof. 1. Recall that Bn = α2n−β2n

4
√
2

and bn = α2n−1−β2n−1

4
√
2

− 1
2 . So

B2n+1 + b2n+1 =
α4n+2 − β4n+2

4
√
2

+
α4n+1 − β4n+1

4
√
2

− 1

2
=

=
α4n(α2 + α) − β4n(β2 + β) − 2

√
2

4
√
2

=

=
α4n+2 + 2(αβ)2n+1 + β4n+2

4
=

=

(
α2n+1 + β2n+1

2

)2

=

= a2n

since αβ = −1.

The other case can be proved similarly. �

Panda and Ray ([10]) considered the sums of Pell numbers and proved that
the sum of first 2n−1 Pell numbers is equal to the sum of nth balancing number
and its balancer, that is,

2n−1∑
i=1

Pi = Bn + bn.

Later Gözeri, Özkoç and Tekcan ([4]) proved that the sum of Pell–Lucas num-
bers from 0 to 2n − 1 is equal to the sum of nth Lucas–balancing and Lucas–
cobalancing number, that is,

2n−1∑
i=0

Qi = Cn + cn.

Similarly, we can give the following result.

Theorem 2.4. Let an denote the nth number.

1. The sum of an numbers from 0 to n is equal to sum of the (n+1)st balancing
number and its balancer, that is,

n∑
i=0

ai = Bn+1 + bn+1.

2. The sum of even an numbers from 1 to n is equal to the product of (n+1)st

an number and nth balancing number, that is,

n∑
i=1

a2i = an+1Bn.
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3. The sum of odd an numbers from 1 to n is equal to the product of nth an
number and nth balancing number, that is,

n∑
i=1

a2i−1 = anBn.

4. The sum of even an numbers from 1 to 2n+1 is equal to the product of nth

and (2n+ 2)nd an numbers and (2n+ 1)st Pell number, that is,

2n+1∑
i=1

a2i = ana2n+2P2n+1.

5. The sum of odd an numbers from 1 to 2n+ 1 is equal to the product of nth

and (2n+ 1)st an numbers and (2n+ 1)st Pell number, that is,

2n+1∑
i=1

a2i−1 = ana2n+1P2n+1.

6. The sum of odd balancing numbers from 0 to 2n is equal to the product of
(2n+1)st Pell number, nth an number and (2n+1)st balancing number, that
is,

2n∑
i=0

B2i+1 = P2n+1anB2n+1.

7. The sum of even balancing numbers from 1 to 2n is equal to the product
of two times of nth an number, nth balancing number, nth Lucas–balancing
number and (2n+ 1)st Pell number, that is,

2n∑
i=1

B2i = 2anBnCnP2n+1.

8. The sum of even Pell numbers from 1 to 2n is equal to the product of two
times of nth balancing and nth an number, that is,

2n∑
i=1

P2i = 2Bnan.

9. The sum of odd Pell numbers from 0 to 2n is equal to the product of (2n+1)st

Pell number and nth an number, that is,

2n∑
i=0

P2i+1 = P2n+1an.
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10. The sum of Pell–Lucas numbers from 0 to 2n is equal to the quotient of two
times of (2n+ 1)st balancing number by the nth an number, that is,

2n∑
i=0

Qi =
2B2n+1

an
.

11. The sum of even Pell–Lucas numbers from 0 to 2n is equal to the product of
nth an number and the difference of nth and (n − 1)st an numbers, that is,

2n∑
i=0

Q2i = an(an − an−1).

Proof. 1. Since a0 + a1 + · · · + an = an+1−an−2
4 by Theorem 2.1, we easily

get

n∑
i=0

ai =
an+1 − an − 2

4
=

=
α2n+3+β2n+3

2 − α2n+1+β2n+1

2 − 2

4
=

=
α2n+1(α2 − 1) + β2n+1(β2 − 1)

8
− 1

2
=

=
α2n+1(1 +

√
2) + β2n+1(1 − √

2)

4
− 1

2
=

=
α2n+2(1 + α−1) + β2n+2(−1 − β−1)

4
√
2

− 1

2
=

=
α2n+2 − β2n+2

4
√
2

+
α2n+1 − β2n+1

4
√
2

− 1

2
=

= Bn+1 + bn+1

as we claimed.

The other cases can be proved similarly. �

For the perfect squares, we can give the following result.

Theorem 2.5. Let an denote the nth an number. Then

1. 1 + 8B2
n+1 is a perfect square and is

√
1 + 8B2

n+1 = 2an + Cn.

2. P 2
2n+1 + P2nP2n+2 is a perfect square and is

√
P 2
2n+1 + P2nP2n+2 = an.
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3. B2
2n+1+4a2nBnBn+1 is a perfect square and is

√
B2

2n+1 + 4a2nBnBn+1 = a2n.

Proof. 1. Applying Binet formulas, we get√
1 + 8B2

n+1 =

√
1 + 8

(
α2n+2 − β2n+2

4
√
2

)2

=

=

√
α4n+4 + β4n+4 + 2

2
=

=
α2n+2 + β2n+2

2
=

=
α2n(2α+ 1) + β2n(2β + 1)

2
=

= 2

(
α2n+1 + β2n+1

2

)
+

α2n + β2n

2
=

= 2an + Cn

since 2α+1 = α2 and 2β+1 = β2. The other cases can be proved similarly. �

In [13], Santana and Diaz–Barrero proved that the sum of first nonzero
4n+ 1 terms of Pell numbers is a perfect square and is

4n+1∑
i=1

Pi =

(
n∑

i=0

(
2n+ 1
2i

)
2i

)2

.

In fact, this sum is equals to a2n, that is,

4n+1∑
i=1

Pi = a2n.

Tekcan and Tayat ([14]) proved that the sum of first nonzero 2n + 1 terms of
Pell numbers is

2n+1∑
i=1

Pi =

⎧⎪⎨⎪⎩
(

αn+1+βn+1

2

)2

, for even n ≥ 0(
αn+1−βn+1

√
2

)2

2 , for odd n ≥ 1

where α = 1 +
√
2 and β = 1 − √

2. By considering this result, they set two

integer sequences Xn = αn+1+βn+1

2 and Yn = αn+1−βn+1

√
2

and proved that the

sum of first nonzero 4n+ 1 terms of Pell numbers is

4n+1∑
i=1

Pi = (2X2
n − 2XnYn−1 + (−1)n+1)2.

Similarly we can give the following result.
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Theorem 2.6. Let an denote the nth an number. Then

1. The sum of an numbers from 0 to 2n is a perfect square and is

2n∑
i=0

ai = a2n

for n ≥ 1.

2. The half of the sum of odd Pell–Lucas numbers from 0 to 2n is a perfect
square and is

2n∑
i=0

Q2i+1

2
= a2n

for n ≥ 1.

3. The sum of an numbers from 1 to n and adding 2 is a perfect square and is

2 +
n∑

i=1

ai = C2
n+1
2

for odd n ≥ 1, or the sum of an numbers from 1 to n and adding 1 is a
perfect square and is

1 +
n∑

i=1

ai = c2n+2
2

for even n ≥ 2.

Proof. 1. Since a0 + a1 + · · · + an = an+1−an−2
4 , we deduce that

2n∑
i=0

ai =
a2n+1 − a2n − 2

4
=

α4n+3+β4n+3

2 − α4n+1+β4n+1

2 − 2

4
=

=
α4n+1(α2−1)+β4n+1(β2−1)

2 − 2

4
=

α4n+1(1 +
√
2) + β4n+1(1 − √

2) − 2

4
=

=
α4n+2 + β4n+2 − 2

4
=

α4n+2 + 2(αβ)2n+1 + β4n+2

4
=

=

(
α2n+1 + β2n+1

2

)2

=

= a2n.

The other cases can be proved similarly. �
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A circulant matrix (see [3]) is a matrix M defined as

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m0 m1 m2 · · · mn−2 mn−1

mn−1 m0 m1 · · · mn−3 mn−2

mn−2 mn−1 m0 · · · mn−4 mn−3

.

.

.

.

.

.

.

.

.

· · ·
· · ·
· · ·

.

.

.

.

.

.
m2 m3 m4 · · · m0 m1

m1 m2 m3 · · · mn−1 m0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where mi are constant. In this case, the eigenvalues of M are

(2.3) λj(M) =

n−1∑
u=0

muw
−ju,

where w = e
2πi
n , i =

√−1 and j = 0, 1, · · · , n − 1. The spectral norm of a
matrix Q = [qij ]n×n is defined to be

||Q||spec = max
0≤j≤n−1

{√λj},

where λj are the eigenvalues of Q∗Q and Q∗ denotes the conjugate transpose
of Q.

Theorem 2.7. Let a denote the circulant matrix of an numbers. Then

1. The eigenvalues of a are

λj(a) =
(an−1 + 1)w−j + 1 − an

w−2j − 6w−j + 1

for j = 0, 1, 2, · · · , n − 1.

2. The spectral norm of a is

||a||spec = an − an−1 − 2

4
.
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Proof. 1. Applying (2.3), we deduce that

λj(a) =

n−1∑
u=0

auw
−ju =

=

n−1∑
u=0

(
α2u+1 + β2u+1

2

)
w−ju =

=
1

2

[
α

n−1∑
u=0

(α2w−j)u + β

n−1∑
u=0

(β2w−j)u

]
=

=
1

2

[
α

α2n − 1

α2w−j − 1
+ β

β2n − 1

β2w−j − 1

]
=

=
1

2

[
(α2n+1 − α)(β2w−j − 1) + (β2n+1 − β)(α2w−j − 1)

(α2w−j − 1)(β2w−j − 1)

]
=

=
w−j

[
(αβ)2

(
α2n−1+β2n−1

2

)
+ −αβ2−βα2

2

]
+ α+β

2 − α2n+1+β2n+1

2

w−2j − 6w−j + 1
=

=
(an−1 + 1)w−j + 1 − an

w−2j − 6w−j + 1

since αβ = −1, −αβ2−βα2

2 = 1 and α+β
2 = 1.

2. For the circulant matrix

a =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 a2 · · · an−2 an−1

an−1 a0 a1 · · · an−3 an−2

.

.

.

.

.

.

.

.

.

· · ·
· · ·
· · ·

.

.

.

.

.

.
a2 a3 a4 · · · a0 a1
a1 a2 a3 · · · an−1 a0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

for an numbers, we have

(a)∗a =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1(n−1) a1n
a21 a22 · · · a2(n−1) a2n
.
.
.

.

.

.
· · ·

.

.

.

.

.

.
a(n−1)1 a(n−1)2 · · · a(n−1)(n−1) a(n−1)n

an1 an2 · · · an(n−1) ann

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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where

a11 = a20 + a2n−1 + · · · + a22 + a21,

a12 = a0a1 + an−1a0 + · · · + a2a3 + a1a2,

...

a1(n−1) = a0an−2 + an−1an−3 + · · · + a2a0 + a1an−1,

a1n = a0an−1 + an−1an−2 + · · · + a2a1 + a1a0,

a21 = a1a0 + a0an−1 + · · · + a3a2 + a2a1,

a22 = a21 + a20 + · · · + a23 + a22,

...

a2(n−1) = a1an−2 + a0an−3 + · · · + a3a0 + a2an−1

a2n = a1an−1 + a0an−2 + · · · + a3a1 + a2a0,

...

an1 = an−1a0 + an−2an−1 + · · · + a1a2 + a0a1,

an2 = an−1a1 + an−2a0 + · · · + a1a3 + a0a2,

...

an(n−1) = an−1an−2 + an−2an−3 + · · · + a1a0 + a0an−1,

ann = a2n−1 + a2n−2 + · · · + a21 + a20.

The eigenvalues of a∗a are λ0, λ1, · · · , λn−1. Here λ0 is maximum and is

λ0 = a20 + a21 + · · · + a2n−2 + a2n−1+

+ 2

⎡⎢⎢⎣
a0(a1 + a2 + · · · + an−2 + an−1)+

+ a1(a2 + · · · + an−2 + an−1)+
+ · · ·+

+ an−2an−1

⎤⎥⎥⎦ =

= (a0 + a1 + · · · + an−1)
2.

Thus the spectral norm of a is hence ||a||spec =
√
λ0 = a0 + a1 + · · ·+ an−1. So

the result is clear from Theorem 2.1. �

Example 2.8. Let n = 5. Then the circulant matrix is

a =

⎡⎢⎢⎢⎢⎣
1 7 41 239 1393

1393 1 7 41 239
239 1393 1 7 41
41 239 1393 1 7
7 41 239 1393 1

⎤⎥⎥⎥⎥⎦ .
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The eigenvalues of

a∗a =

⎡⎢⎢⎢⎢⎣
1999301 344413 68817 68817 344413
344413 1999301 344413 68817 68817
68817 344413 1999301 344413 68817
68817 68817 344413 1999301 344413
344413 68817 68817 344413 1999301

⎤⎥⎥⎥⎥⎦
are λ0 = 2825761, λ1 = 1792686+137798

√
5, λ2 = 1792686−137798

√
5, λ3 = λ1

and λ4 = λ2. So the spectral norm of a is ||a||spec =
√
λ0 = 1681. On the other

hand a5−a4−2
4

= 1681.

From Theorem 2.7, we can give the following result.

Corollary 2.1. The spectral norm of a is

||a||spec =
{

(
√
2Pn)

2, for even n ≥ 2
(an−1

2
)2, for odd n ≥ 1.
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