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Abstract. The inversive congruential generator of second order modulo
a prime power is investigated. This generator generalizes the inversive
congruential generator of the first order studied in the works of Eichenauer,
Lehn, Topuzoǧlu, Niederreiter, Shparlinski etc. Also we prove that the
produced sequences of pseudo random numbers pass the s-dimensional test
on the uniform distribution for s = 1, 2, 3.

1. Introduction

Uniform pseudorandom numbers (abbreviate., PRN’s) in the interval
[0, 1] are basic ingredients of any stochastic simulation. Their quality is of
fundamental importance for the success of the simulation, since the typical
stochastic simulation essentially depends on the structural and statistical prop-
erties of the producing pseudorandom number generators. In the cryptograph-
ical applications of pseudorandom numbers the significant importance is of
the availability of property of the unpredictability to generated sequence of
pseudorandom numbers. The classical and most frequently used method for
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generation of PRN’s still is the linear congruential method. Unfortunately, its
simple linear nature implies several undesirable regularities. Therefore, a va-
riety of nonlinear methods for the generation of PRN’s have been introduced
as alternatives to linear methods. It is particularly interesting the nonlinear
generators for producing the uniform PRN’s, such as the inversive generators
and its generalizations. Such generators were introduced and studied in [2],
[4], [10], [11], [14]. These generators have several attractive properties such
as uniformity, unpredictability (statistical independence), pretty large period
and simple calculative complexity. The most common types of the inversive
generators are defined by the following congruential recursions.

Let Fq be a finite field with q elements and let y0, a, b belong Fq. Put

y =

{
0, if y = 0,
multiplicative inverse to y in F∗

q if y �= 0.

Then the recursion

(1) yn+1 = ayn + b, n = 0, 1, 2, . . . .

produces the inversive congruential generator over Fq.

The generator (1) was introduced in [2]. In the works [7], [10] the equation
(1) was replaced with the congruence yn+1 ≡ ay−1

n (mod pm), m ≥ 2, where
y−1
n defines by the congruence yny

−1
n ≡ 1 (mod pm) if (yn, p) = 1.

Other inversive generators consider over the ring Zpm .

Let p be a prime number, m > 1 be a positive integer. Consider the
following recursion

(2) yn+1 ≡ ay−1
n + b (mod pm), (a, b ∈ Z), n = 0, 1, 2, . . . ,

where y−1
n is a multiplicative inversive modulo pm for yn if (yn, p) = 1. The

parameters a, b, y0 are called the multiplier, shift and initial value, respectively.

In the works of Eichenauer, Lehn, Topuzoǧlu [3]; Niederreiter, Shparlinski
[10]; Eichenauer, Grothe [5] etc. were proved that the inversive congruential
generator (2) produces the sequence {xn}, xn = yn

pm , n = 0, 1, 2, . . ., which
passes s-dimensional serial tests on equidistribution and statistical indepen-
dence for s = 1, 2, 3, 4 if the defined conditions on relative parameters a, b, y0
are accomplishable.

It was proved that this generator is extremely useful for Quasi-Monte Carlo
type application (see [9], [12]). Now the initial value y0 and the constants a
and b are assumed to be secret key, and then we use the output of the generator
(2) as a stream cipher. At the last time it has been shown that we must be
careful in the time of using the generator (2).



Inversive generator for the sequence of PRN’s 257

The sequences of PRN’s produced by inversive generators with constant
shift can not be used for the cryptographic applications since a and b can be
calculated from only three consecutive elements provided that pm is known.

The generator (2) is called the inversive generator with constant shift.

In [15] we have given two generalizations for the generator (2). The first
generalization is associated with the recurrence relation

(3) yn+1 ≡ ay−1
n + b+ cF (n+ 1)y0 (mod pm)

under conditions

(a, p) = (y0, p) = 1, b ≡ c ≡ 0 (mod p), F (u) is a polynomial over Z[u].

The generator (3) is called the inversive congruential generator with a vari-
able shift b+cF (n+1)y0. The computational complexity of generator (3) is the
same as for the generator (2), but the reconstruction of parameters a, b, c, y0,
n and polynomial F (n) is a hard problem even if the several consecutive values
yn, yn+1, . . . , yn+N will be revealed (for example, even the reconstruction of
three-term polynomial F (u) of large unknown degree is a very hard problem,
since the reconstruction of polynomial by its values in the k-points is impossi-
ble if its degree is larger than k). Thus the generator (3) can be used in the
cryptographical applications. Notice that the conditions (a, p) = (y0, p) = 1,
b ≡ c ≡ 0 (mod p) guarantee that the recursion (3) produces the infinite se-
quence {yn}.

The second congruential recursion has the form

(4) yn+1 ≡ ay−1
n + b+ cyn (mod pm)

with (a, p) = 1, b ≡ c ≡ 0 (mod p).

The generator (4) is the linear-inversive congruential generator.

We must notice that the conditions a ≡ b ≡ 0 (mod p), (y0, p) = (c, p) = 1
also make possible to generate the sequence of PRN’s with appropriate prop-
erties for PRN’s {xn}. However, the conditions a ≡ c ≡ 0 (mod p), (y0, p) >
> (b, p) = 1 do not permit to construct the required sequence of PRN’s.

For the case p = 2, Kato, Wu, Yanagihara [7] studied the generator (4).
These authors proved that the appropriate sequence of PRN’s {xn} has a period
τ = 2m−1 if and only if a+ c ≡ 1 (mod 4) and b ≡ 3 (mod 4).

The present paper deals with the congruential inversive generator of second
order determined by the recursion

(5) yn+1 ≡ a · y−1
n−1y

−1
n + b+ cF (n)y1 (mod pm),

where (a, p) = 1, b ≡ c ≡ 0 (mod p), (y0, p) = (y1, p) = 1, F (n) is an integral
valued function.
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Notice that our requirements on a, b, y0, y1 permit to define every value
yn, n = 2, 3, . . ..

Our purpose in this work is to show passing the test on equidistribution
and statistical independence for the sequence {xn}, xn = yn

pm , and hence, the
main point to be shown is the possibility for such sequences to be used in the
problem of real processes modeling and in the cryptography.

In the sequel we will use the following notation.

2. Notation and auxiliary results

Variables of summation automatically range over all integers satisfying the
condition indicated. The letter p denotes a prime number, p ≥ 3. For m ∈
∈ N the notation Zpm (respectively, Z∗

pm) denotes the complete (respectively,
reduced) system of residues modulo pm.For z ∈ Z, (z, p) = 1 let z−1 be the
multiplicative inverse of z modulo pm; we let a

b (mod pm) stand for a · b−1. We
write νp(A) = α if pα|A, pα+1 � A for A ∈ Z. For integer t, the abbreviation

em(t) = e
2πit
pm is used.

We need the following simple statements. Let f(x) be a periodic function
with a period τ . For any N ∈ N, 1 ≤ N ≤ τ , we denote

SN (f) :=

N∑
x=1

e2πif(x)

Lemma 1. The following estimate

|SN (f)| ≤
(

max
1≤n≤τ

∣∣∣∣∣
τ∑

x=1

e2πi(f(x)+
nx
τ )

∣∣∣∣∣
)
log 2τ

holds.

This statement can be derived by inequalities for complete exponential sums
on a usual way.

Lemma 2. Let h1, h2, k, � be positive integers and let νp(h1 + h2) = α,
νp(h1k + h2�) = β, δ = min (α, β). Then for every j = 2, 3, . . . we have

νp(h1k
j−1 + h2�

j−1) ≥ δ.

Moreover, for every polynomial G(u) = A1u+A2u
2 + ptG1(u) ∈ Z[u] we have

h1G(k) + h2G(�) = A1(h1k + h2�) +A2(h1k
2 + h2�

2) + pt+sG2(k, �),

where s ≥ min (νp(h1 + h2), νp(h1k + h2�)), h1, h2, k, � ∈ Z, G2(u, v) ∈ Z[u, v].



Inversive generator for the sequence of PRN’s 259

Proof. By the equality

h1k
j + h2�

j = (h1k
j−1 + h2�

j−1)(k + �) − k�(h1k
j−2 + h2�

j−2),

applying the method of mathematical induction, we obtain at once νp(h1k
j +

+h2�
j) ≥ δ, j = 2, 3, . . . . �

Lemma 3. Let p > 2 be a prime number, m ≥ 2 be a positive integer, m0 =
=

[
m
2

]
, f(x), g(x), h(x) be polynomials over Z

f(x) = A1x+A2x
2 + · · · ,

g(x) = B1x+B2x
2 + · · · ,

h(x) = C�x+ C�+1x
�+1 + · · · , � ≥ 1,

νp(Aj) = λj , νp(Bj) = μj , νp(Cj) = νj ,

and, moreover,

k = λ2 < λ3 ≤ · · · , 0 = μ1 < μ2 < μ3 ≤ · · · ,
νp(C�) = 0, νp(Cj) > 0, j ≥ �+ 1.

Then the following bounds occur∣∣∣∣∣∣
∑

x∈Zpm

em(f(x))

∣∣∣∣∣∣ ≤
{

2p
m+k

2 if νp(A1) ≥ k,
0 if νp(A1) < k;∣∣∣∣∣∣

∑
x∈Z∗

pm

em(f(x) + g(x−1))

∣∣∣∣∣∣ ≤ I(pm−m0)p
m
2

∣∣∣∣∣∣
∑

x∈Z∗
pm

em(h(x))

∣∣∣∣∣∣ ≤
{

1 if � = 1,
0 if � > 1,

where I(pm−m0) is a number of solutions of the congruence

y · f ′(y) ≡ g′(y−1) · y−1 (mod pm−m0), y ∈ Z∗
pm−m0 .

Proof. Consider the sum
∑

1 :=
∑

x∈Zpm

e
(

f(x)
pm

)
. At first, let νp(A1) = k1 < k.

Then ∑
1
= pk1

∑
x∈Z

pm−k1

e

(
A′

1x+ pk−k1A′
2x

2 + · · ·
pm−k1

)
,

where A′
j = p−k1Aj , (A

′
1, p) = 1, A′

j ≡ 0 (mod p), j = 2, 3, . . ..
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Putting x = y + pm−k1−1z), y ∈ Zpm−k1−1 , z ∈ Zp, we derive

∣∣∣∑
1

∣∣∣ = pk1

∣∣∣∣∣∣
∑

y∈Z
pm−k1

e

(
A′

1y +A′
2y

2 + · · ·
pm−k1−1

) ∑
z∈Zp

e

(
A′

1

p
z

)∣∣∣∣∣∣ = 0.

For k1 ≥ k is suffices to consider the case k = 0. Then, putting

x = y + pm−m0z, y ∈ Zpm−m0 , z ∈ Zpm0 ,

we come to the sum which is analogous to the Gauss sum, and hence,∣∣∣∑
1

∣∣∣ = p
m
2 .

Next, for m = 1 we have from the Segal’s estimate (see, [13])

∣∣∣∑
3

∣∣∣ =
∣∣∣∣∣∣
∑
x∈Z∗

p

e

(
C�x

�

p

)∣∣∣∣∣∣ =
∣∣∣∣∣∣1 +

∑
x∈Zp

e

(
C�x

�

p

)∣∣∣∣∣∣ ≤ 1 + (�, p− 1)p
1
2 .

If m > 1 we put x = y(1 + pm−m0z), y ∈ Z∗
pm−m0

, z ∈ Zpm0 . Then∣∣∣∑
3

∣∣∣ = ∣∣∣∣∣ ∑
y∈Z∗

pm−m0

e

(
h(y)

pm

)
·

∑
z∈Zpm0

e

(
yh′(y)
pm0

z

)∣∣∣∣∣ =
= pm0

∣∣∣∣∣ ∑
y∈Z∗

pm−m0

yh′(y)≡0 (mod pm0 )

e

(
h(y)

pm

)∣∣∣∣∣.
The congruence yh′(y) ≡ 0 (mod pm0) over Zpm−m0 has not solutions. Hence
for m > 1 we have

∑
3 = 0.

At last, we consider the sum
∑

2.

Same as previous we can write x = y (1 + pm−m0z).

And hence modulo pm we have

xk = yk + kpm−m0(y−1)kz, k ∈ Z

f(x) + g(x−1) = f(y) + g(y) + pm−m0(yf ′(y) − y−1g′(y−1)).

So, we obtain for m = 2m0∣∣∣∑
2

∣∣∣ = pm0

∣∣∣∣∣ ∑
y∈Z∗

pm−m0

yf ′(y)=y−1g′(y−1) (mod pm0 )

e

(
f(y) + g(y−1)

pm

)∣∣∣∣∣ ≤

≤ pm0I(pm0) = p
m
2 I(pm−m0).
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For m = 2m0+1, we put in the last sum y = u+pyj , where yj runs I(pm0)
of solutions of the congruence

yf ′(y) ≡ y−1g′(y−1) (mod pm0).

So,

∣∣∣∑
2

∣∣∣ = pm0

∣∣∣∣∣∣
∑
yj

∑
u∈Z∗

p

e

(
A1u+B1u

−1

p

)∣∣∣∣∣∣ ≤

≤ 2I(pm−m0)pm0+
1
2 = 2p

m
2 I(pm−m0). �

Departures from uniformity or independence can be detected by theoretical

tests that use the numerical quantity D
(s)
N , s = 1, 2, . . ., it is called the dis-

crepancy of the points X0, X1, . . . , XN−1, Xj ∈ [0, 1)s, j = 0, 1, . . . , N − 1 and
which is defined by

D(t0, t1, . . . , tN−1) = sup
I

∣∣∣∣AN (I)

N
− |I|

∣∣∣∣ ,
where the supremum is extended over all subintervals I of [0, 1)d, AN (I) is
the number of points among t0, t1, . . . , tN−1 falling into I, and |I| denotes the
d-dimensional volume I.

The s-dimensional pointsX
(s)
n produced from our sequence x0, x1, . . . , xN−1

of PRN’s in [0, 1) in the following manner

X(s)
n = (xn, xn+1, . . . , xn+s−1), n = 0, 1, . . . , N − s.

We say that the sequence of points x0, x1, . . . , xN−1 passes s-dimensional se-

rial test on uniformity and independence (unpredictability) ifD
(1)
N , D

(2)
N ,...,D

(s)
N

tends to zero as N → ∞.

For study the discrepancy of points usually use the following lemmas.

For integers q ≥ 2 and d ≥ 1, let Cq(d) denote the set of all nonzero lattice
points (h1, . . . , hd) ∈ Zd with − q

2 < hj ≤ q
2 , 1 ≤ j ≤ d. We define

r(h, q) =

{
q sin π|h|

q if h ∈ C1(q),

1 if h = 0

and

r(h, q) =
d∏

j=1

r(hj , q) for h = (h1, . . . , hq) ∈ Cd(q).
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Lemma 4 (Niederreiter, [9]). Let N ≥ 1 and q ≥ 2 be integers. For N arbitrary
points t0, t1, . . . , tN−1 ∈ [0, 1)d, the discrepancy D(t0, t1, . . . , tN−1) satisfies

DN (t0, t1, . . . , tN−1) ≤ d

q
+

1

N

∑
h∈Cd(q)

1

r(h, q)

∣∣∣∣∣
N−1∑
n=0

e(h · tn)
∣∣∣∣∣ .

Corollary 1. Let {yk}, yk ∈ {0, 1, . . . , q − 1}d, be a purely periodic sequence
with a period τ . Then for the discrepancy of the sequence of points tk = yk

q ∈
∈ [0, 1)d, k = 0, 1, . . . , N − 1; N ≤ τ , the following estimate

DN (t0, t1, . . . , tN−1) ≤ d

q
+

1

N

∑
h∈Cd(q)

∑
h0∈(− τ

2 ,
τ
2 ]

r−1(h, q)r−1(h0, τ) · |S| · log τ

holds, where S :=
τ−1∑
k=0

e(h · tk + kh0

τ ).

This assertion follows from Lemma 4 and from an estimate of uncomplete
exponential sum through complete exponential sum (see, Lemma 1 above).

3. Preparations

We will obtain the representation of yn in the form of rational function on
y0, y1.

Let νp(b) = ν0, νp(c) = μ0, 1 ≤ 2ν0 < μ0 ≤ m. A straightforward compu-
tation by recursion (5) shows that modulo p3ν0 we have

y6 =
2a2b+ a2y0 + a2c(F (2) + F (5))y1 + 2ab2y0y1
a2 + ab2y0 + aby0y1 + acF (1)y1 + acF (4)y0y1

,

y7 =
3a2b2 + 2a2by0 + a2(1 + cF (3) + cF (6))y0y1
2a2b+ a2y0 + a2c(F (2) + F (5))y1 + 2ab2y0y1

,

y8 =
a3 + 3a2b2y0 + a2cF (1)y1 + a2by0y1 + a2c(F (4) + F (7))y0y

2
1

3a2b2 + 2a2by0 + a2(1 + cF (3) + cF (6))y0y1
.

These relations give rise to proposal that representation of yn will be found
in the form of

(6) yn =
A

(n)
0 +A

(n)
1 y0 +A

(n)
2 y1 +A

(n)
3 y0y1

B
(n)
0 +B

(n)
1 y0 +B

(n)
2 y1 +B

(n)
3 y0y1

.
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From the above, for yn we involve

(7) yn+2 =
C

D
,

where
C = (aB

(n)
0 + bA

(n+1)
0 ) + (aB

(n)
1 + bA

(n+1)
1 )y0+

+ (aB
(n+1)
2 + bA

(n+1)
2 + cF (n+ 1)A

(n+1)
0 )y1+

+ (aB
(n)
3 + bA

(n+1)
3 + cF (n+ 1)A

(n+1)
1 )y0y1,

D = A
(n+1)
0 +A

(n+1)
1 y0 +A

(n+1)
2 y1 +A

(n+1)
3 y0y1.

Without restricting the generality we will suppose that cF (n) ≡ cn +
+pμF0(n) (mod pm), where μ = min (ν0 + μ0, 3ν0).

Now, a straightforward computation suggest that modulo p3ν0 we have for
k ≥ 3

(8)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A
(3k)
0 ≡ kakb, A

(3k)
1 ≡ ak;A

(3k)
2 ≡ k(3k + 1)

2
akc;

A
(3k)
3 =

k2 − k + 2

2
ak−1b2;

B
(3k)
0 ≡ ak, B

(3k)
1 ≡ k(k + 1)

2
ak−1b2, B

(3k)
2 = 0;

B
(3k)
3 = (k − 1)ak−1b;

(9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A
(3k+1)
0 =

k(k + 1)

2
akb2, A

(3k+1)
1 = kakb;

A
(3k+1)
2 = 0, A

(3k+1)
3 = ak

(
1 +

3k(k − 1)

2
c

)
;

B
(3k+1)
0 = kakb, B

(3k+1)
1 = ak, B

(3k+1)
2 =

k(3k + 1)

2
akc;

B
(3k+1)
3 =

k2 − k + 2

2
ak−1b2;

(10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A
(3k+2)
0 ≡ ak+1, A

(3k+2)
1 ≡ k(k + 1)

2
akb2,

A
(3k+2)
2 ≡ 0, A

(3k+2)
3 = kakb, A

(3k+2)
4 =

(k + 1)(3k + 2)

2
akc;

B
(3k+2)
0 =

k(k + 1)

2
akb2, B

(3k+2)
1 = kakb,

B
(3k+2)
2 = 0, B

(3k+2)
3 = ak

(
1 + c

3k(k + 1)

2

)
, B

(3k+2)
4 ≡ 0.
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The validity of the formulas (10), (8) is not difficult establishes by the
method of mathematical induction. The formula (9) follows by recursion (5).

Other summands of A
(n)
j , j = 0, 1, 2; n = {3k or 3k + 1 or 3k + 2}, which

modulo p3ν0 are equal to 0, be represented the polynomials from Z[n] (it comes
from formula (7)). So, we may write

A
(3k)
0 = kakb+ p3ν0F0(k), . . . , B

(3k)
3 = (k − 1)ak−1b+ p3ν0G3(k).

A stabilization of form of the coefficients of the polynomials F0(k), . . . , G3(k)
in the formulas described above occurs for k ≥ 4m, because beginning with k�,
� ≥ m for corresponding coefficients is equal to zero modulo pm.

The number of summands in any Fj(k) or Gj(k), j = 0, 1, 2 be less than

4m0, where m0 =
[
m+1
ν0

]
by virtue when passing from k to k + 2 ”old” coeffi-

cients gets multiplier divisible to a · b.Therefore, appearance of the polynomials
Fj(k), Gj(k) rallies, moreover, all summands in the polynomials Fj(k), Gj(k)
contains factor a�, k − m0 ≤ � ≤ k.

The relation (6) shows that for every k = 0, 1, 2, . . . the numerator and de-
nominator contain a summand that is coprime to p, and every such summand
contains the factor ak. Multiply out numerator and denominator on multiplica-
tive inverse modpm to the respective summand of denominator and applying
the expanding (1+ pu)−1 = 1− pu+ p2u2 − · · ·+ (−1)m−1(pu)m−1 (mod pm),
we obtain the representation of yk power expansion of k with coefficients which
depend only on y0, y1 and (a−1)j , 0 ≤ j ≤ m, where a · a−1 ≡ 1 (mod pm).

So, after simple calculations we deduce modulo pm

y3k =

(
kb+ y0 +

k2 − k + 2

2
a−1b2y0y1

)(
1 − k(k + 1)

2
a−1b2y0−

− (k − 1)a−1by0y1 + (k − 1)2b2y20y
2
1

)
.

From here we have

(11)

y3k =
(
y0 + a−1by20y1 + b2y30y

2
1 + a−1b2y0y1

)
+

+ k

(
b+ a−1b2y0y1 − 1

2
a−1b2y20−

−a−1by20y1 − 2b2y30y
2
1 − 1

2
a−1b2y0y1

)
+

+ k2
(
−a−1b2y0y1 − 1

2
a−1b2y20 + b2y30y

2
1 +

1

2
a−1b2y0y1

)
.
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Next, by analogy, we infer

(12)
y3k+1 =

(
y1 − a−1b2y21

)
+ kb

(
1

2
b
(
y−1
0 − a−1y21

)
+ 1 − y−1

0 y1

)
+

+ k2b2
1

2

(−y−1
0 + a−1b2y21

)
,

(13)
y3k+2 = ay−1

0 y−1
1 + kb

(
(−ay−2

0 y−1
1 + 1) − 1

2
by−1

1

(
ay−2

0 y−1
1 − 1

))
+

+ k2b2
1

2
y−1
0

(−1 + a−1y0y
2
1

)
.

So, from (11)-(13), collecting the summands with the same degree of k, we
infer the following statement.

Proposition 1. Let the sequence {yn} be produced by the recursion (5) with
(a, p) = (y0, p) = (y1, p) = 1, νp(b) = ν0 > 0, νp(c) = μ0 > 2ν0. There exist the
polynomials F0(x), F1(x), F2(x) ∈ Z[x] with the coefficient depending on y0, y1,
such that

(14) y3k = A0 +A1k +A2k
2 + pμG0(k, y0, y

−1
0 , y1, y

−1
1 ),

(15) y3k+1 = B0 +B1k +B2k
2 + pμG1(k, y0, y

−1
0 , y1, y

−1
1 ),

(16) y3k+2 = C0 + C1k + C2k
2 + C3k

3 + C4k
4 + pμG2(k, y0, y

−1
0 , y1, y

−1
1 ),

where

A1 ≡ b+ a−1b2y0y1 − 1

2
a−1b2y20 − a−1by20y1 − 2b2y30y

2
1 − 1

2
a−1b2y0y1,

A2 ≡ −a−1b2y0y1 − 1

2
a−1b2y20 + b2y30y

2
1 +

1

2
a−1b2y0y1,

B1 ≡ b

(
1

2
b
(
y−1
0 − a−1y21

)
+ 1 − y−1

0 y1

)
,

B2 ≡ b2
1

2

(−y−1
0 + a−1b2y21

)
,

C1 ≡ b

(
(−ay−2

0 y−1
1 + 1) − 1

2
by−1

1

(
ay−2

0 y−1
1 − 1

))
,

C2 ≡ b2
1

2
y−1
0

(−1 + a−1y0y
2
1

)
,

μ = min (ν0 + μ0, 3ν0).
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In process of proof the Proposition 1 we obtain also the following corollaries.

Corollary 2. Let νp(y0 − ay−2
1 ) = α ≤ ν0 and let τ be a period length of the

sequence {yn} generated by recursion (5) with initial values y0, y1. Then we
have

τ = 3pm−ν0−α,

and τ ≤ 3pm−ν0 on all occasions.

Corollary 3. For k = 3, 4, . . ., we have modulo pμ, μ = min (2ν0, μ0)

y3k =

(
1 + a−1b2y1 + ka−1b2y1 − a−1k2b2y1 − 1

2
a−1b2y1

)
y0+

+

(
a−1by1 − 1

2
a−1b2 − a−1bky1 − 1

2
a−1b2k2

)
y20+

+
(
a−2b2y21 − 2a−1kb2y21 + a−2b2k2y21

)
y30 + kb,

y3k+1 =

(
1

2
b2ky−2

0 − 1

2
b2k2y−1

0 − 1

2
k2b2a−1

)
y1+

+

(
−a−1b2 − 1

2
a−1b2ky−1

0

)
y21 ,

y3k+2 = kb+

(
ay−1

0 +
1

2
kb − b2k2

)
y−1
1 +

+

(
−abky−1

0 +
1

2
b2ky−1

0

)
y−2
1 +

1

2
ab2k2y−1

0 y−3
1 .

4. Bound of discrepancy of the sequences generated
by recursion (5)

In this section we prove the theorems 1-3 on the estimates of exponential
sums over the sequence of pseudorandom numbers {yn} generated by recursion
(5), and obtain the bound of discrepancy.

Note, that the shift b+ cF (n) in (5) is given by

b0p
ν0 + c0p

μ0(n+ pμ1F0(n))

where (b0, p) = (c0, p) = 1, μ1 > 0.

As we can see below, the summand c0p
μ0F (n) has no influences on the

character of equidistribution of the sequence
{

yn

pm

}
at the interval [0, 1). Its
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use is only if to avoid for intruder the reconstruction of the polynomial F (n)
by the certain values of yn, n = n0, n0 + 1, . . . , n0 + r (it is true if F (n) is a
polynomial with large power).

Denote

σk,�(h1, h2; p
m) :=

∑
y0,y1∈Z∗

pm

e

(
h1yk + h2y�

pm

)
, (h1, h2 ∈ Z).

Here we consider yk, y� as functions of initial values y0, y1 generated by (5).

From Proposition 1 and Lemmas 2 and 3 we can see that the summation
over y0, y1 gives the following theorem

Theorem 1. Let νp(gcd(h1, h2, p
m)) = s, νp(gcd(h1 + h2, h1k+ h2�, p

m)) = t.
Then we have

σk,�(h1, h2) �
{

pm+s if k �≡ � (mod 3),
pm+t if k ≡ � (mod 3).

In order to prove this theorem it is enough to put y0 = x0(1 + pm0+εz0),
y1 = x1(1+ pm0+εz1), x0, y0 ∈ Z∗

pm0+ε , z0, z1 ∈ Zpm0 and apply Lemmas 2 and
3.

For 1 ≤ N ≤ τ := 3pm−ν0 denote

SN (h, y0, y1) =
N−1∑
k=0

epm(hyk).

Theorem 2. Let the sequence {yn} is generated by recursion (5), (h, pm) = ps

and the condition y0y
2
1 �≡ a (mod p) is fulfilled. Then the following bound

(17) |Sτ (h, y0, y1)| ≤
{

O(m) if ν0 + s < m,
τ if ν0 + s ≥ m

holds.

Proof. This statement is the corollary of Proposition 1 if we take into account
that the summand O(m) in (17) appears in virtue of the fact that the represen-
tation yn as a polynomial on k from Proposition 1 holds only for k ≥ 2m0 +1.

�

Further we will study only special case of initial values y0 = y1.

Corollary 4. For 1 < N ≤ τ we have

SN (h; y0, y0) := SN (h, y0) �
{

p
m+ν0+s

2 if ν0 + s < m,
N if ν0 + s ≥ m.
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Indeed, from Lemma 1 we have

|SN (h, y0)| ≤

≤ max
1≤n≤τ

∣∣∣∣ τ∑
k=1

e
2πi

(
hyk
pm +nk

τ

)∣∣∣∣ =
= max

1≤n≤τ

∣∣∣∣∣p
m−ν0∑
k=1

∑
j={0,±1}

(
e
2πi

(
hy3k+j

pm +
n(3k+j)

τ

))∣∣∣∣∣ ≤

≤ pν0 (
∑

1 +
∑

2 +
∑

3) +O(m),

where ∑
1
= max

1≤n≤τ

∣∣∣∣∣
pm−ν0∑
k=1

e
2πi

hF0(k)+nk+pμ−ν0H0(k)

pm−ν0

∣∣∣∣∣,
∑

2
= max

1≤n≤τ

∣∣∣∣∣
pm−ν0∑
k=1

e
2πi

hF1(k)+nk+pμ−ν0H1(k)

pm−ν0

∣∣∣∣∣,
∑

3
= max

1≤n≤τ

∣∣∣∣∣
pm−ν0∑
k=1

e
2πi

hF2(k)+nk+pμ−ν0H2(k)

pm−ν0

∣∣∣∣∣
for Fj(k), Hj(k), j = 0, 1, 2 defined by the relations (14)–(15).

Now we take into consideration that for 1 − a−1y30 �≡ 0 mod p. Therefore
the coefficients for k2 in the polynomials Fj(k) exactly be divisible on p2ν0 .
Hence, by Lemma 3 (the case (i)) we obtain

∑
j
�

{
p

m+ν0+3
2 if ν0 + s < m,

N if ν0 + s ≥ m.

Let

σ̃k,�(h) =
∑

y0∈Z∗
pm

e2πi
h(yk−y�)

pm .

Theorem 3. Let the sequence {yn} be generated by recursion (5) with (a, p) =
= 1, νp(b) = ν0, νp(c) = μ0, μ0 > 2ν0, F (n) is a polynomial with integer
coefficients of the form F (u) ≡ u (mod pμ0+1). Moreover, let y0 = y1, (y0, p) =
= 1. Then, for k ≡ � (mod 3) the following estimate

σ̃k,�(h) �
{

p
m+ν0+νp(h)

2 if ν0 + νp(h) < m,
pm if ν0 + νp(h) ≥ m.

holds.
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Proof. We consider only the case k ≡ � ≡ 0 (mod 3) because the other cases
are similar.

We have

h(y3k −y3�) = h(k− �)−a−1bh(k− �)y30 +h(1−a−2)(k2− �2)b2y50 +pμhH0(y0),

where μ = (μ0, 3ν0), H(y0) is the polynomial with the coefficients hj ≡ 0
(mod pt) by Lemma 2. Then for νp(h) + νp(k − �) + ν0 < m− 1 the statement
of lemma follows from the relation

∑
y ∈ Z∗

p�

e
2πi

Ay3+pν0y5f(y)

p� =

=
∑

y ∈ Zp�

e
2πi

Ay3+pν0y5f(y)

p� − ∑
y ∈ Zp�−1

e
2πi

Ay3+pν0y5f1(y)

p�−1 =

=
∑

1 +
∑

2, (� ≥ 1), (A, p) = 1

say.

Now, putting y = u+ pαv, where α =
[
�−1
2

]
or

[
�−2
2

]
(respectively, for

∑
1

or
∑

2) by Lemma 3 we obtain the statement of theorem. �

Remark 1. In case of k �≡ � (mod 3) from Lemma 3 we easy obtain

σ̃k,�(h) �
⎧⎨⎩

0 if s ≤ m − 2,
p2(m−1) if s = m − 1
p2m if s = m.

In the case under consideration y0 = y1 we additionally will assume that
a is not a cubic residue modulo p such that y30 �≡ a (mod p) for every y0,
(y0, p) = 1.

The following theorem gives a mean value of SN (h, y0).

Theorem 4. Let the sequence {yn} be produced by (5) with parameters a, b,
y0, (a, p) = (y0, p) = 1, νp(b) = pν0 , 1 ≤ ν0 ≤ m

2 . Then for every h ∈ Z,
(h, pm) = μ1 ≤ s, we have

SN (h) =
1

ϕ(pm)

∑
y0∈Z∗

pm

|SN (h, y0)| ≤

≤ 36pμ1N
1
2

√
log pm.
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Proof. Without loss of generality we will assume that νp(h) = 0, i.e. (h, p) = 1.
By the Cauchy-Schwarz inequality we get

∣∣SN (h)
∣∣2 ≤ 1

ϕ(pm)

∑
y0∈Z∗

pm

∣∣∣∣∣
N−1∑
n=0

em(hyn)

∣∣∣∣∣
2

=

=
1

ϕ(pm)

∑
y0∈Z∗

pm

N−1∑
k,�=0

em(h(yk − y�)) ≤

≤ 1

ϕ(pm)

N−1∑
k,�=0

|σk,�(h,−h)| = 1

ϕ(pm)

∞∑
r=0

N−1∑
k,�=0

νp(k−�)=r

|σk,�(h,−h)| =

=
1

ϕ(pm)

m−1∑
t=0

N−1∑
k,�=0

νp(k−�)=t

|σk,�(h,−h)| + 1

ϕ(pm)

N−1∑
k=0

|σk,k(h,−h)| =

= N +
1

ϕ(pm)

m−1∑
t=0

N−1∑
k,�=0

νp(k−�)=t

|σk,�(h,−h)|.

Using Theorem 3, we obtain

∣∣SN (h)
∣∣2 ≤ N +

1

ϕ(pm)
×

×
m−1∑
r=0

(
N−1∑
k,�=0

k �≡� (mod 3)
νp(k−�)=r

|σk,�(h,−h)| +
N−1∑
k,�=0

k≡� (mod 3)
νp(k−�)=r

|σk,k(h,−h)|
)

≤

≤ N +
1

ϕ(pm)
×

×
[
4pm

m−1∑
r=0

N2

pr
+

⎛⎝ ∑
r<m−ν0

+
∑

m−ν0≤r≤m−1

⎞⎠ N−1∑
0≤�<k≤N

k≡� (mod 3)

|σk,�(h,−h)|
]

≤

≤ N +
N

ϕ(pm)
×

×
(
4N +

∑
r<m−ν0

N

pr
p

m+ν0+r
2 +

∑
r≥m−ν0

N

pr

)
log pm ≤

≤ N +
(
N2p−m + 11N2p−

3m
2 +ν0

)
log pm.
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Hence, for (h, p) = 1 we obtain∣∣SN (h)
∣∣ ≤

(
12N

1
2 + 12Np−

m
2 + 12Np−

3
4m+

ν0
2

)√
log pm ≤

≤ 36N
1
2

√
log pm. �

Corollary 5. For all but at most p(1+o(1))m values y0 ∈ Z∗
pm we have

SN (h) = O
(
N

1
2+o(1)

)
.

From the Corollary 5 and Lemma 4 we easily infer

Theorem 5. Let the sequence {yn} be produced by (5) with parameters a, b,
y0, (a, p) = (y0, p) = 1, νp(b) = pν0 , 1 ≤ ν0 ≤ m

2 . Then for all but at most

p(1−ε(N))m values y0 ∈ Z∗
pm we have

DN (x0, . . . , xN−1) � N− 1
2+ε(N)(log pm)2.

(here xn = yn

pm , n = 0, 1, 2, . . .; ε(N) → +0 for N → ∞).

Let a be a cubic nonresidue modulo p. Then the least length of period for
{yn} is equal to τ = 3pm−ν0 .

Theorems 3-4 and Lemma 4 permit to obtain the following bound for dis-

crepancy of the sequence of point { yn

pm } ∈ [0, 1) and points X
(s)
n ∈ [0, 1)s,

X
(s)
n =

(
yn

pm , yn+1

pm , . . . , yn+s−1

pm

)
, where {yn} is generated by the recursion (5).

Theorem 6. Let p > 2 be a prime number, y0, a, b,m ∈ N, m ≥ 3, (ay0, p) =
= 1, νp(b) = ν0 ≥ 1, νp(c) = μ0, μ0 > 2ν0. Then for the sequence {xn},
xn = yn

pm , n = 0, 1, . . ., with the period τ = 3pm−ν0 , generated by recursion

(5) with cF (n) = cn + pμF0(n), F0(n) is an integral-valued function, μ =
= min (ν0 + μ0, 3ν0), we have for any 1 ≤ N ≤ τ ,

DN (x0, x1, . . . , xN−1) ≤ 1

pm
+ 3N−1p

m−ν0
2

(
1

p

(
2

π
log pm +

7

5

)2

+ 1

)
.

Theorem 7. Let the sequence {X(s)
n } with the period τ = 3pm−ν0 be pro-

duced by recursion (5) and the conditions of Theorem 5 are satisfied. Then its
discrepancy

D
(s)
N (X

(s)
0 , . . . , X

(s)
τ−s) ≤ 2p−

m
2 +ν0

(
1

π
log pm−ν0 +

3

5

)s

+ 2p−m+ν0

for every s = 1, 2, 3.
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The assertions of Theorems 5 and 6 are the simple conclusions of Theorems
3 and 4 and Lemma 4 (see [14]).

From Theorems 5 and 6 we conclude that the sequence of PRN’s {yn}
produced by generator (5) passes the s-dimensional serial test on the equidis-
tribution and statistical independency.

Remark 2. We investigated the inversive congruential generator (5) under
condition 0 < 2νp(b) < νp(c). This restriction may be weaken with require-
ments 0 < νp(b) < νp(c) through the additional technical difficulties.

Remark 3. The description of yn produced by recursion (5) allow to consider
other cases of selection an initial value y1 as function at y0.
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