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Abstract. We prove that if a multiplicative function f satisfies the
conditions

flo+m®) = f(p) + f(m®) and f(n*) = f(m)®

for all primes p, 7 and positive integers m, then f(n) = n holds for all
positive integers n.

1. Introduction

An arithmetic function g(n) # 0 is said to be multiplicative if (n,m) = 1

implies that
g(nm) = g(n)g(m)

and it is completely multiplicative if this relation holds for all positive integers
n and m. Let M and M™* denote the class of all complex-valued multiplicative,
completely multiplicative functions, respectively.

Let P, N be the set of primes, positive integers, respectively. n||m denotes
that m is a unitary divisor of n, i.e. that m|n and (7>, m) = 1. Let

M(n) =max{q": ¢" || n, g€ P}.
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In 1992, Spiro [8] showed that if f € M and f(pg) # 0 for some prime pq,
then

fo+a)=f(p)+ flq) forall p qeP
implies that f(n) =n for all n € N.

In the paper [3] written with J.-M. De Koninck and I. Kdtai, we proved
that if f € M with f(1) =1 and

flp+m?) = f(p)+ f(m?) forall peP, meN,

then f(n) = n for all n € N. Recently in [7] we improve this result by proving
that if f,g € M with f(1)=1 satisfy

flo+m?) =g(p) +g(m*) and g(p°) = g(p)*

for all primes p and m € N, then either

flp+m?) =0, g(p)=-1 and g(m?) =1
for all primes p and m € N or

f(n)=n and g(p)=p, g(m®)=m’

for all p € P, n,m € N. The case f = g € M* was investigated in the previous
paper [6].

For some generalizations of this topics, we refer to the works mentioned in
the references of [7].

In this note, we prove

Theorem 1. If f € M satisfies the conditions

(1.1) fp+m?®) = f(p) + f(m?) forall peP, meN
and

(1.2) f(r®) = f(m)* forall weP,

then

fn)y=n forall neN.

2. Auxiliary lemmas

Lemma 1. We have

1
&(3) =Y  — < 0.1747626338.
peP
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Proof. Let

S(z,3) == Z i

3
pEP, p<x P

It is clear that

1 =1 1 1
6(3) - 6(x,3) = ) 5 < _; 73 3P S 2@ -o12

peEP, p>x

consequently
1

One can check with Maple that
G&(10° +1,3) < 0.1747626336,

which shows that

1
6(3) < 0.1747626336 + 31012 < 0.1747626338.

Lemma 1 is proved. [
Lemma 2. If f € M satisfies (1.1) and (1.2), then
(2.1) f(n)=n forall n<565-10'.

Proof. First we prove that (2.1) holds for n = 2.
Let f(2) := x. Then we infer from (1.1) that

fB)=f2+1*) =a+1,

f(4):f(3+1):f() +tl=z+2,

fG)=f6+1%) -1=f2)f3) ~1=a+z -1,
f®)=f(2+2%) - (2)=f(2)f(5)—f(2)—x3+w2—2x,
fAD) = fA1+13) — 1= f(3)f(4) —1 =2* + 3z + 1,
f9) = f(11+23) —1=fA1) + f8) =2 + 222 + & + 1,
f27) = f(19+2%) = f(19) + f(8) = 22° + 32® —z + 1,
f(29) = f(2+3%) = £(2) + f(27) = 22° 4+ 327 + 1.

On the other hand, we also get from (1.1)

f(A9) = f19+1)—1=fA)f5)—1=a3+32> +2—3
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and
f(29)=f(29+1)—1=f2)f3)f(5) —1 =2 + 22 —x — 1.
Thus, we have
B 2? tr+1=2 4322+ -3, (z—-2)(x+2)=0
and
208 432 + 1= 4203 —2 -1, (z—-2)(2*+22°+2+1)=0,

which imply = = 2. The assertion (2.1) is proved for n = 2.

As we seen above, we have
fn)y=n if ne{l1,2,3,4,5,6,8,10,11,12,15,19,20,27}.
These with (1.1) imply

f(O=f7+1%)-1=f@8)—-1=7,
FB4) _ fB4) _ M+ T _T+2T _

F7) = @) 2 2 2 17,
_f(18)  fOT 41 17+1

f(13) = f(5+2%) = f(5) + f(8) = 13,

P A B e S ) R Y VS e

f(3) 3 3 B 3

and so
f(n)y=n forall ne{l,2,---,22}.

Now we prove Lemma 2.

Assume by contradiction that there is a number Q € N, 22 < Q < 565-10°
such that f(n) = n for all n < @ and f(Q) # Q. Then Q = 7* > 23 is a
prime power.

If =1, then @+ 1iseven and f(Q+1) = f(Q)+1# Q+ 1. Since
@ + 1 is an even composite, then either Q +1 =2¢ e >5or Q + 1 = uv with
l<u<v<@+1, (u,v)=1. If Q+1=2° then

Q+27=2.(2°1 +13) = f(2)f(2° 1 +13) =
= f(Q+27) = f(Q) + f(27) = f(Q) + 27,
because 2¢71 + 13 < 2¢ — 1 = Q. The last relation is impossible. In the case

Q+1l=wwithl <u<v<Q@Q+1, (u,v) =1, we also get a contradiction,
because

Q+1# F(Q+1) = f(wv) = f(u)f(v) = uv = Q+ 1.



A multiplicative function with equation f(p +m?*) = f(p) + f(m?®) 227

If & = 2, then we obtain from (1.2) that Q # f(Q) = f(7?) = f(n)? =
= 12 = (Q, which is impossible. If o = 33, then

ma® = w14 r ) = )L+ =
= f(m+7%) = f(m) + f(x%) = 7+ (),

consequently f(Q) = f(7®) = 7% = Q. This is a a contradiction.

Assume now a > 4, 3 1 a. Then there are 394 such prime powers 7 <
< 565 - 1019, for which @ > 4 and 3 { « hold. Since 7 < 7% < 565 - 100,
we have m < 1541. With the help of Maple program, for each prime power
7 < 565 - 100 there is a positive 2,0 € {1,---,237} (see Table 1 for the
smallest value of z,» which is > 30 ) such that

Pra =T pa — 1 EP, Tpa < 7%, (Tgo,m) =1

and
M (pre +8) = M(n%%ra +7) < w*.

These with the fact that f(n) =n for all n < Q = 7#® imply
Tro f(7) = f(xra) f(7%) = f(7%re) = f(pro + 1) = f(pre) + 1

and
Pra +8 = f(pra +8) = f(pra) +8, f(pra) = Pra.

Thus f(Q) = f(7®) = 7* = @, which is a contradiction.

Lemma 2 is proved. |
Let 9% be the set of those subset of £ of N for which

(2.2) nmeLl, (nnm)j=1 = nmeL.

Lemma 3. Assume that £ € M and an integer T > 11000. If
mel forall meP, 7 <T
and
20¢cL, 3PeL, el (0<a<10, 0<B<S, 0<vy<BH),
then for each Q < T, 61 Q we have
(2.3) Ag ={peP | p<T, p+QeL}#.

Proof. This is Lemma 7 in [7]. [
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T, Tro T, 0, Tra | T, Q, Tra T, O Lo T, QU Lo
2,15,45 41,5,84 193,5,38 | 571,4,60 1013,4,48
2,22,33 41,7,40 | 223,4,32 | 577,4,138 | 1021,4,54
2,24, 39 43,5,60 | 223,5,80 | 601,4,84 1049,4,44
2,25,57 47,5,42 | 227,5,42 | 607,4,48 1063, 4,62
2,30,237 | 47,7,36 | 229,5,62 | 613,4,68 1109, 4, 60
2,33,49, 53,4,32 | 239,5,58 | 619,4,38 1123,4,62
2,36,143 | 53,5,90 | 241,4,50 | 653,4,42 1181,4,44
2,39,49 53,7,90 | 251,5,42 | 673,4,114 | 1187,4,62
2,40,107 | 59,5,130 | 271,4,68 701,4,122 | 1217,4,38
2,41,55 61,5,108 | 277,4,48 709,4,44 1229,4,48
2,42,33 71,5,114 | 277,5,146 | 727,4,60 1259,4,98
3,16, 38 73,4,50 | 283,4,68 751,4,30 1291,4, 32
3,25,70 73,5,128 | 293,5,70 769,4,44 1319,4,48
7,11,120 | 83,5,30 | 307,5,60 | 811,4,44 1321,4,90
11,5,40 89,4,80 | 317,4,182 | 823,4,74 1373,4,62
11,10,68 | 97,5,42 | 331,5,48 | 829,4,98 1427,4, 38
17,5,72 101,4,78 | 337,4,98 | 839,4,54 1429,4, 30
17,8,38 107,5,64 | 337,5,42 | 857,4,68 1433,4, 50
17,10,126 | 109,4,32 | 383,4,168 | 877,4,38 1439, 4,38
23,4,42 109,5,30 | 389,4,38 | 911,4,54 1447.4,78
23, 8,32 113,4,60 | 409,4,48 | 941,4,62 1483, 4, 32
29,4,30 127,5,30 | 419,4,54 | 947,4,68 1487,4,98
29, 5,66 139,5,68 | 421,4,32 | 953,4,30 1489,4, 128
31,7,72 167,5,42 | 431,4,50 | 983,4,32 1493, 4, 50
37,5,60 179,5,48 | 521,4,50 | 997,4,80 1499, 4, 32
37,7,36 181,5,50 | 557,4,42 1009,4,84 | 1523,4,32

Table 1.

We shall use the following explicit inequality on the distribution of primes.

Lemma 4. Let w(z) be the number of primes p < xz. We have

B

) > 1.
log x (log x)? if ez

m(z) <

Proof. This statement is proved in [2]. |

Lemma 5.
=1. If

Assume that H € M and U is a cube-free, U > 565-10'°, (U, 2) =

(a) T E€H forall meP, 1 <U,
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(b) p>eH forall peP, p<U
and
(c) 2 cH (1<6<23),
then we have
(2.4) By:={neN | n< VU, U+n®ecH}#0.

Proof. Assume that the conditions of Lemma 5 are satisfied.
We define the function x € M as follows:

1 if p=2
(p*)=q1 if p#2, a<2
0 otherwise.

Let h(n) = U +n® and let H = [U'/3].

First we consider the congruence
(2.5) h(z)=234+U=0 (modn®), 2<7w<H, ncP).

If (m,U) = 1, then the congruence (2.5) has at most (3,7%(m — 1)) < 3 solu-
tions (modulo 73). If (m,U) > 1, then for each solution n  (mod 73) of the
congruence (2.5), we have 7 | n and 72 | U. Since U is cube-free, (2.5) has no
solutions in the case m | U. Let

U:= Z k(h(n).

n=1 (mod 2)
n<H

We infer from Lemma 1, Lemma 4 and U > 565 - 10'° that

H H
> — — >
Uz 3 3(2W3+1) 3 Y 1z
3<n< ¥/H/2 Y H/2<n< ¥2U
1 3 1
32U _ 3cv/2U 13>
log vV2U  (log v/2U)? -
3v/2 3cv/2
VI s
log vV2U  (log v/2U)?

> 0.4253560493H —

> [0.4253560493 -

where ¢ := 1.2762.
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Now we give the upper estimate for

E, = Z 1.

n<H, n=1 (mod 2)
h(n)=0 (mod 2%)

One easily check that if (U,2) = 1, then the congruence
h(n)=U+n*>=0 (mod2%) (a>2)

has at most two solutions (modulo 2¢). Thus, we have

H YT
E= Y 1<2(5+1) < gy +2
n<H, n=1 (mod 2)
R(n)=0 (mod 2%)

Consequently, U > 565 - 1010 gives

U—Eyu= Y rKh(n) - > 1>

n=1 (mod 2) n<H, n=1 (mod 2)
n<H h(n)=0 (mod 224)

3v/2 3cv/2
\3[ — cs\f 23} VU > 0.
log vV2U  (log v/2U)? 2

> {0.4253560493 .

We may now complete the proof of (2.4).
Since U — Foy > 0, there is a n € N, n? < U, 21 n such that

U+n®=2%,1<6<23,k(n)=1,n<U.
Since U > 565-10'° and § < 23, we have 1 < n < U and so by our assumptions,
using the conditions (a)-(c) we get
U+n®=2neH,
which proves Lemma, 5. |

Remark. By using the method of C. Hooley [4], [5] one can prove that

U= UH( )+0( (log )~ 1/2),

p>2

where py(m) is the number of those residues for which (2n + 1)> + U = 0
(mod m) and the constant implied by error term is absolute.

Consequently, one can prove the following assertion: There exists a constant
co such that if f € M satisfies the condition (1.1), furthermore f(n) = n for
n < co, then f(n) =n for alln € N.

The constant ¢g is effective, and perhaps f(n) =n (n < ¢g) holds but too
much numerical computation would be necessary.
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Lemma 6. Assume that f € M satisfy (1.1) and (1.2). Then

(2.6) fp)=p foral peP
and
(2.7) f(m®)=m2 forall meN.

Proof. We apply Lemma 3 and Lemma 5 with
L=H:={neN | f(n)=n}

Assume that f(p) = p for all prime p < R, where R € P. We may assume
that R > 565 - 100 (see Lemma 2). From (1.2) we have

p, pPe L forall peP,p<R.

Let Q := 7% < R, where 7 € P and a € N. Since 6 { Q, by applying
Lemma 3 with T = R, there is p € P, p < R such that p + 73* € £, which
gives

p+7° = f(p+ %) = f(p) + f(x°) = p+ f(x°).

Therefore

f(7*) =% forall 7% <R,
consequently
(2.8) f(m3*) =m? forall meN, m®<R.

Now we apply Lemma 5 with U = R. Then there is a m € N, m3 < R such
that R +m? € £, which with (1.1) and (2.6) gives

R+m? = f(R+m?) = f(R) + f(m®) = f(R) + m>.

Consequently f(R) = R, and so f(p) = p is satisfied for all primes p. The
assertion (2.6) is proved.

Finally, the assertion (2.7) follows directly from (2.6) and (3.1).
Lemma 6 is proved. |

3. Proof of Theorem 1

From Lemma 6, we obtain that f(p) = p and g(m?3) = m3 for all p € P,
m € N. Thus

(3.1) flp+m3) =p+m?® forall pecP, meN.
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Let Ey(z) be the number of those n < z which can not be written as a sum
of a prime and a k-th power of an integer, and n # m*. Here k > 2, k € N.

Devenport and Heilbronn proved in [1] that for each k& > 2 there is a constant
¢ = c(k) > 0 such that
x
B =0 ).
#) = O\ fogaye

For us it is enough to know that E3(z)/z — 0 (z — 00).

Let B be the set of those n which can be written as n = p+m?® (p € P,
m € N). It follows from (3.1) that f(n) =n if n € B.

Let 7 be an arbitrary prime power. Consider the set of integers 7%v < x,
(v,m) = 1. The size of this set is > % (1 — 1) — 1. The number of those v for
which v & B, or 7%v ¢ B is < E(x) + E(%). Thus, if z is large enough, then
we can find such a v € B for which 7%v € B and (7, v) = 1. Consequently

Ty = f(nv) = f(x)f(v) = f(7*)v,

which proves

Fr®) = 7.
Thus
fn)=n forall neN
holds, and so our theorem is proved. |
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