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Abstract. We prove that if a multiplicative function f satisfies the
conditions

f(p+m3) = f(p) + f(m3) and f(π2) = f(π)2

for all primes p, π and positive integers m, then f(n) = n holds for all
positive integers n.

1. Introduction

An arithmetic function g(n) �≡ 0 is said to be multiplicative if (n,m) = 1
implies that

g(nm) = g(n)g(m)

and it is completely multiplicative if this relation holds for all positive integers
n and m. Let M and M∗ denote the class of all complex-valued multiplicative,
completely multiplicative functions, respectively.

Let P, N be the set of primes, positive integers, respectively. n‖m denotes
that m is a unitary divisor of n, i.e. that m|n and ( n

m ,m) = 1. Let

M(n) = max{qγ : qγ ‖ n, q ∈ P }.
Key words and phrases: Multiplicative function, a Dirichlet character, the identity function,
functional equation.
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In 1992, Spiro [8] showed that if f ∈ M and f(p0) �= 0 for some prime p0,
then

f(p+ q) = f(p) + f(q) for all p, q ∈ P
implies that f(n) = n for all n ∈ N.

In the paper [3] written with J.-M. De Koninck and I. Kátai, we proved
that if f ∈ M with f(1) = 1 and

f(p+m2) = f(p) + f(m2) for all p ∈ P, m ∈ N,

then f(n) = n for all n ∈ N. Recently in [7] we improve this result by proving
that if f, g ∈ M with f(1)=1 satisfy

f(p+m2) = g(p) + g(m2) and g(p2) = g(p)2

for all primes p and m ∈ N, then either

f(p+m2) = 0, g(p) = −1 and g(m2) = 1

for all primes p and m ∈ N or

f(n) = n and g(p) = p, g(m2) = m2

for all p ∈ P, n,m ∈ N. The case f = g ∈ M∗ was investigated in the previous
paper [6].

For some generalizations of this topics, we refer to the works mentioned in
the references of [7].

In this note, we prove

Theorem 1. If f ∈ M satisfies the conditions

(1.1) f(p+m3) = f(p) + f(m3) for all p ∈ P, m ∈ N

and

(1.2) f(π2) = f(π)2 for all π ∈ P,

then
f(n) = n for all n ∈ N.

2. Auxiliary lemmas

Lemma 1. We have

S(3) :=
∑
p∈P

1

p3
< 0.1747626338.
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Proof. Let

S(x, 3) :=
∑

p∈P, p≤x

1

p3
.

It is clear that

S(3) − S(x, 3) =
∑

p∈P, p>x

1

p3
<

∞∑
n=[x]+1

1

n3
<

1

2[x]2
<

1

2(x − 1)2

consequently

S(3) < S(x, 3) +
1

2(x − 1)2
.

One can check with Maple that

S(106 + 1, 3) < 0.1747626336,

which shows that

S(3) < 0.1747626336 +
1

2 · 1012 < 0.1747626338.

Lemma 1 is proved. �

Lemma 2. If f ∈ M satisfies (1.1) and (1.2), then

(2.1) f(n) = n for all n ≤ 565 · 1010.

Proof. First we prove that (2.1) holds for n = 2.

Let f(2) := x. Then we infer from (1.1) that

f(3) = f(2 + 13) = x+ 1,

f(4) = f(3 + 13) = f(3) + 1 = x+ 2,

f(5) = f(5 + 13) − 1 = f(2)f(3) − 1 = x2 + x − 1,

f(8) = f(2 + 23) − f(2) = f(2)f(5) − f(2) = x3 + x2 − 2x,

f(11) = f(11 + 13) − 1 = f(3)f(4) − 1 = x2 + 3x+ 1,

f(19) = f(11 + 23) − 1 = f(11) + f(8) = x3 + 2x2 + x+ 1,

f(27) = f(19 + 23) = f(19) + f(8) = 2x3 + 3x2 − x+ 1,

f(29) = f(2 + 33) = f(2) + f(27) = 2x3 + 3x2 + 1.

On the other hand, we also get from (1.1)

f(19) = f(19 + 1) − 1 = f(4)f(5) − 1 = x3 + 3x2 + x − 3
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and

f(29) = f(29 + 1) − 1 = f(2)f(3)f(5) − 1 = x4 + 2x3 − x − 1.

Thus, we have

x3 + 2x2 + x+ 1 = x3 + 3x2 + x − 3, (x − 2)(x+ 2) = 0

and

2x3 + 3x2 + 1 = x4 + 2x3 − x − 1, (x − 2)(x3 + 2x2 + x+ 1) = 0,

which imply x = 2. The assertion (2.1) is proved for n = 2.

As we seen above, we have

f(n) = n if n ∈ {1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 15, 19, 20, 27}.
These with (1.1) imply

f(7) = f(7 + 13) − 1 = f(8) − 1 = 7,

f(17) =
f(34)

f(2)
=

f(34)

2
=

f(7) + f(27)

2
=

7 + 27

2
= 17,

f(9) =
f(18)

f(2)
=

f(17) + 1

2
=

17 + 1

2
= 9,

f(13) = f(5 + 23) = f(5) + f(8) = 13,

f(16) =
f(48)

f(3)
=

f(47) + 1

3
=

f(55) − 7

3
=

f(5)f(11) − 7

3
= 16,

and so
f(n) = n for all n ∈ {1, 2, · · · , 22}.

Now we prove Lemma 2.

Assume by contradiction that there is a number Q ∈ N, 22 < Q < 565 ·1010
such that f(n) = n for all n < Q and f(Q) �= Q. Then Q = πα ≥ 23 is a
prime power.

If α = 1, then Q + 1 is even and f(Q + 1) = f(Q) + 1 �= Q + 1. Since
Q+ 1 is an even composite, then either Q+ 1 = 2e, e ≥ 5 or Q+ 1 = uv with
1 < u < v < Q+ 1, (u, v) = 1. If Q+ 1 = 2e, then

Q+ 27 = 2.(2e−1 + 13) = f(2)f(2e−1 + 13) =

= f(Q+ 27) = f(Q) + f(27) = f(Q) + 27,

because 2e−1 + 13 < 2e − 1 = Q. The last relation is impossible. In the case
Q + 1 = uv with 1 < u < v < Q + 1, (u, v) = 1, we also get a contradiction,
because

Q+ 1 �= f(Q+ 1) = f(uv) = f(u)f(v) = uv = Q+ 1.
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If α = 2, then we obtain from (1.2) that Q �= f(Q) = f(π2) = f(π)2 =
= π2 = Q, which is impossible. If α = 3β, then

π + πα = π(1 + π3β−1) = f(π)f(1 + π3β−1) =

= f(π + π3β) = f(π) + f(πα) = π + f(πα),

consequently f(Q) = f(πα) = πα = Q. This is a a contradiction.

Assume now α ≥ 4, 3 � α. Then there are 394 such prime powers πα ≤
≤ 565 · 1010, for which α ≥ 4 and 3 � α hold. Since π4 ≤ πα ≤ 565 · 1010,
we have π ≤ 1541. With the help of Maple program, for each prime power
πα ≤ 565 · 1010 there is a positive xπα ∈ {1, · · · , 237} (see Table 1 for the
smallest value of xπα which is ≥ 30 ) such that

pπα := παxπα − 1 ∈ P, xπα < πα, (xπα , π) = 1

and
M(pπα + 8) = M(παxπα + 7) < πα.

These with the fact that f(n) = n for all n < Q = πα imply

xπαf(πα) = f(xπα)f(πα) = f(παxπα) = f(pπα + 1) = f(pπα) + 1

and
pπα + 8 = f(pπα + 8) = f(pπα) + 8, f(pπα) = pπα .

Thus f(Q) = f(πα) = πα = Q, which is a contradiction.

Lemma 2 is proved. �

Let M be the set of those subset of L of N for which

(2.2) n,m ∈ L, (n,m) = 1 ⇒ nm ∈ L.

Lemma 3. Assume that L ∈ M and an integer T ≥ 11000. If

π ∈ L for all π ∈ P, π < T

and

2α ∈ L, 3β ∈ L, 5γ ∈ L (0 ≤ α ≤ 10, 0 ≤ β ≤ 8, 0 ≤ γ ≤ 5),

then for each Q < T , 6 � Q we have

(2.3) AQ := {p ∈ P | p < T, p+Q ∈ L} �= ∅.

Proof. This is Lemma 7 in [7]. �
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π, α, xπα π, α, xπα π, α, xπα π, α, xπα π, α, xπα

2, 15, 45 41, 5, 84 193, 5, 38 571, 4, 60 1013, 4, 48
2, 22, 33 41, 7, 40 223, 4, 32 577, 4, 138 1021, 4, 54
2, 24, 39 43, 5, 60 223, 5, 80 601, 4, 84 1049, 4, 44
2, 25, 57 47, 5, 42 227, 5, 42 607, 4, 48 1063, 4, 62
2, 30, 237 47, 7, 36 229, 5, 62 613, 4, 68 1109, 4, 60
2, 33, 49, 53, 4, 32 239, 5, 58 619, 4, 38 1123, 4, 62
2, 36, 143 53, 5, 90 241, 4, 50 653, 4, 42 1181, 4, 44
2, 39, 49 53, 7, 90 251, 5, 42 673, 4, 114 1187, 4, 62
2, 40, 107 59, 5, 130 271, 4, 68 701, 4, 122 1217, 4, 38
2, 41, 55 61, 5, 108 277, 4, 48 709, 4, 44 1229, 4, 48
2, 42, 33 71, 5, 114 277, 5, 146 727, 4, 60 1259, 4, 98
3, 16, 38 73, 4, 50 283, 4, 68 751, 4, 30 1291, 4, 32
3, 25, 70 73, 5, 128 293, 5, 70 769, 4, 44 1319, 4, 48
7, 11, 120 83, 5, 30 307, 5, 60 811, 4, 44 1321, 4, 90
11, 5, 40 89, 4, 80 317, 4, 182 823, 4, 74 1373, 4, 62
11, 10, 68 97, 5, 42 331, 5, 48 829, 4, 98 1427, 4, 38
17, 5, 72 101, 4, 78 337, 4, 98 839, 4, 54 1429, 4, 30
17, 8, 38 107, 5, 64 337, 5, 42 857, 4, 68 1433, 4, 50
17, 10, 126 109, 4, 32 383, 4, 168 877, 4, 38 1439, 4, 38
23, 4, 42 109, 5, 30 389, 4, 38 911, 4, 54 1447, 4, 78
23, 8, 32 113, 4, 60 409, 4, 48 941, 4, 62 1483, 4, 32
29, 4, 30 127, 5, 30 419, 4, 54 947, 4, 68 1487, 4, 98
29, 5, 66 139, 5, 68 421, 4, 32 953, 4, 30 1489, 4, 128
31, 7, 72 167, 5, 42 431, 4, 50 983, 4, 32 1493, 4, 50
37, 5, 60 179, 5, 48 521, 4, 50 997, 4, 80 1499, 4, 32
37, 7, 36 181, 5, 50 557, 4, 42 1009, 4, 84 1523, 4, 32

Table 1.

We shall use the following explicit inequality on the distribution of primes.

Lemma 4. Let π(x) be the number of primes p ≤ x. We have

π(x) <
x

log x
+ 1.2762

x

(log x)2
if x ≥ 1.

Proof. This statement is proved in [2]. �

Lemma 5. Assume that H ∈ M and U is a cube-free, U > 565 ·1010, (U, 2) =
= 1. If

(a) π ∈ H for all π ∈ P, π < U,
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(b) p2 ∈ H for all p ∈ P, p < U

and

(c) 2δ ∈ H (1 ≤ δ ≤ 23),

then we have

(2.4) BU := {n ∈ N | n <
3
√
U, U + n3 ∈ H} �= ∅.

Proof. Assume that the conditions of Lemma 5 are satisfied.

We define the function κ ∈ M as follows:

κ(pα) =

⎧⎪⎨⎪⎩
1 if p = 2

1 if p �= 2, α ≤ 2

0 otherwise.

Let h(n) = U + n3 and let H = [U1/3].

First we consider the congruence

(2.5) h(x) = x3 + U ≡ 0 (mod π3), (2 < π ≤ H, π ∈ P).

If (π, U) = 1, then the congruence (2.5) has at most (3, π2(π − 1)) ≤ 3 solu-
tions (modulo π3). If (π, U) > 1, then for each solution n (mod π3) of the
congruence (2.5), we have π | n and π3 | U . Since U is cube-free, (2.5) has no
solutions in the case π | U . Let

U :=
∑

n≡1 (mod 2)
n≤H

κ(h(n).

We infer from Lemma 1, Lemma 4 and U > 565 · 1010 that

U ≥ H

2
−

∑
3<π≤ 3

√
H/2

3
( H

2π3
+ 1

)
− 3

∑
3
√

H/2<π<
3√
2U

1 ≥

≥
[1
2

− 3

2

(
S(3) − 1

8

)]
H − 3π(

3
√
2U) + 3 ≥

≥ 0.4253560493H − 3 3
√
2U

log 3
√
2U

− 3c 3
√
2U

(log 3
√
2U)2

+ 3 ≥

≥
[
0.4253560493 − 3 3

√
2

log 3
√
2U

− 3c 3
√
2

(log 3
√
2U)2

]
3
√
U + 2,

where c := 1.2762.
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Now we give the upper estimate for

Eα =
∑

n≤H, n≡1 (mod 2)
h(n)≡0 (mod 2α)

1.

One easily check that if (U, 2) = 1, then the congruence

h(n) = U + n3 ≡ 0 (mod 2α) (α ≥ 2)

has at most two solutions (modulo 2α). Thus, we have

Eα =
∑

n≤H, n≡1 (mod 2)
h(n)≡0 (mod 2α)

1 ≤ 2
(H

2α
+ 1

)
<

3
√
U

2α−1
+ 2.

Consequently, U > 565 · 1010 gives

U − E24 =
∑

n≡1 (mod 2)
n≤H

κ(h(n)) −
∑

n≤H, n≡1 (mod 2)

h(n)≡0 (mod 224)

1 ≥

≥
[
0.4253560493 − 3 3

√
2

log 3
√
2U

− 3c 3
√
2

(log 3
√
2U)2

− 1

223

]
3
√
U > 0.

We may now complete the proof of (2.4).

Since U − E24 > 0, there is a n ∈ N, n3 < U, 2 � n such that

U + n3 = 2δη, 1 ≤ δ ≤ 23, κ(η) = 1, η < U.

Since U > 565 ·1010 and δ ≤ 23, we have 1 < η < U and so by our assumptions,
using the conditions (a)-(c) we get

U + n3 = 2δη ∈ H,

which proves Lemma 5. �

Remark. By using the method of C. Hooley [4], [5] one can prove that

U = U
∏
p>2

(
1 − ρU (p

2)

p2

)
+O(U(logU)−1/2),

where ρU (m) is the number of those residues for which (2n + 1)3 + U ≡ 0
(mod m) and the constant implied by error term is absolute.

Consequently, one can prove the following assertion: There exists a constant
c0 such that if f ∈ M satisfies the condition (1.1), furthermore f(n) = n for
n ≤ c0, then f(n) = n for all n ∈ N.

The constant c0 is effective, and perhaps f(n) = n (n ≤ c0) holds but too
much numerical computation would be necessary.
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Lemma 6. Assume that f ∈ M satisfy (1.1) and (1.2). Then

(2.6) f(p) = p for all p ∈ P
and

(2.7) f(m3) = m3 for all m ∈ N.

Proof. We apply Lemma 3 and Lemma 5 with

L = H := {n ∈ N | f(n) = n}.
Assume that f(p) = p for all prime p < R, where R ∈ P. We may assume

that R > 565 · 1010 (see Lemma 2). From (1.2) we have

p, p2 ∈ L for all p ∈ P, p < R.

Let Q := π3α < R, where π ∈ P and α ∈ N. Since 6 � Q, by applying
Lemma 3 with T = R, there is p ∈ P, p < R such that p + π3α ∈ L, which
gives

p+ π3α = f(p+ π3α) = f(p) + f(π3α) = p+ f(π3α).

Therefore
f(π3α) = π3α for all π3α < R,

consequently

(2.8) f(m3) = m3 for all m ∈ N, m3 < R.

Now we apply Lemma 5 with U = R. Then there is a m ∈ N, m3 < R such
that R+m3 ∈ L, which with (1.1) and (2.6) gives

R+m3 = f(R+m3) = f(R) + f(m3) = f(R) +m3.

Consequently f(R) = R, and so f(p) = p is satisfied for all primes p. The
assertion (2.6) is proved.

Finally, the assertion (2.7) follows directly from (2.6) and (3.1).

Lemma 6 is proved. �

3. Proof of Theorem 1

From Lemma 6, we obtain that f(p) = p and g(m3) = m3 for all p ∈ P,
m ∈ N. Thus

(3.1) f(p+m3) = p+m3 for all p ∈ P, m ∈ N.
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Let Ek(x) be the number of those n ≤ x which can not be written as a sum
of a prime and a k-th power of an integer, and n �= mk. Here k ≥ 2, k ∈ N.

Devenport and Heilbronn proved in [1] that for each k ≥ 2 there is a constant
c = c(k) > 0 such that

Ek(x) = O
( x

(log x)c

)
.

For us it is enough to know that E3(x)/x → 0 (x → ∞).

Let B be the set of those n which can be written as n = p +m3 (p ∈ P,
m ∈ N). It follows from (3.1) that f(n) = n if n ∈ B.

Let πα be an arbitrary prime power. Consider the set of integers παν ≤ x,
(ν, π) = 1. The size of this set is ≥ x

πα (1 − 1
π ) − 1. The number of those ν for

which ν �∈ B, or παν �∈ B is ≤ E(x) + E( x
πα ). Thus, if x is large enough, then

we can find such a ν ∈ B for which παν ∈ B and (π, ν) = 1. Consequently

παν = f(παν) = f(πα)f(ν) = f(πα)ν,

which proves
f(πα) = πα.

Thus
f(n) = n for all n ∈ N

holds, and so our theorem is proved. �
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