A MULTIPLICATIVE FUNCTION WITH EQUATION $f(p+m^3)=f(p)+f(m^3)$

Bui Minh Phong (Budapest, Hungary)

Dedicated to the memory of Professor Antal Iványi

Communicated by Imre Kátai (Received May 10, 2017; accepted June 20, 2017)

Abstract. We prove that if a multiplicative function f satisfies the conditions

$$f(p+m^3) = f(p) + f(m^3)$$
 and $f(\pi^2) = f(\pi)^2$

for all primes p, π and positive integers m, then f(n) = n holds for all positive integers n.

1. Introduction

An arithmetic function $g(n) \neq 0$ is said to be multiplicative if (n, m) = 1implies that

$$g(nm) = g(n)g(m)$$

and it is completely multiplicative if this relation holds for all positive integers n and m. Let \mathcal{M} and \mathcal{M}^* denote the class of all complex-valued multiplicative, completely multiplicative functions, respectively.

Let \mathcal{P} , \mathbb{N} be the set of primes, positive integers, respectively. n || m denotes that m is a unitary divisor of n, i.e. that m | n and $(\frac{n}{m}, m) = 1$. Let

$$M(n) = \max\{q^{\gamma}: q^{\gamma} \parallel n, q \in \mathcal{P}\}.$$

2010 Mathematics Subject Classification: 11A07, 11A25, 11N25, 11N64.

https://doi.org/10.71352/ac.46.223

Key words and phrases: Multiplicative function, a Dirichlet character, the identity function, functional equation.

In 1992, Spiro [8] showed that if $f \in \mathcal{M}$ and $f(p_0) \neq 0$ for some prime p_0 , then

f(p+q) = f(p) + f(q) for all $p, q \in \mathcal{P}$

implies that f(n) = n for all $n \in \mathbb{N}$.

In the paper [3] written with J.-M. De Koninck and I. Kátai, we proved that if $f \in \mathcal{M}$ with f(1) = 1 and

$$f(p+m^2) = f(p) + f(m^2)$$
 for all $p \in \mathcal{P}, m \in \mathbb{N}$,

then f(n) = n for all $n \in \mathbb{N}$. Recently in [7] we improve this result by proving that if $f, g \in \mathcal{M}$ with f(1)=1 satisfy

$$f(p+m^2) = g(p) + g(m^2)$$
 and $g(p^2) = g(p)^2$

for all primes p and $m \in \mathbb{N}$, then either

$$f(p+m^2) = 0$$
, $g(p) = -1$ and $g(m^2) = 1$

for all primes p and $m \in \mathbb{N}$ or

$$f(n) = n$$
 and $g(p) = p$, $g(m^2) = m^2$

for all $p \in \mathcal{P}$, $n, m \in \mathbb{N}$. The case $f = g \in \mathcal{M}^*$ was investigated in the previous paper [6].

For some generalizations of this topics, we refer to the works mentioned in the references of [7].

In this note, we prove

Theorem 1. If $f \in \mathcal{M}$ satisfies the conditions

(1.1)
$$f(p+m^3) = f(p) + f(m^3) \text{ for all } p \in \mathcal{P}, m \in \mathbb{N}$$

and

(1.2)
$$f(\pi^2) = f(\pi)^2 \quad \text{for all} \quad \pi \in \mathcal{P},$$

then

$$f(n) = n$$
 for all $n \in \mathbb{N}$.

2. Auxiliary lemmas

Lemma 1. We have

$$\mathfrak{S}(3) := \sum_{p \in \mathcal{P}} \frac{1}{p^3} < 0.1747626338.$$

Proof. Let

$$\mathfrak{S}(x,3) := \sum_{p \in \mathcal{P}, \ p \le x} \frac{1}{p^3}.$$

It is clear that

$$\mathfrak{S}(3) - \mathfrak{S}(x,3) = \sum_{p \in \mathcal{P}, \ p > x} \frac{1}{p^3} < \sum_{n = [x]+1}^{\infty} \frac{1}{n^3} < \frac{1}{2[x]^2} < \frac{1}{2(x-1)^2}$$

consequently

$$\mathfrak{S}(3) < \mathfrak{S}(x,3) + \frac{1}{2(x-1)^2}.$$

One can check with Maple that

$$\mathfrak{S}(10^6 + 1, 3) < 0.1747626336,$$

which shows that

$$\mathfrak{S}(3) < 0.1747626336 + \frac{1}{2 \cdot 10^{12}} < 0.1747626338.$$

Lemma 1 is proved.

Lemma 2. If $f \in \mathcal{M}$ satisfies (1.1) and (1.2), then

(2.1) $f(n) = n \text{ for all } n \le 565 \cdot 10^{10}.$

Proof. First we prove that (2.1) holds for n = 2.

Let f(2) := x. Then we infer from (1.1) that

$$\begin{split} f(3) &= f(2+1^3) = x+1, \\ f(4) &= f(3+1^3) = f(3)+1 = x+2, \\ f(5) &= f(5+1^3)-1 = f(2)f(3)-1 = x^2+x-1, \\ f(8) &= f(2+2^3)-f(2) = f(2)f(5)-f(2) = x^3+x^2-2x, \\ f(11) &= f(11+1^3)-1 = f(3)f(4)-1 = x^2+3x+1, \\ f(19) &= f(11+2^3)-1 = f(11)+f(8) = x^3+2x^2+x+1, \\ f(27) &= f(19+2^3) = f(19)+f(8) = 2x^3+3x^2-x+1, \\ f(29) &= f(2+3^3) = f(2)+f(27) = 2x^3+3x^2+1. \end{split}$$

On the other hand, we also get from (1.1)

$$f(19) = f(19+1) - 1 = f(4)f(5) - 1 = x^3 + 3x^2 + x - 3$$

and

$$f(29) = f(29+1) - 1 = f(2)f(3)f(5) - 1 = x^4 + 2x^3 - x - 1.$$

Thus, we have

$$x^{3} + 2x^{2} + x + 1 = x^{3} + 3x^{2} + x - 3, \quad (x - 2)(x + 2) = 0$$

and

$$2x^{3} + 3x^{2} + 1 = x^{4} + 2x^{3} - x - 1, \quad (x - 2)(x^{3} + 2x^{2} + x + 1) = 0,$$

which imply x = 2. The assertion (2.1) is proved for n = 2.

As we seen above, we have

$$f(n) = n$$
 if $n \in \{1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 15, 19, 20, 27\}.$

These with (1.1) imply

$$\begin{split} f(7) &= f(7+1^3) - 1 = f(8) - 1 = 7, \\ f(17) &= \frac{f(34)}{f(2)} = \frac{f(34)}{2} = \frac{f(7) + f(27)}{2} = \frac{7 + 27}{2} = 17, \\ f(9) &= \frac{f(18)}{f(2)} = \frac{f(17) + 1}{2} = \frac{17 + 1}{2} = 9, \\ f(13) &= f(5+2^3) = f(5) + f(8) = 13, \\ f(16) &= \frac{f(48)}{f(3)} = \frac{f(47) + 1}{3} = \frac{f(55) - 7}{3} = \frac{f(5)f(11) - 7}{3} = 16, \end{split}$$

and so

$$f(n) = n$$
 for all $n \in \{1, 2, \dots, 22\}.$

Now we prove Lemma 2.

Assume by contradiction that there is a number $Q \in \mathbb{N}$, $22 < Q < 565 \cdot 10^{10}$ such that f(n) = n for all n < Q and $f(Q) \neq Q$. Then $Q = \pi^{\alpha} \geq 23$ is a prime power.

If $\alpha = 1$, then Q + 1 is even and $f(Q + 1) = f(Q) + 1 \neq Q + 1$. Since Q + 1 is an even composite, then either $Q + 1 = 2^e$, $e \ge 5$ or Q + 1 = uv with 1 < u < v < Q + 1, (u, v) = 1. If $Q + 1 = 2^e$, then

$$Q + 27 = 2.(2^{e-1} + 13) = f(2)f(2^{e-1} + 13) =$$

= $f(Q + 27) = f(Q) + f(27) = f(Q) + 27$

because $2^{e-1} + 13 < 2^e - 1 = Q$. The last relation is impossible. In the case Q + 1 = uv with 1 < u < v < Q + 1, (u, v) = 1, we also get a contradiction, because

$$Q + 1 \neq f(Q + 1) = f(uv) = f(u)f(v) = uv = Q + 1.$$

If $\alpha = 2$, then we obtain from (1.2) that $Q \neq f(Q) = f(\pi^2) = f(\pi)^2 = \pi^2 = Q$, which is impossible. If $\alpha = 3\beta$, then

$$\begin{aligned} \pi + \pi^{\alpha} &= \pi (1 + \pi^{3\beta - 1}) = f(\pi) f(1 + \pi^{3\beta - 1}) = \\ &= f(\pi + \pi^{3\beta}) = f(\pi) + f(\pi^{\alpha}) = \pi + f(\pi^{\alpha}), \end{aligned}$$

consequently $f(Q) = f(\pi^{\alpha}) = \pi^{\alpha} = Q$. This is a contradiction.

Assume now $\alpha \geq 4$, $3 \nmid \alpha$. Then there are 394 such prime powers $\pi^{\alpha} \leq 565 \cdot 10^{10}$, for which $\alpha \geq 4$ and $3 \nmid \alpha$ hold. Since $\pi^4 \leq \pi^{\alpha} \leq 565 \cdot 10^{10}$, we have $\pi \leq 1541$. With the help of Maple program, for each prime power $\pi^{\alpha} \leq 565 \cdot 10^{10}$ there is a positive $x_{\pi^{\alpha}} \in \{1, \dots, 237\}$ (see Table 1 for the smallest value of $x_{\pi^{\alpha}}$ which is ≥ 30) such that

$$p_{\pi^{\alpha}} := \pi^{\alpha} x_{\pi^{\alpha}} - 1 \in \mathcal{P}, \quad x_{\pi^{\alpha}} < \pi^{\alpha}, \quad (x_{\pi^{\alpha}}, \pi) = 1$$

and

$$M(p_{\pi^{\alpha}} + 8) = M(\pi^{\alpha} x_{\pi^{\alpha}} + 7) < \pi^{\alpha}$$

These with the fact that f(n) = n for all $n < Q = \pi^{\alpha}$ imply

$$x_{\pi^{\alpha}}f(\pi^{\alpha}) = f(x_{\pi^{\alpha}})f(\pi^{\alpha}) = f(\pi^{\alpha}x_{\pi^{\alpha}}) = f(p_{\pi^{\alpha}} + 1) = f(p_{\pi^{\alpha}}) + 1$$

and

$$p_{\pi^{\alpha}} + 8 = f(p_{\pi^{\alpha}} + 8) = f(p_{\pi^{\alpha}}) + 8, \quad f(p_{\pi^{\alpha}}) = p_{\pi^{\alpha}}.$$

Thus $f(Q) = f(\pi^{\alpha}) = \pi^{\alpha} = Q$, which is a contradiction. Lemma 2 is proved.

Let \mathfrak{M} be the set of those subset of \mathcal{L} of \mathbb{N} for which

$$(2.2) n, m \in \mathcal{L}, \quad (n,m) = 1 \quad \Rightarrow \quad nm \in \mathcal{L}.$$

Lemma 3. Assume that $\mathcal{L} \in \mathfrak{M}$ and an integer $T \geq 11000$. If

$$\pi \in \mathcal{L}$$
 for all $\pi \in \mathcal{P}, \ \pi < T$

and

$$2^{\alpha} \in \mathcal{L}, \quad 3^{\beta} \in \mathcal{L}, \quad 5^{\gamma} \in \mathcal{L} \quad (0 \le \alpha \le 10, \quad 0 \le \beta \le 8, \quad 0 \le \gamma \le 5),$$

then for each Q < T, $6 \nmid Q$ we have

(2.3)
$$\mathcal{A}_Q := \{ p \in \mathcal{P} \mid p < T, p + Q \in \mathcal{L} \} \neq \emptyset.$$

Proof. This is Lemma 7 in [7].

| $\pi, \alpha, x_{\pi^{\alpha}}$ |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| 2, 15, 45 | 41, 5, 84 | 193, 5, 38 | 571, 4, 60 | 1013, 4, 48 |
| 2, 22, 33 | 41, 7, 40 | 223, 4, 32 | 577, 4, 138 | 1021, 4, 54 |
| 2, 24, 39 | 43, 5, 60 | 223, 5, 80 | 601, 4, 84 | 1049, 4, 44 |
| 2, 25, 57 | 47, 5, 42 | 227, 5, 42 | 607, 4, 48 | 1063, 4, 62 |
| 2, 30, 237 | 47, 7, 36 | 229, 5, 62 | 613, 4, 68 | 1109, 4, 60 |
| 2, 33, 49, | 53, 4, 32 | 239, 5, 58 | 619, 4, 38 | 1123, 4, 62 |
| 2, 36, 143 | 53, 5, 90 | 241, 4, 50 | 653, 4, 42 | 1181, 4, 44 |
| 2, 39, 49 | 53, 7, 90 | 251, 5, 42 | 673, 4, 114 | 1187, 4, 62 |
| 2, 40, 107 | 59, 5, 130 | 271, 4, 68 | 701, 4, 122 | 1217, 4, 38 |
| 2, 41, 55 | 61, 5, 108 | 277, 4, 48 | 709, 4, 44 | 1229, 4, 48 |
| 2, 42, 33 | 71, 5, 114 | 277, 5, 146 | 727, 4, 60 | 1259, 4, 98 |
| 3, 16, 38 | 73, 4, 50 | 283, 4, 68 | 751, 4, 30 | 1291, 4, 32 |
| 3, 25, 70 | 73, 5, 128 | 293, 5, 70 | 769, 4, 44 | 1319, 4, 48 |
| 7, 11, 120 | 83, 5, 30 | 307, 5, 60 | 811, 4, 44 | 1321, 4, 90 |
| 11, 5, 40 | 89, 4, 80 | 317, 4, 182 | 823, 4, 74 | 1373, 4, 62 |
| 11, 10, 68 | 97, 5, 42 | 331, 5, 48 | 829, 4, 98 | 1427, 4, 38 |
| 17, 5, 72 | 101, 4, 78 | 337, 4, 98 | 839, 4, 54 | 1429, 4, 30 |
| 17, 8, 38 | 107, 5, 64 | 337, 5, 42 | 857, 4, 68 | 1433, 4, 50 |
| 17, 10, 126 | 109, 4, 32 | 383, 4, 168 | 877, 4, 38 | 1439, 4, 38 |
| 23, 4, 42 | 109, 5, 30 | 389, 4, 38 | 911, 4, 54 | 1447, 4, 78 |
| 23, 8, 32 | 113, 4, 60 | 409, 4, 48 | 941, 4, 62 | 1483, 4, 32 |
| 29, 4, 30 | 127, 5, 30 | 419, 4, 54 | 947, 4, 68 | 1487, 4, 98 |
| 29, 5, 66 | 139, 5, 68 | 421, 4, 32 | 953, 4, 30 | 1489, 4, 128 |
| 31, 7, 72 | 167, 5, 42 | 431, 4, 50 | 983, 4, 32 | 1493, 4, 50 |
| 37, 5, 60 | 179, 5, 48 | 521, 4, 50 | 997, 4, 80 | 1499, 4, 32 |
| 37, 7, 36 | 181, 5, 50 | 557, 4, 42 | 1009, 4, 84 | 1523, 4, 32 |

Table 1.

We shall use the following explicit inequality on the distribution of primes.

Lemma 4. Let $\pi(x)$ be the number of primes $p \leq x$. We have

$$\pi(x) < \frac{x}{\log x} + 1.2762 \frac{x}{(\log x)^2} \quad if \quad x \ge 1.$$

Proof. This statement is proved in [2].

Lemma 5. Assume that $\mathcal{H} \in \mathfrak{M}$ and U is a cube-free, $U > 565 \cdot 10^{10}$, (U, 2) = 1. If

(a) $\pi \in \mathcal{H}$ for all $\pi \in \mathcal{P}, \ \pi < U$,

(b)
$$p^2 \in \mathcal{H}$$
 for all $p \in \mathcal{P}, p < U$

and

$$(c) \qquad 2^{\delta} \in \mathcal{H} \quad (1 \le \delta \le 23),$$

then we have

(2.4)
$$\mathcal{B}_U := \{ n \in \mathbb{N} \mid n < \sqrt[3]{U}, \ U + n^3 \in \mathcal{H} \} \neq \emptyset.$$

Proof. Assume that the conditions of Lemma 5 are satisfied.

We define the function $\kappa \in \mathcal{M}$ as follows:

$$\kappa(p^{\alpha}) = \begin{cases} 1 & \text{if } p = 2\\ 1 & \text{if } p \neq 2, \ \alpha \le 2\\ 0 & \text{otherwise.} \end{cases}$$

Let $h(n) = U + n^3$ and let $H = [U^{1/3}]$.

First we consider the congruence

(2.5)
$$h(x) = x^3 + U \equiv 0 \pmod{\pi^3}, \ (2 < \pi \le H, \ \pi \in \mathcal{P}).$$

If $(\pi, U) = 1$, then the congruence (2.5) has at most $(3, \pi^2(\pi - 1)) \leq 3$ solutions (modulo π^3). If $(\pi, U) > 1$, then for each solution $n \pmod{\pi^3}$ of the congruence (2.5), we have $\pi \mid n$ and $\pi^3 \mid U$. Since U is cube-free, (2.5) has no solutions in the case $\pi \mid U$. Let

$$\mathcal{U} := \sum_{\substack{n \equiv 1 \pmod{2} \\ n \leq H}} \kappa(h(n).$$

We infer from Lemma 1, Lemma 4 and $U > 565 \cdot 10^{10}$ that

$$\begin{split} \mathcal{U} &\geq \frac{H}{2} - \sum_{3 < \pi \leq \sqrt[3]{H/2}} 3 \Big(\frac{H}{2\pi^3} + 1 \Big) - 3 \sum_{\sqrt[3]{H/2} < \pi < \sqrt[3]{2U}} 1 \geq \\ &\geq \Big[\frac{1}{2} - \frac{3}{2} \Big(\mathfrak{S}(3) - \frac{1}{8} \Big) \Big] H - 3\pi (\sqrt[3]{2U}) + 3 \geq \\ &\geq 0.4253560493H - \frac{3\sqrt[3]{2U}}{\log\sqrt[3]{2U}} - \frac{3c\sqrt[3]{2U}}{(\log\sqrt[3]{2U})^2} + 3 \geq \\ &\geq \Big[0.4253560493 - \frac{3\sqrt[3]{2}}{\log\sqrt[3]{2U}} - \frac{3c\sqrt[3]{2}}{(\log\sqrt[3]{2U})^2} \Big] \sqrt[3]{U} + 2, \end{split}$$

where c := 1.2762.

Now we give the upper estimate for

$$E_{\alpha} = \sum_{\substack{n \le H, \ n \equiv 1 \pmod{2}\\h(n) \equiv 0 \pmod{2^{\alpha}}}} 1.$$

One easily check that if (U, 2) = 1, then the congruence

$$h(n) = U + n^3 \equiv 0 \pmod{2^{\alpha}} \quad (\alpha \ge 2)$$

has at most two solutions (modulo 2^{α}). Thus, we have

$$E_{\alpha} = \sum_{\substack{n \le H, \ n \equiv 1 \pmod{2} \\ h(n) \equiv 0 \pmod{2^{\alpha}}}} 1 \le 2\left(\frac{H}{2^{\alpha}} + 1\right) < \frac{\sqrt[3]{U}}{2^{\alpha-1}} + 2.$$

Consequently, $U > 565 \cdot 10^{10}$ gives

$$\begin{aligned} \mathcal{U} - E_{24} &= \sum_{n \equiv 1 \pmod{2}} \kappa(h(n)) - \sum_{\substack{n \leq H, n \equiv 1 \pmod{2} \\ h(n) \equiv 0 \pmod{2^{24}}}} 1 \geq \\ &\geq \left[0.4253560493 - \frac{3\sqrt[3]{2}}{\log\sqrt[3]{2U}} - \frac{3c\sqrt[3]{2}}{(\log\sqrt[3]{2U})^2} - \frac{1}{2^{23}} \right] \sqrt[3]{U} > 0. \end{aligned}$$

We may now complete the proof of (2.4).

Since $\mathcal{U} - E_{24} > 0$, there is a $n \in \mathbb{N}, n^3 < U, 2 \nmid n$ such that

$$U + n^3 = 2^{\delta} \eta, \ 1 \le \delta \le 23, \kappa(\eta) = 1, \eta < U.$$

Since $U > 565 \cdot 10^{10}$ and $\delta \le 23$, we have $1 < \eta < U$ and so by our assumptions, using the conditions (a)-(c) we get

$$U + n^3 = 2^{\delta} \eta \in \mathcal{H},$$

which proves Lemma 5.

Remark. By using the method of C. Hooley [4], [5] one can prove that

$$\mathcal{U} = U \prod_{p>2} \left(1 - \frac{\rho_U(p^2)}{p^2} \right) + O(U(\log U)^{-1/2}),$$

where $\rho_U(m)$ is the number of those residues for which $(2n + 1)^3 + U \equiv 0 \pmod{m}$ and the constant implied by error term is absolute.

Consequently, one can prove the following assertion: There exists a constant c_0 such that if $f \in \mathcal{M}$ satisfies the condition (1.1), furthermore f(n) = n for $n \leq c_0$, then f(n) = n for all $n \in \mathbb{N}$.

The constant c_0 is effective, and perhaps f(n) = n $(n \le c_0)$ holds but too much numerical computation would be necessary.

Lemma 6. Assume that $f \in \mathcal{M}$ satisfy (1.1) and (1.2). Then

$$(2.6) f(p) = p for all p \in \mathcal{P}$$

and

(2.7)
$$f(m^3) = m^3 \quad for \ all \quad m \in \mathbb{N}.$$

Proof. We apply Lemma 3 and Lemma 5 with

$$\mathcal{L} = \mathcal{H} := \{ n \in \mathbb{N} \mid f(n) = n \}.$$

Assume that f(p) = p for all prime p < R, where $R \in \mathcal{P}$. We may assume that $R > 565 \cdot 10^{10}$ (see Lemma 2). From (1.2) we have

$$p, p^2 \in \mathcal{L}$$
 for all $p \in \mathcal{P}, p < R$

Let $Q := \pi^{3\alpha} < R$, where $\pi \in \mathcal{P}$ and $\alpha \in \mathbb{N}$. Since $6 \nmid Q$, by applying Lemma 3 with T = R, there is $p \in \mathcal{P}$, p < R such that $p + \pi^{3\alpha} \in \mathcal{L}$, which gives

$$p + \pi^{3\alpha} = f(p + \pi^{3\alpha}) = f(p) + f(\pi^{3\alpha}) = p + f(\pi^{3\alpha}).$$

Therefore

$$f(\pi^{3\alpha}) = \pi^{3\alpha}$$
 for all $\pi^{3\alpha} < R_{\pm}$

consequently

(2.8)
$$f(m^3) = m^3 \quad \text{for all} \quad m \in \mathbb{N}, \ m^3 < R.$$

Now we apply Lemma 5 with U = R. Then there is a $m \in \mathbb{N}$, $m^3 < R$ such that $R + m^3 \in \mathcal{L}$, which with (1.1) and (2.6) gives

$$R + m^3 = f(R + m^3) = f(R) + f(m^3) = f(R) + m^3.$$

Consequently f(R) = R, and so f(p) = p is satisfied for all primes p. The assertion (2.6) is proved.

Finally, the assertion (2.7) follows directly from (2.6) and (3.1).

Lemma 6 is proved.

3. Proof of Theorem 1

From Lemma 6, we obtain that f(p) = p and $g(m^3) = m^3$ for all $p \in \mathcal{P}$, $m \in \mathbb{N}$. Thus

(3.1)
$$f(p+m^3) = p+m^3 \text{ for all } p \in \mathcal{P}, \ m \in \mathbb{N}.$$

Let $E_k(x)$ be the number of those $n \leq x$ which can not be written as a sum of a prime and a k-th power of an integer, and $n \neq m^k$. Here $k \geq 2, k \in \mathbb{N}$.

Devenport and Heilbronn proved in [1] that for each $k \ge 2$ there is a constant c = c(k) > 0 such that

$$E_k(x) = O\left(\frac{x}{(\log x)^c}\right).$$

For us it is enough to know that $E_3(x)/x \to 0 \quad (x \to \infty)$.

Let \mathcal{B} be the set of those n which can be written as $n = p + m^3$ $(p \in \mathcal{P}, m \in \mathbb{N})$. It follows from (3.1) that f(n) = n if $n \in \mathcal{B}$.

Let π^{α} be an arbitrary prime power. Consider the set of integers $\pi^{\alpha}\nu \leq x$, $(\nu, \pi) = 1$. The size of this set is $\geq \frac{x}{\pi^{\alpha}}(1 - \frac{1}{\pi}) - 1$. The number of those ν for which $\nu \notin \mathcal{B}$, or $\pi^{\alpha}\nu \notin \mathcal{B}$ is $\leq E(x) + E(\frac{x}{\pi^{\alpha}})$. Thus, if x is large enough, then we can find such a $\nu \in \mathcal{B}$ for which $\pi^{\alpha}\nu \in \mathcal{B}$ and $(\pi, \nu) = 1$. Consequently

$$\pi^{\alpha}\nu = f(\pi^{\alpha}\nu) = f(\pi^{\alpha})f(\nu) = f(\pi^{\alpha})\nu,$$

which proves

 $f(\pi^{\alpha}) = \pi^{\alpha}.$

Thus

$$f(n) = n$$
 for all $n \in \mathbb{N}$

holds, and so our theorem is proved.

References

- Davenport, H. and H. Heilbronn, Note on a result in the additive theory of numbers, *Proc. London Math. Soc.*, (2) 43 (1937), 142–151.
- Dusart, P., Estimates of some functions over primes without R.H., 2002, 20 pages. http://arxiv.org/pdf/1002.0442v1.pdf.
- [3] De Koninck, J.-M., I. Kátai and B. M. Phong, A new characteristic of the identity function, *Journal of Number Theory*, 63 (1997), 325–338.
- [4] Hooley, C., On the square-free values of cubic polynomials, J. Reine Angew. Math., 229 1968, 147–154.
- [5] Hooley, C., Applications of Sieve Methods to the Theory of Numbers, Cambridge Tracts in Mathematics, No. 70., Cambridge University Press, Cambridge-New York-Melbourne, 1976.
- [6] Phong, B.M., A characterization of the identity function with functional equations, Annales Univ. Sci. Budapest., Sect. Comp., 32 (2010), 247–252.

- [7] Phong, B.M., A characterization of the identity with functional equations II., Acta Math. Hungar., 148(2) (2016), 450–465.
- [8] Spiro, C., Additive uniqueness sets for arithmetic functions, J. Number Theory, 42 (1992), 232–246.

Bui Minh Phong

Department of Computer Algebra Faculty of Informatics Eötvös Loránd University H-1117 Budapest, Pázmány Péter sétány 1/C Hungary bui@compalg.inf.elte.hu