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Abstract. Consider an increasing group of individuals who are organized
by pairwise collaborations. A successful collaboration attracts newcomers,
who start collaborating with one or both participants. However, the new
connections can weaken and exhaust the attracting pair’s collaboration,
which eventually ceases. We investigate the corresponding random graph
process in the framework of general time-dependent branching processes.

1. Introduction

Consider an increasing group of individuals who are organized by pairwise
collaborations. A successful collaboration attracts newcomers, who start col-
laborating with one or both participants. However, the new connections can
weaken and exhaust the attracting pair’s collaboration, which eventually ceases.
Representing collaborations with edges, we get an evolving graph process.

Just for a moment, suppose that the edges cannot run low. In the case
where the newcomers always collaborate with both participants, the model is
reduced to the so-called random cherry tree. Cherry trees were introduced by

Key words and phrases: Evolving random graph, Crump–Mode–Jagers process, preferential
attachment, confluent hypergeometric function.
2010 Mathematics Subject Classification: 05C80, 60J80.
This work was partially supported by the Hungarian National Research, Development and
Innovation Office NKFIH, grant number K 108615.

https://doi.org/10.71352/ac.46.191

https://doi.org/10.71352/ac.46.191
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Bukszár and Prékopa [4] for constructing Bonferroni type upper bounds of third
order for the probability of the union of random events. On the other hand,
the opposite extremal parametrization, where the new node is connected to
exactly one of the chosen collaborating edge’s endpoint, leads to the intensively
studied Barabási–Albert random tree. Many properties of this model, such as
the asymptotic degree distribution, the maximal degree, the height, or the
profile of the tree, and so on, have already been investigated.

Although the techniques used in the proofs of the preceding results strongly
depend on martingale theory, there is another, very natural way to answer
questions of these kind (which, however, is also closely connected with martin-
gales). Considering the new edges (collaborations) as the attractor edge’s chil-
dren, we can model our graph process in the context of general time-dependent
branching processes. Such processes are widely applied in the theory of random
graphs and networks, especially when the ancestor-descendant relationship is
prescribed between the nodes of the randomly evolving graph.

An early usage of this embedding is due to Devroye [5], who has shown,
with the help of the Galton–Watson process, that the height of a random binary
search tree on n vertices, divided by log n, converges to a constant in probability
and in mean. Later, this result was generalized to random recursive and m-ary
search trees by Pittel in [21] by using the fact that the consecutive states of
the evolving graph can be considered as the sequence of the general branching
process’ “snapshots”. As pointed out by Biggins and Gray in [2], these random
trees (and others like the random binary pyramid [15]) are all just particular
cases of a general randomly evolving tree, the height of which can be computed
similarly, by using general branching processes. Further applications of general
(and some special) branching processes in the analysis of the properties of
tree-type data structures can be found in [6].

Due to the popularity of the Barabási-Albert random graph model, this
branching process approach is often used in the analysis of random trees that
evolve with preferential attachment-like dynamics, that is, vertices are chosen
with probabilities proportional to some function of their degrees. The model
introduced by Athreya, Ghosh and Sethuraman [1] uses a weight function which
is linear in the chosen node’s degree, and the new vertex connects with a ran-
dom number of edges. Embedding in a Markov branching process allows of
the extensions of the law of large numbers and the asymptotics of the growth
rate of the maximal degree. The class of linear weight functions can be ex-
tended as in [13] and [14], still ensuring that the limiting degree sequence is
not trivial in the sense that there won’t be a single dominant vertex. Oliveira
and Spencer showed [20] that if the weight function is chosen to be the power
of the degree, then its exponent cannot exceed 1. A general form of sublin-
ear preferential attachment models is considered by Rudas and Tóth in [23].
The authors, basing again on general branching processes, give local results
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concerning the neighborhood of a uniformly sampled vertex, and also global
ones on the probability that a randomly choosen node is a descendant of a
fixed vertex. It is worth mentioning the work of Jog and Loh [11], where the
terminal centrality of a similar random graph is analyzed with the branching
process approach. Recently, various other randomly evolving tree models, like
fringe trees and fragmentation trees, have also been investigated with the help
of general branching processes in the survey [9] of Holmgren and Janson, see
also [7] and [22].

Our approach is different from the former ones in the sense that edges,
not vertices, are subject to branching. Since in our model the embedding of
the graph in the branching process takes place through the edges, the result-
ing structure loses its tree-like nature. Hence, it does not fit into the above
framework of random graph models.

The paper is organized as follows. In Section 2 we briefly summarize what
we will use from the theory of general time-dependent branching processes. In
Section 3 a continuous time random graph model is introduced, which can be
treated with the tools of Section 2. The asymptotic analysis of the model is
carried out in Sections 4, 5, and 6. Section 4 contains results on the life history
of an edge. We compute the survival function and the expectation of the life
span of an edge, and the distribution of the number of edges considered its
direct descendants. Section 5 deals with the evolution of the graph process:
the probability of extinction, the growth rate of the numbers of edges and
vertices, and the number of birth or death events. In Section 6, we focus on
the history of a vertex: how its degree varies with time. Section 7 introduces
a slowed down discrete time version of the graph process, where at every step
either a new vertex with a new edge or edges are added to the graph, or an
edge is deleted. The results obtained for the continuous time model can easily
be transferred to this case. Finally, Section 8 emphasises two particular cases
which give back well known graph processes but with the extra feature of aging
edges.

2. Basic properties of Crump–Mode–Jagers processes

In this section, we give an informal introduction to general time dependent
branching processes, or Crump–Mode–Jagers (CMJ) processes. The interested
reader may find more formal descriptions in the monographs [10] or [8].

In a CMJ branching process there are individuals who reproduce and die.
This is characterized by a random point process ξ(t), called the reproduction
process, and a nonnegative random variable λ, which is the life span. They
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are not supposed to be independent. Most often there is no reproduction after
death, i.e., ξ(t) = ξ(λ) for t > λ (but this is not necessarily required). Let
μ(t) = Eξ(t) denote the mean offspring number of an individual up to time t.

The reproduction process ξ(t) can be equivalently given by the successive
birth times τ1, τ2, . . . , and the corresponding litter sizes ε1, ε2, . . . . Thus the
total number of children born in the first n birth events is Sn = ε1 + · · · + εn.

The life history of every individual e is described by the pair
(
ξe(·), λe

)
;

they are iid copies of
(
ξ(·), λ) introduced above. If individual e was born at

time σe, then at time t the number of its children (dead or alive) is ξe(t − σe)
(ξe(t) is defined as zero for negative t), and it deceases at time σe + λe.

Now let ξ(·) and λ be completed with another random process φ(·), which is
connected with the history of an individual, and supposed to change exclusively
during the lifetime: φ(t) = 0 for t ≤ 0 and φ(t) = φ(λ) for t ≥ λ. This φ is
called a random characteristic. We are interested in the stochastic process

Zφ(t) =
∑
e

φe(t − σe),

called the time-dependent branching process counted by random characteristics.
By suitably choosing φ we can access the evolution of interesting properties of
our process. For instance, φ(t) = I(0 ≤ t < λ) produces Zφ(t) = Z(t), the
number of individuals alive at time t.

The following results can be found in [10] and [19].

The individuals being present at time zero form the 0-th generation (an-
cestors). Most often the process starts with a single ancestor. Children of
the k-th generation form the (k + 1)-st generation. Since an individual can
give birth at different times, the generations overlap: several generations coex-
ist. Only concentrating on generations we find an embedded Galton–Watson
branching process, which makes it easier to analyze the problem of extinction.
Clearly, a CMJ process dies out eventually if and only if there exists an empty
generation. The total size of progeny of an individual is ξ(∞). Like the clas-
sical Galton–Watson processes, CMJ processes are classified according to the
expected number of children. A process is called subcritical, critical, or super-
critical, if Eξ(∞) = μ(∞) is less than, equal to, or greater than 1, respectively.
Suppose the process starts with a single ancestor. Let gξ(y) = E

(
yξ(∞)

)
,

|y| ≤ 1, the probability generating function of the total number of children,
then the probability of extinction is equal to the smallest nonnegative solution
of equation gξ(y) = y. In the case where the number of ancestors is a random
variable with generating function g0, the probability of extinction is equal to
g0(y), where y is the extinction probability for a process with a single ances-
tor. Extinction is almost sure in subcritical and critical processes, while its
probability is less than one for supercritical processes.
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In the sequel we are interested in supercritical processes. We do not intend
to formulate the basic results in their most general forms, because we want
to apply them to a model with nice properties. Therefore we suppose that
1 < Eξ(∞) < ∞, and the Lebesgue–Stieltjes measure generated by μ is not
lattice, i.e., it is not concentrated on a set of the form {ku + v : k ∈ Z} with
u > 0, v ∈ R.

Such processes grow exponentially fast on the event of non-extinction. The
rate of growth is described by the so called Malthusian parameter α. It is the
only positive solution of the equation∫ ∞

0

e−αtμ(dt) = 1.

Combining Proposition 2.2, Theorems 3.1 and 5.4 of [19] we get the following
limit theorem.

Proposition 2.1. Suppose the random characteristic φ satisfies the following
conditions:

(i) φ(t) ≥ 0,

(ii) the trajectories of φ belong to the Skorohod D-space, that is, they do not
have discontinuities of the second kind,

(iii) E[supt φ(t)] < ∞,

(iv) Eφ(t) is Lebesgue-a.e. continuous.

Furthermore, with the definition

M =

∫ ∞

0

e−αtξ(dt),

suppose that E[M log+ M ] < ∞ holds. Then

lim
t→∞Zφ(t) = Y∞mφ

∞ a.s. and in L1,

where

mφ
∞ =

∫ ∞
0

e−αtEφ(t) dt∫ ∞
0

t e−αtμ(dt)
,

Y∞ is a nonnegative random variable, which is positive on the event of non-
extinction, it has expectation 1, and it does not depend on the choice of φ.

Particularly, for the number Z(t) of individuals alive at time t we have

(2.1) lim
t→∞ e−αtZ(t) = Y∞

∫ ∞
0

e−αt[1 − L(t)] dt∫ ∞
0

t e−αtμ(dt)
,

where L(t) = P (λ ≤ t), the distribution function of the life length.
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3. The model

We start with a single edge. Whenever a new edge is born, it starts produc-
ing offspring according to a homogeneous Poisson process with unit intensity.
At every birth event a new vertex is added to the graph, and it is joined to
the endpoints of the reproducing edge with one or two edges, namely, with
probability p ∈ [0, 1] the new vertex gets connected to both ends, while with
probability q = 1 − p it is connected to one of the endpoints, selected at ran-
dom. The number of reproduction events up to time t is called the biological
age of the edge. The life span of an edge is finite: it dies with a hazard rate
which is an increasing linear function of the biological age. At death the edge
is deleted. The life histories of different edges are supposed to be independent.
In this way, from the viewpoint of edges, our process is a Markov branching
process, which is a particular case of general CMJ processes.

Let us introduce some notations. Consider a generic edge. By π(t), t ≥ 0, we
denote the Poisson process that governs reproduction. Then the reproduction
process is the point process given by

ξ(t) =
∑

τi≤t∧λ

εi = Sπ(t∧λ).

where ∧ stands for minimum. Thus, ξ(t) is just the compound Poisson process
Sπ(·) stopped at λ ∧ t. By Wald’s identity we have

μ(t) = Eξ(t) = E(ε1)E(λ ∧ t) = (1 + p)

∫ t

0

[1 − L(s)] ds.

The hazard rate of the life span for an edge of physical age t and biological
age ξ(t) is b+ c ξ(t), where b and c are positive constants.

Our CMJ process starts with a single ancestor at time 0. The history of
every edge e is characterized by the triple(

λe, πe(·), ξe(·)
)

which are iid copies of
(
λ, π(·), ξ(·)) introduced above.

4. Life history of an edge

In this section, we first compute 1−L(t), the survival function of an edge’s
lifetime, then the joint distribution of the number of birth events and the total
number of children of an edge.
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Theorem 4.1.

1 − L(t) = exp
(

− (1 + b)t+
1

2c

(
1 − e−ct

)(
2 − p(1 − e−ct)

))
.

Proof. Let us first compute the conditional survival function of λ given the
number of birth events up to time t, the times of reproductions and the litter
sizes. After the birth time τi, if the total number of children is j, the death
rate is b+ cj. Hence the probability that the edge does not die before the next
birth event is exp

( − (b+ cj)(τi+1 − τi)
)
. Therefore,

P (λ > t |π(t) = k, τ1, . . . , τk, ε1, . . . , εk) =

= e−bτ1 · e−(b+cS1)(τ2−τ1) · e−(b+cS2)(τ3−τ2) · · · e−(b+cSk)(t−τk) =

= exp

(
c

k∑
i=1

εiτi − (b+ cSk)t

)
.

Given π(t) = k, the conditional joint distribution of the birth times τ1, . . . , τk
coincides with that of (tU

(k)
1 , . . . , tU

(k)
k ), where (U

(k)
1 , . . . , U

(k)
k ) is an ordered

sample of size k from the uniform distribution U(0, 1) (and independent of the
litter sizes ε1, . . . , εk). Hence,

P (λ > t |π(t) = k) = E

(
exp

(
− bt+ ct

k∑
i=1

εi(U
(k)
i − 1)

))
.

Since ε1, . . . , εk are interchangeable, we get

P (λ > t |π(t) = k) = E

(
exp

(
− bt+ ct

k∑
i=1

εi(Ui − 1)
))

,

where U1, . . . , Uk are iid random variables with U(0, 1) distribution, and they
are independent of the ε. Thus, by independence,

P (λ > t |π(t) = k) = e−bt

[
E

(
1 − e−ctε1

ctε1

)]k
=

= e−bt

[
p
1 − e−2ct

2ct
+ q

1 − e−ct

ct

]k
=

= e−bt

[
1

2ct

(
1 − e−ct

)(
2 − p(1 − e−ct)

)]k
.
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Finally,

P (λ > t) =
∞∑
k=0

P (π(t) = k)P (λ > t |π(t) = k) =

=

∞∑
k=0

tk

k!
e−t · e−bt

[
1

2ct

(
1 − e−ct

)(
2 − p(1 − e−ct)

)]k
=

= exp
(

− (1 + b)t+
1

2c

(
1 − e−ct

)(
2 − p(1 − e−ct)

))
. �

Corollary 4.1.

μ(t) =
1 + p

c

∫ 1−e−ct

0

(1 − u)
1+b
c −1 exp

(u(2 − pu)

2c

)
du.

Moreover, the mean lifetime is

E(λ) =
1

c

∫ 1

0

(1 − u)
1+b
c −1 exp

(u(2 − pu)

2c

)
du.

Proof. As we have already seen, μ(t) = (1 + p)E(λ ∧ t). Here E(λ ∧ t) =

=
∫ t

0
[1 − L(s)] ds, and substitution u = 1 − e−cs on the right hand side leads

to the expression above. For t → ∞ we get μ(∞) = (1 + p)E(λ). �

Next, we compute the joint probability generating function of π(λ) and
ξ(λ) = ξ(∞), defined as

gπ,ξ(x, y) = E
(
xπ(λ)yξ(λ)

)
=

∞∑
i=0

2i∑
j=i

P (π(λ) = i, ξ(λ) = j)xiyj ,

for x, y ∈ [−1, 1].

Theorem 4.2.

gπ,ξ(x, y)

= 1− 1 − qxy − pxy2

c

∫ 1

0

(1 − u)
1+b
c −1 exp

(qxy + pxy2

c
u − pxy2

2c
u2

)
du

For the sake of convenience, we first focus on the bivariate generating func-
tion of another, closely related sequence with double indices.

Lemma 4.1. For integers 0 ≤ i ≤ j let

wi,j = P (π(λ) = i, ξ(λ) = j), vi,j =
wi,j

b+ jc
,
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and for x, y ∈ [−1, 1] define

G(x, y) =

∞∑
i=0

i∑
j=0

vi,i+j x
iyj .

Then

G(x, y) =
1

c
exp

(qx
c

+
pxy

2c

)∫ 1

0

s
1+b
c −1 exp

(
− qx

c
s − pxy

2c
s2

)
ds =(4.1)

=
1

c

∫ 1

0

(1 − u)
1+b
c −1 exp

(qx+ pxy

c
u − pxy

2c
u2

)
du.(4.2)

Proof. The probability that a live edge of biological age j dies before the next
reproduction event is (b+ cj)/(1 + b+ cj). Hence,

P (π(λ) = i, ξ(λ) = j) = P (∃t < λ : π(t) = i, ξ(t) = j)
b+ cj

1 + b+ cj
.

On the other hand,

P (∃t < λ : π(t) = i, ξ(t) = j)

= P (∃t < λ : π(t) = i − 1, ξ(t) = j − 1)
q

1 + b+ c(j − 1)
+

+ P (∃t < λ : π(t) = i − 1, ξ(t) = j − 2)
p

1 + b+ c(j − 2)
,

where the probability on the left hand side is decomposed according to the size
of the last litter. From that we obtain the following recursion for vi,i+j :

[1 + b+ c(i+ j)]vi,i+j = qvi−1,(i−1)+j + pvi−1,(i−1)+(j−1),

with initial condition v0,0 = 1/(1 + b), v0,j = 0 for j ≥ 1. Multiplying this
equality with xiyj , then adding up for i ≥ 1 and j ≥ 1 one gets

(4.3) (1+b)
(
G(x, y)− 1

1 + b

)
+c

(
xG′

x(x, y)+yG′
y(x, y)

)
= (qx+pxy)G(x, y),

with G(0, y) = 1/(1 + b). Let h(t) = G(tx, ty), 0 ≤ t ≤ 1. Then h satisfies the
following ODE:

(1 + b − qxt − pxyt2)h(t) + cth′(t) = 1, h(0) =
1

1 + b
.

The solution is

h(t) =
1

c
t−

1+b
c exp

(qx
c
t+

pxy

2c
t2
)∫ t

0

s
1+b
c −1 exp

(
− qx

c
s − pxy

2c
s2

)
ds,
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which immediately implies (4.1) for G(x, y) = h(1). Substituting u = 1 − s in
the integral we get (4.2). �

Proof of Theorem 4.2. Clearly,

∞∑
i=0

i∑
j=0

wi,i+j x
iyj =

∞∑
i=0

i∑
j=0

[b+ c(i+ j)]vi,i+j x
iyj

= bG(x, y) + c
(
xG′

x(x, y) + yG′
y(x, y)

)
.

By (4.3) we have

c
(
xG′

x(x, y) + yG′
y(x, y)

)
= 1− (1 + b − qx − pxy)G(x, y),

consequently,

∞∑
i=0

i∑
j=0

wi,i+j x
iyj = 1− (1 − qx − pxy)G(x, y).

The desired generating function can be obtained by plugging xy in place of x:

gπ,ξ(x, y) = 1− (1 − qxy − pxy2)G(xy, y).

Now the proof can be completed by applying Lemma 4.1. �

5. Life history of the graph process

From Theorem 4.2 one can immediately compute the probability of ex-
tinction. Extinction of our branching process means that eventually all edges
die: the graph becomes empty. This probability is equal to 1 if Eξ(∞) =
(1 + p)E(λ) =≤ 1 (subcritical and critical regime). In the supercritical case,
i.e., when

(5.1) Eξ(∞) =
1 + p

c

∫ 1

0

(1 − u)
1+b
c −1 exp

(u
c

− pu2

2c

)
du > 1,

the extinction probability is less than 1, and it can be obtained as follows.

Theorem 5.1. When (5.1) holds, the probability y of extinction is the smallest
nonnegative root of the equation

(5.2) 1 =
1 + py

c

∫ 1

0

(1 − u)
1+b
c −1 exp

(qy + py2

c
u − py2

2c
u2

)
du.
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Note that the right hand side is an increasing continuous function of y. It
is equal to (1 + b)−1 ≤ 1 at y = 0, and greater than 1 at y = 1, by (5.1).

Proof. The extinction probability is the smallest nonnegative root of the
equation gξ(y) = y, where gξ stands for the probability generating function of
ξ(∞) = ξ(λ), the total number of children of the ancestor. Clearly, gξ(y) =
= gπ,ξ(1, y), hence by Theorem 4.2,

1 − y =
1 − qy − py2

c

∫ 1

0

(1 − u)
1+b
c −1 exp

(qy + py2

c
u − py2

2c
u2

)
du.

Here 1 − qy − py2 = (1 − y)(1 + py), thus one can divide by 1 − y on both
sides. �

The Malthusian parameter α is the only solution of the equation∫ ∞

0

e−αt μ(dt) = 1.

In our case, by Theorem 4.1, this equation takes shape in the following form:

1 =

∫ ∞

0

e−αt μ(dt) = (1 + p)

∫ ∞

0

e−αt[1 − L(t)] dt =

= (1 + p)

∫ ∞

0

e−αt exp
(

− (1 + b)t+
1

2c

(
1 − e−ct

)(
2 − p(1 − e−ct)

))
dt.

Similarly to what we have done during the computation of E(λ), let us substi-
tute u = 1− e−ct again. It leads to the equation

(5.3)
1 + p

c

∫ 1

0

(1 − u)
α+1+b

c −1 exp
(u(2 − pu)

2c

)
du = 1.

Remark. The Malthusian parameter α satisfies p − b < α < 1 + p − b, since
from Theorem 4.1 it follows that

exp(−(1 + b)t) < 1 − L(t) < exp
(

− (1 + b)t+
1 − e−ct

c

)
≤ exp(−bt),

and consequently,

(1 + p)

∫ ∞

0

e−(α+1+b)t dt < 1 < (1 + p)

∫ ∞

0

e−(α+b)t dt,

that is,
1 + p

α+ 1 + b
< 1 <

1 + p

α+ b
.
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The next theorem describes the asymptotic behaviour of Z(t), the number
of edges.

Theorem 5.2. As t → ∞, e−αtZ(t) converges almost surely and in L1 to
Y∞m∞, where Y∞ is a nonnegative random variable with expectation 1, positive
on the event of non-extinction, and

m∞ =

[
(1 + p)2

∫ ∞

0

t e−αt[1 − L(t)] dt

]−1

=

=

[
(1 + p)2

c2

∫ 1

0

[− log(1 − u)](1 − u)
α+1+b

c −1 exp
(u(2 − pu)

2c

)
du

]−1

,

with α defined by equation (5.3).

Proof. We want to apply Proposition 2.1. Let us check its conditions. Obvi-
ously,

M =

∫ ∞

0

e−μtξ(dt) =
∑
τi<λ

εie
−μτi ≤ 2

∞∑
i=1

e−μτi = M ′.

Using that the distribution of τi is Gamma(i, 1), we have

E(M ′) = 2
∞∑
i=1

E
(
e−μτi

)
= 2

∞∑
i=1

1

(1 + μ)i
=

2

μ
.

On the other hand, the distribution of M ′ coincides with that of e−μτ (2+M ′),
where τ is exponentially distributed with unit mean, and independent of M ′.
Hence

E(M ′2) = E(e−2μτ )
[
4 + 4E(M ′) + E(M ′2)

]
=

1

1 + 2μ

[
4 +

8

μ
+ E(M ′2)

]
,

implying

E(M ′2) =
2(2 + μ)

μ2
.

The conditions imposed on φ are obviously met for φ(t) = I(0 ≤ t < λ). By
(2.1) we now have

(5.4) e−αtZ(t) → Y∞

∫ ∞
0

e−αt[1 − L(t)] dt∫ ∞
0

t e−αtμ(dt)

a.s. and in L1, as t → ∞. Here the numerator is equal to 1/(1 + p) by the
Malthusian equation, and the denominator is

(1 + p)

∫ ∞

0

t e−αt[1 − L(t)] dt.

Again, substitution u = 1− e−ct leads to the second equality. �
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Next we deal with the number of vertices. At time t it can be obtained as
V (t) = 2 + Zφ(t) for φ(t) = π(t ∧ λ).

Theorem 5.3.

lim
t→∞

V (t)

Z(t)
=

1

α

almost everywhere on the event of non-extinction.

Proof. The conditions of Proposition 2.1 are satisfied, because by Wald’s
identity we have

Eφ(t) = Eπ(λ ∧ t) = E(λ ∧ t) =

∫ t

0

[1− L(s)] ds,

which is bounded and continuous. Let us compute the numerator of mφ
∞ (the

denominator does not depend on φ; it is the same as for the number of edges).
By interchanging the order of integrations we get∫ ∞

0

e−αtEφ(t) dt =

∫ ∞

0

e−αt

∫ t

0

[1 − L(s)] ds dt =

=

∫ ∞

0

[1 − L(s)]

∫ ∞

s

e−αtdt ds =
1

α

∫ ∞

0

e−αs[1 − L(s)] ds,

which, in virtue of (5.4), completes the proof. �

Finally, we will study B(t), the growth rate of the total sum of biological
ages of all edges at time t, i.e., the total number of offspring, dead or alive,
born by individuals alive at time t. Clearly,

B(t) =
∑
e

ξe(t − σe)I(t − σe < λe),

thus B(t) = Zφ(t) with φ(t) = ξ(t)I(t < λ).

Theorem 5.4.

lim
t→∞

B(t)

Z(t)
=

1 + p

c2

∫ 1

0

u(1 + p − pu)(1 − u)
α+1+b

c −1 exp
(u(2 − pu)

2c

)
du.

almost everywhere on the event of non-extinction.

Proof. Following the proof of Theorem 4.1 we see that

P (λ > t |π(t) = k, ε1, . . . , εk) =

= E

(
exp

(
− bt+ ct

k∑
i=1

εi(U
(k)
i − 1)

) ∣∣∣∣ ε1, . . . , εk),
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where U
(k)
1 , . . . , U

(k)
k is an ordered sample of size k from the uniform distribu-

tion U(0, 1). Therefore, by the law of total expectation,

E
(
ξ(t)I(t < λ)

∣∣ π(t) = k
)
= E

(
SkI(t < λ)

∣∣ π(t) = k
)
=

= E
(
SkP (λ > t |π(t) = k, ε1, . . . , εk)

∣∣ π(t) = k
)
=

= E

[
E

(
Sk exp

(
− bt+ ct

k∑
i=1

εi(U
(k)
i − 1)

) ∣∣∣∣ ε1, . . . , εk)]
=

= E

(
e−btSk

k∏
i=1

exp
(
ctεi(U

(k)
i − 1)

))
.

The right hand side is invariant under permutations of (ε1, . . . , εk), hence the
ordered sample can be replaced with iid (U1, . . . , Uk).

E
(
ξ(t)I(t < λ)

∣∣ π(t) = k
)
=

= E

(
e−btSk

k∏
i=1

exp
(
ctεi(Ui − 1)

))
=

= E

(
e−bt

k∑
j=1

εj

k∏
i=1

exp
(
ctεi(Ui − 1)

))
=

= e−btk E
[
ε1 exp(ctε1(U1 − 1))

] [
E
(
exp(ctε1(U1 − 1))

)]k−1
=

= e−btk E
(1 − e−ctε1

ct

)[
E
(1 − e−ctε1

ctε1

)]k−1

.

Hence,

E
(
ξ(t)I(t < λ)

)
=

∞∑
k=1

e−btk E
(1 − e−ctε1

ct

)[
E
(1 − e−ctε1

ctε1

)]k−1
tk

k!
e−t =

= E
(1 − e−ctε1

c

)
exp

(
− (1 + b)t+ E

(1 − e−ctε1

cε1

))
=

=
1

c

(
1 − pe−2ct − qe−ct

)
[1 − L(t)] =

=
1

c
(1 − e−ct)(1 + pe−ct) [1− L(t)].

Let us apply Proposition 2.1. In the numerator of mφ
∞ we have

1

c

∫ ∞

0

e−αt(1 − e−ct)(1 + pe−ct) [1− L(t)] dt,

where 1 − L(t) can be taken from Theorem 4.1. Substituting u = 1 − e−ct we
arrive at the formula to be proved. �
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Remark. As we have seen in the proof,

E(ξ(t) |λ > t) =
1

c
(1 − pe−2ct − qe−ct) <

1

c
.

This appears counter-intuitive, because the compound Poisson process ξ(t)
grows linearly before it is stopped at λ, hence one may think that if t is large
but λ > t is still supposed, then ξ(t) is also large, at least not bounded. But
look at that from the other side: since the hazard rate of λ is a linear function
of ξ(t), condition λ > t indicates that ξ(t) is unusually small, in spite of the
large value of t.

6. Life history of a vertex

In this section, we investigate how the degree of a fixed vertex is evolving.

When a vertex is added to the graph, its degree is 2 with probability p and
1 with probability q. Suppose the latter, i.e., there is only one initial edge. It
starts a new CMJ process, where reproduction is driven by the same dynamics
as in the original edge process, but of its children we only count those who are
connected to the monitored vertex. When an edge in this process gives birth
to two edges, the degree of the monitored vertex increases by 1, and when
there is a single offspring, it only contributes to the degree with probability
1/2. However, the biological age of an edge in consideration grows by its not
counted children, too.

Let us denote the degree reproduction process by η(·). Then, up to time t,
the number of litters of size 2, resp. 1, is ξ(t)− π(t∧ λ), resp. 2π(t∧ λ)− ξ(t),
hence

η(t) = ξ(t) − π(t ∧ λ) +

2π(t∧λ)−ξ(t)∑
i=1

δi,

where the random variables δ1, δ2, . . . are iid with P (δi = 0) = P (δi = 1) =
= 1/2, and they are independent of π(·), ξ(·), and λ.

When the monitored vertex is born with initial degree 2, its degree process
is the sum (superposition) of two independent processes (η(·), λ) described
above.

Theorem 6.1. The degree process of a vertex is supercritical if and only if

(6.1) Eη(∞) =
1 + p

2c

∫ 1

0

(1 − u)
1+b
c −1 exp

(u(2 − pu)

2c

)
du > 1.
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In the supercritical case the Malthusian parameter β is the only positive root of
the equation

(6.2)
1 + p

2c

∫ 1

0

(1 − u)
β+1+b

c −1 exp
(u(2 − pu)

2c

)
du = 1,

and the probability of extinction (i.e., the monitored vertex eventually becomes
isolated) is equal to pz2+qz, where z is the smallest positive root of the equation

(6.3)
1 + p

2c

∫ 1

0

(1 − u)
1+b
c −1

exp
(1 + p

2c
u(1 − u)z

)
du = 1.

Proof. In the process η(·), the expectation of the total number of children of
an initial edge up to time t can be computed by the law of total expectation:

Eη(t) = E
[
E(η(t) |π(t ∧ λ), ξ(t))

]
=

= E
(
ξ(t) − π(t ∧ λ) + 1

2 [2π(t ∧ λ) − ξ(t)]
)
=

= 1
2 Eξ(t).

The result is plausible, because now the expected number of children at a birth
event is p+ 1

2 q = 1
2 (1 + p), which is just the half of the mean litter size in the

process ξ(.). Now, (5.1) implies (6.1), and (6.2) follows from (5.3).

Finally, let us compute the probability generating function of η(∞) = η(λ).
Again, by the law of total expectation and Theorem 4.2 we have

gη(z) = E
(
zη(λ)

)
= E

[
E
(
zη(λ) |π(λ), ξ(λ))] =

= E

(
z
ξ(λ)−π(λ)

(1 + z

2

)2π(λ)−ξ(λ)
)

=

= gπ,ξ

(
(1 + z)2

4z
,

2z

1 + z

)
=

= 1− 1 + p

2c
(1 − z)

∫ 1

0

(1 − u)
1+b
c −1

exp
(1 + p

2c
u(1 − u)z

)
du.

Starting with initial degree 1, the degree process eventually dies out with prob-
ability z ∈ (0, 1) satisfying z = gη(z). After rearranging and dividing by 1 − z
on both sides we get (6.3).

If the initial degree is random with probability generating function ψ, it is
easy to see that the probability of extinction is just ψ(z). �

It can happen that the edge process is supercritical, while the degree process
is not. If both processes are supercritical, they grow at different rates: β < α,
and the extinction probability is greater for the degree process. Let deg(t) de-
note the degree of a fixed vertex at time t, then deg(t) = O(eβt) = O

(
V (t)β/α

)
as t → ∞.
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7. A slowed down discrete version of the model

In this section, we introduce a discrete time version of our graph process.
Again, we initially have a single edge. The graph evolves by discrete steps. At
every step the graph changes in one of the following ways: either an edge is
deleted, or a new vertex is added, which then gets connected to one or both
endpoints of an old edge. This is called edge reproduction, and the new edge
or edges are considered the children of the old one. The biological age of an
edge is defined as the number of its children.

Let En denote the edge set after step n. If En �= ∅, then at the next step ex-
actly one of the events {Ae, Be : e ∈ En} occurs, where Ae =
= {e becomes deleted}, Be = {e reproduces}, with probabilities P (Ae) = κ
and P (Be) = κ(b + c ξe), resp. Here b, c are positive constants, ξe is the bi-
ological age of edge e, and the multiplier κ = κn makes the sum of these
probabilities be equal to 1.

This discrete model is exactly the same which is found embedded in the
continuous time model of Section 3 at the moments of events (birth or death).
Thus, we can easily transfer our earlier results to the discrete model.

Clearly, the probability of extinction is the same for both processes (Theo-
rem 5.1), and the limiting vertex to edge ratio also remains valid (Theorem 5.3).
For the growth rate we only have to find the asymptotic number of events up
to time t.

Theorem 7.1. Let W (t) denote the number of events up to t. Then on the
set of non-extinction

lim
t→∞

W (t)

Z(t)
=

2 + p

α
− 1,

where α is the Malthusian parameter defined in (5.3).

Proof. Note that W (t) = Zφ(t) for the random characteristic φ(t) = π(t∧λ)+
+I(λ ≤ t). Here the first term counts the number of birth events, while the
second one the deaths. Let us apply Proposition 2.1. Now,

Eφ(t) = Eπ(t ∧ λ) + L(t),
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hence in the numerator of mφ
∞ we obtain∫ ∞

0

e−αt Eφ(t) dt =
1

α

∫ ∞

0

e−αt [1 − L(t)] dt+

+

∫ ∞

0

e−αt dt −
∫ ∞

0

e−αt [1 − L(t)] dt =

=
1

α
+

( 1

α
− 1

)∫ ∞

0

e−αt [1 − L(t)] dt =

=
1

α
+

( 1

α
− 1

) 1

1 + p
,

from the Malthusian equation (5.3). The proof can be completed by comparing
this with Theorem 5.2. �

Corollary 7.1. In the discrete model, let Vn and Zn denote the numbers of
vertices and edges, resp., after the n-th step. Then

lim
n→∞

Zn

n
= lim

t→∞
Z(t)

W (t)
=

α

2 + p − α
, lim

n→∞
Vn

n
= lim

t→∞
V (t)

W (t)
=

1

2 + p − α

almost surely on the event of non-extinction.

Corollary 7.2. By Theorem 5.4, the following asymptotic expression holds for
the normalizing factors κ = κn:

lim
n→∞nκn = lim

t→∞
W (t)

(1 + b)Z(t) + cB(t)
=

(
2 + p

α
− 1

)[
1 + b+

+
1 + p

c

∫ 1

0

u(1 + p − pu)(1 − u)
α+1+b

c −1 exp
(u(2 − pu)

2c

)
du

]−1

.

almost surely on the event of non-extinction.

Finally, our last assertion immediately follows from the studied properties
of the continuous time model.

Theorem 7.2. Let v be a fixed vertex, and let degn(v) denote its degree after
step n. If the degree process is supercritical (i.e., β > 0), then almost surely

lim
n→∞n−β/α degn(v) = ζv,

where the random variable ζv is positive except on the set where degn(v) even-
tually becomes zero (i.e., on the event of extinction of the degree process).
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8. Particular cases

In this section, we pay closer attention to graphs obtained by extremal
choices of parameter p. In both cases the integrals in our formulae (5.1)–(5.3),
(6.1), and (6.2) can be expressed in terms of the confluent hypergeometric
function of the first kind. It is defined as

M(a, b, z) =

∞∑
n=0

a(n)

b(n)
zn

n!
,

where a(n) is the Pochhammer symbol or rising factorial: a(0) = 1, and
a(n) = a(a + 1) · · · (a + n − 1) for n > 0. It has the following integral rep-
resentation if both Re a and Re b are positive.

M(a, b, z) =
Γ(b)

Γ(a)Γ(b − a)

∫ 1

0

ua−1(1 − u)b−a−1ezu du.

Since the confluent hypergeometric function is implemented in many sci-
entific software packages, e.g., Hypergeometric1F1[a,b,z] in Mathematica�,
kummer(a,b,z) in MATLAB�, or kummerM(a,b,z) in theR package ’fAsianOp-
tions’, such a representation makes numerical computations easier. Besides,
there are several online calculators at hand, e.g., the Keisan Online Calculator
[12].

First, let p = 0. In this case the new vertex joins to the graph with a
single edge, thus the graph will never contain any cycles. If there were no
edge deaths, we would get the so called Barabási–Albert tree: choosing an
edge at random, then one of its endpoints with equal probabilities leads to
the preferential attachment rule, i.e., every vertex is selected with probability
proportional to its degree (see [16], [17] for selected properties of the Barabási
tree). When edges are aging, the graph ceases to be connected, it becomes a
forest with many isolated vertices. With the confluent hypergeometric notation,
the condition for supercriticality is that

(8.1)
1

1 + b
M

(
1,

1 + b

c
+ 1,

1

c

)
> 1,

and the probability y of extinction is the smallest nonnegative root of the
equation

1

1 + b
M

(
1,

1 + b

c
+ 1,

y

c

)
= 1.
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Note that the mean life span E(λ) is just the left hand side of (8.1). The
Malthusian parameter α is the positive root of the equation

1

α+ 1 + b
M

(
1,

α+ 1 + b

c
+ 1,

1

c

)
= 1.

The degree process of a vertex is supercritical if

1

1 + b
M

(
1,

1 + b

c
+ 1,

1

c

)
> 2,

and the corresponding Malthusian parameter β is the positive root of the equa-
tion

1

β + 1 + b
M

(
1,

β + 1 + b

c
+ 1,

1

c

)
= 2.

Secondly, let p = 1. Then the new vertex is connected to both ends of the
selected old edge, i.e., a 2-star is added to the graph. A 2-star is sometimes
called a cherry, and the graph built of cherries a cherry tree (although it is not a
tree in the usual, cycle-free sense). Thus, in the particular case p = 1 a random
cherry tree emerges with aging edges. Properties of random cherry trees and
their generalizations are dealt with in [18]. Let us substitute v = (1−u)2 in the
integrals of (5.1)–(5.3), (6.1), and (6.2). Now, the graph process is supercritical
if and only if

2

1 + b
M

(
1,

1 + b

2c
+ 1,

1

2c

)
> 1,

and the probability y of extinction is the smallest nonnegative root of the
equation

1 + y

1 + b
M

(
1,

1 + b

2c
+ 1,

y2

2c

)
= 1.

The Malthusian parameter α is the positive root of the equation

2

α+ 1 + b
M

(
1,

α+ 1 + b

2c
+ 1,

1

2c

)
= 1.

The degree process of a vertex is supercritical if

1

1 + b
M

(
1,

1 + b

2c
+ 1,

1

2c

)
> 1,

and the corresponding Malthusian parameter β is the positive root of the equa-
tion

1

β + 1 + b
M

(
1,

β + 1 + b

2c
+ 1,

1

2c

)
= 1.
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9. Closing remark

A referee called our attention to the possibility of the following generaliza-
tion. If the branching parameter p can depend on t, that is, the distribution of
the offspring size at a birth event can depend on the physical age of the par-
ent, what kind of conditions should p(t) satisfy so that one can prove similar
statements?

May it be somewhat surprising, in this more general model our compu-
tations can still be saved. E.g., in the proof of Theorem 4.1, the litter sizes

ε1, . . . , εk are neither exchangeable, nor independent of U
(k)
1 , . . . , U

(k)
k any-

more. However,

P (λ > t |π(t) = k) = E

(
exp

(
− bt+ ct

k∑
i=1

εi(tU
(k)
i )(U

(k)
i − 1)

))
,

where εi(tU
(k)
i ), 1 ≤ i ≤ k, are conditionally independent, given U

(k)
1 , . . . , U

(k)
k ,

with (conditional) distribution P
(
εi(tU

(k)
i ) = 2

)
= p(tU

(k)
i ), hence we can get

rid of the ordered sample U
(k)
1 , . . . , U

(k)
k , namely,

P (λ > t |π(t) = k) = E

(
exp

(
− bt+ ct

k∑
i=1

εi(tUi)(Ui − 1)
))

=

= e−bt
[
E

(
exp

(
ct ε1(tU1)(U1 − 1)

)) ]k
=

= e−bt

[∫ 1

0

(
p(tu)e2ct(u−1) + q(tu)ect(u−1)

)
du

]k
.

Thinking over how this affects our formulae is left to the reader.
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