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Abstract. In this paper we compute the leading terms in the sum of
the kth power of the roots of L

(α)
p , the Laguerre-polynomial of degree p

with parameter α. The connection between the Laguerre-polynomials and
the Marchenko–Pastur distribution is expressed by the fact, among others,
that the limiting distribution of the empirical distribution of the normal-
ized roots of the Laguerre-polynomials is given by the Marchenko–Pastur
distribution. We give a direct proof of this statement based on the recursion
satisfied by the Laguerre-polynomials. At the same time, our main result
gives that the leading term in p and (α+ p) of the sum of the kth power of

the roots of L
(α)
p coincides with the kth moment of the Marchenko–Pastur

law. We also mention the fact that the expectation of the characteristic
polynomial of a XXT type random covariance matrix, where X is a p× n
random matrix with iid elements, is �

(n−p)
p , i.e. the monic version of the

pth Laguerre polynomial with parameter n− p.

1. Introduction

In theory of orthogonal polynomials the limit of the empirical distribution
of their roots is a much studied matter. In this paper we are going to study

Key words and phrases: Random covariance matrix, Laguerre polynomials, Marchenko–
Pastur law
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the limit distribution of the roots of Laguerre polynomials L
(αp)
p , where

L(α)
p (x) =

p∑
j=0

(−1)j
(
α+ p

p − j

)
xj

j!
α ∈ R(1.1)

assuming that αp/p → c > −1. For α > −1 these polynomials are known to
be orthogonal with respect to the measure xαe−x1[0,∞)dx, from which one can
conclude that all the roots are distinct and lie in R+. For α ∈ [−p+1,−1]∩Z
one has that

L(α)
p (x) = x−αL

(−α)
p+α (x)

and hence one can make the conclusion that for such α values the polynomial

L
(α)
p has p+α distinct positive roots and 0 is also a root with multiplicity −α.

In Section 2 we show that the normalized generating function of the mo-

ments of the normalized roots of L
(αp)
p satisfies the same quadratic fixed point

equation in the limit as the generating function of the moments of the Marchenko–
Pastur distribution.

In Section 3 we will explicitly show that the coefficient of the highest order

term (viewed as a polynomial in p) of the kth power of the roots of L
(α)
p coincides

with the kth moment of the corresponding Marchenko–Pastur distribution.

2. Convergence of the empirical distribution

Let us consider the roots of the Laguerre-polynomial L
(α)
p denoted by

ξ
(α)
p,1 , . . . , ξ

(α)
p,p . Let M

(α)
p (k) denote the sum of their k-th power. That is

M
(α)
p (k) =

∑p
i=1(ξ

(α)
p,i )

k. Finally, M(α)
p denotes the power series determined

by these coefficients, i.e.

(2.1) M(α)
p (z) = p+

∞∑
k=1

M (α)
p (k)zk .

Note that in case α is a negative integer in the interval [−p+1,−1] zero is also

a root of L
(α)
p , which explains why the case k = 0, i.e. the zeroth moment, had

to be dealt with seperately in (2.1). It is known that

M(α)
p (z) =

1

z

(�
(α)
p )′(1/z)

�
(α)
p (1/z)

= −z
(�̂

(α)
p )′(z)

�̂
(α)
p (z)

+ p,
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where �
(α)
p (x) = (−1)pp!L

(α)
p (x) is the monic version of L

(α)
p , and for any poly-

nomial of degree p we denote by �̂(z) = zp�(1/z) the so-called conjugate poly-
nomial.

Theorem 2.1. Let us assume that α = αp and
αp

p → c ∈ (−1,∞), as p → ∞.

Then the empirical distribution determined by the normalized roots (where p−1

is the normalization factor) of the Laguerre-polynomial L
(αp)
p converges weakly

to the Marchenko–Pastur distribution, given as

μc(A) =

⎧⎪⎨⎪⎩
−cδ0(A) + νc(A) , if − 1 < c < 0 and αp ∈ {−p+ 1, . . . ,−1}

for all p,

νc(A) , if c ≥ 0,

(2.2)

for A ∈ B(R), where δ0 denotes the Dirac-delta measure at 0, while the measure
νc is absolutely continuous with density

dνc(x) =

√
(x+ − x)(x − x−)

2πx
1[x−,x+](x)dx,

where x± = [
√
c+ 1 ± 1]2.

Remark 2.1. A more general version of this theorem – allowing for c < −1 –
was proved by Mart́ınez-González et al. in [3] using complex analysis and dif-
ferential equations, but the proof presented here is based on elementary calcula-
tions using only the recursion equations satisfied by the Laguerre-polynomials.

Remark 2.2. Laguerre polynomials show a deep connection with random ma-
trix theory in the following ways:

1. Forrester and Gamburd proved in [1] that the expectation of the char-

acteristic polynomial of the random matrix XXT is given by �
(n−p)
p (z),

i.e. E det(x · I − XXT ) = �
(n−p)
p (x), where X is a p × n random matrix

with independent, identically distributed entries with zero expectation
and variance 1.

2. If X is a p × n random matrix in the same sense as above, then the
weak limit of the empirical measure of the eigenvalues is a much studied
question of random matrix theory, although it is usually normalized by n,
which in our case means a normalization by α+ p. A well-known theory
– proved by Marchenko and Pastur in [2] – states that the weak limit
of the empirical measure of the eigenvalues of 1

nXXT is given by μ̃a as
p
n → a > 0, where μ̃a is defined below. In the case of the present paper μc

is the weak limit of the empirical measure of the eigenvalues of 1
pXXT .
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3. The matrix theoretical Marchenko–Pastur distribution with parameter
a > 0 is given by

μ̃a(A) =

{(
1 − 1

a

)
δ0 + ν̃a(A), if a ∈ (0, 1)

ν̃a(A) if a ≥ 1
A ∈ B(R).

with ν̃a being absolutely continuous with density

dν̃a(x) =

√
(x − x̃−)(x̃+ − x)

2πax
1[x̃−,x̃+](x)dx,

where x̃± = (1±√
a)2. As mentioned before this version of the Marchenko

Pastur arises when the zeros of �
(αp)
p (z) are normalized by a factor of

(p+ αp)
−1. The connection between dμc and dμ̃a is the following:

a =
1

c+ 1
,(2.3)

μc = μ̃a ◦ g−1 ,(2.4)

where g(x) = (c+1)x for x ∈ R. On the other hand it is known that the
moments of μ̃a are given by

(2.5)

∫
xkdμ̃a(x) =

k∑
j=1

1

k

(
k

j

)(
k

j − 1

)
aj−1,

hence the moments of μc can be calculated as∫
xkdμc =

k∑
j=1

1

k

(
k

j

)(
k

j − 1

)
(c+ 1)k−j+1.

Proof of the Theorem 2.1. Let �
(α)
p (z) := (−1)pp!L

(α)
p (z) denote the monic

version of L
(α)
p (z) then

�(α)p (z) =

p∑
j=0

(−1)j
(p)j(α+ p)j

j!
zp−j(2.6)

with (β)k = β(β − 1) · · · (β − k + 1) for k > 0. Note that if β is a posi-
tive integer and k > β then (β)k = 0. Thus it follows from (2.6) that for
α ∈ {−p+ 1,−p+ 2, . . . ,−2,−1}

(2.7) �(α)p (z) = z−α�
(−α)
p+α (z) .
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This means that in this case zero is a root of �p(x)
(α)(z) with multiplicity −α

and the other p+α roots given by the Laguerre-polynomial L
(−α)
p+α (z) of degree

p+ α.

Case 1. Let us first consider the case when αp ≥ 0 for all p, which also implies
limαp/p = c ≥ 0.

The recursion of the Laguerre-polynomials for arbitrary parameter α > −1
is

(2.8) apL
(α)
p+1(z) = (bp − z)L(α)

p (z) − cpL
(α)
p−1(z),

where ap = p+ 1, bp = 2p+ α+ 1 and cp = p+ α and also

pL(α)
p (z) = (p+ α)L

(α)
p−1 − zL

(α+1)
p−1 (z) .(2.9)

These polynomials are known to be orthogonal with respect to the measure

zαe−z1[0,∞)(z)dz, which implies that all the roots of L
(α)
p (x) lie in the interval

[0,∞) and hence the sum of the kth power of its roots is positive. Furthermore

d

dz
L(αp)
p (z) = −L

(αp+1)
p−1 (z)(2.10)

implying, after proper algebraic transformations, that

(2.11)
d

dz
�̂(α)p (z) = −(α+ p)p�̂

(α)
p−1(z) ,

where �̂
(α)
p (z) = zp�

(α)
p (z−1). Applying this for α = αp we obtain that

(2.12)
1

p
M(αp)

p

(
z

p

)
=

αp + p

p

z�̂
(αp)
p−1 (z/p)

�̂
(αp)
p (z/p)

+ 1 .

Also from recursion (2.8) we get

�̂
(α)
p+1(z) = [1− (α+ 2p+ 1)z]�̂(α)p (z) − z2(p+ α)p�̂

(α)
p−1(z).(2.13)

Since the largest zero of L
(α)
p is no greater then 4p+2α+3 (see [4]) we obtain

that �̂
(α)
p (z) > 0, if 0 ≤ z < 1

4p+2α+3 .

In this case one has that

�̂
(α)
p−1(z)

�̂
(α)
p (z)

≤ 1 − (α+ 2p+ 1)z

z2p(α+ p)
≤ 1

(p+ α)pz2
.
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Using the computations above we get that

d

dz

�̂
(α)
p−1(z)

�̂
(α)
p (z)

=
(�̂

(α)
p−1(z))

′�̂(α)p (z) − (�̂
(α)
p (z))′�̂(α)p−1(z)

(�̂
(α)
p (z))2

=

= (α+ p)p

⎡⎣(
�̂
(α)
p−1(z)

�̂
(α)
p (z)

)2

− �̂
(α)
p−2(z)

�̂
(α)
p (z)

⎤⎦+ (α+ 2p − 1)
�̂
(α)
p−2(z)

�̂
(α)
p (z)

.(2.14)

Since in the present case M(α)
p (z) is a convex, monotonically increasing function

for z ≥ 0, and furthermore M(α)
p (0) = 1, one has

z
d

dz

�̂
(α)
p−1(z)

�̂
(α)
p (z)

≤
∫ 2z

0

d

dt

�̂
(α)
p−1(t)

�̂
(α)
p (t)

dt =
�̂
(α)
p−1(2z)

�̂
(α)
p (2z)

− 1 ≤ 1

4(α+ p)pz2
(2.15)

and so according to (2.14) and to (2.15) we have∣∣∣∣∣∣
(
�̂
(α)
p−1(z/p)

�̂
(α)
p (z/p)

)2

− �̂
(α)
p−2(z/p)

�̂
(α)
p (z/p)

∣∣∣∣∣∣ ≤ p3

4(α+ p)2p2z3
+

α+ 2p − 1

(α+ p)2p2
×(2.16)

× p4

(p − 1)(α+ p − 1)z4
.

Let f
(α)
p (z) :=

�̂
(α)
p−1(z/p)

�̂
(α)
p (z/p)

, for p ≥ 1. According to (2.16) we have

f (α)
p (z)f

(α)
p−1

(
z
p − 1

p

)
− (f (α)

p )2(z) → 0

if p → ∞ and α = αp ≥ 0, especially f
(αp)
p (z)f

(αp)
p−1 ((p − 1)z/p))−(f

(αp)
p )2(z) →

→ 0 if
αp

p → c as p → ∞.

Applying (2.13) to �̂
(α)
p one has

1 =

(
1 − z

α+ 2p − 1

p

)
f (α)
p (z) −

−z2
(p − 1)(α+ p − 1)

p2
f (α)
p (z)f

(α)
p−1

(
z
p − 1

p

)
,(2.17)

hence we get that the accumulation points of (f
(αp)
p (z))p∈N as αp/p → c satisfy

the following equation in ξ

(2.18) 1 = [1 − (c+ 2)z] ξ − (c+ 1)z2ξ2.
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The solutions of this equation are

ξ± =
1 − (c+ 2)z ± √

[1 − (c+ 2)z]2 − 4(c+ 1)z2

2(c+ 1)z2
.

Let us introduce the notation

fc−(z) :=
1 − (c+ 2)z − √

[1 − (c+ 2)z]2 − 4(c+ 1)z2

2(c+ 1)z2
.

In order to find the appropriate root let us look at the map ξ → ηc(ξ, z) for a
fixed z defined by

1 = [1− (c+ 2)z] ηc(ξ, z) − (c+ 1)z2ξηc(ξ, z)

and hence

ηc(ξ, z) =
1

1 − (c+ 2)z − (c+ 1)z2ξ
.

Note that the fixed points of this mapping are the solutions of (2.18).

In parallel with this for any fixed α ≥ 0 and p ≥ 1 consider the following
equation in ξ:

(2.19) 1 =

[
1 − z

α+ 2p − 1

p

]
ξ − z2

(p − 1)(α+ p − 1)

p2
ξ2 .

Denote by ζ
(α)
p the largest nonnegative z value, for which both roots of this

second-order equation are non-negative, i.e.

ζ(α)p = sup

{
z | zα+ 2p − 1

p
≤ 1,

4z2
(p − 1)(α+ p − 1)

p2
≤

(
1 − z

α+ 2p − 1

p

)2 }
.

Short calculation shows that ζ
(α)
p =

(
a
(α)
p + 2

√
b
(α)
p

)−1

, where a
(α)
p = α+2p−1

p

and b
(α)
p = (p−1)(α+p−1)

p2 .

Now for 0 ≤ z < ζ
(α)
p define the map ξ → η

(α)
p (ξ, z) as the solution to

1 =

[
1 − z

α+ 2p − 1

p

]
η(α)p (ξ, z) − z2

(p − 1)(α+ p − 1)

p2
η(α)p (ξ, z)ξ.

Thus

η(α)p (ξ, z) =
1

1 − z α+2p−1
p − z2 (p−1)(α+p−1)

p2 ξ
.
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Observe that η
(αp)
p (ξ, z) −−−→

p→∞ ηc(ξ, z) ∀(ξ, z) ∈ R2.

For the small positive values of ξ the functions ηc(ξ, z) and η
(α)
p (ξ, z) are in-

creasing. Let us denote by g
(α)
p− (z) the smaller fixed point of the mapping

η
(α)
p (ξ, z) and observe that for 0 ≤ z < ζ

(α)
p the inequality η

(α)
p (0, z) > 0 holds

true, thus for 0 ≤ ξ < g
(α)
p− (z) we have that

ξ < η(α)p (ξ, z) ≤ g
(α)
p− (z) .

We are going to prove by induction on p that for any fixed α ≥ 0 and 0 ≤ z <

< ζ
(α)
p the inequality

(2.20) f (α)
p (z) ≤ g

(α)
p− (z)

holds true. It is easy to check that for p = 1 we have that ζ
(α)
1 = 1

α+1 and

g
(α)
1− (z) = f

(α)
1 (z) =

1

1 − z(α+ 1)
.

On the other hand straightforward calculation gives that if 0 ≤ z < ζ
(α)
p

then z p−1
p < ζ

(α)
p−1 thus using the induction hypothesis for p− 1 we obtain that

(2.21) f
(α)
p−1

(
z
p − 1

p

)
≤ g

(α)
(p−1)−

(
z
p − 1

p

)
.

The latter one is the smaller fixed point of the mapping

η
(α)
p−1( · , z p − 1

p
) : ξ → 1

1 − z p−1
p

α+2p−3
p−1 − z2 (p−1)2

p2

(p−2)(α+p−2)
(p−1)2 ξ

.

On the other hand

η
(α)
p−1(ξ, z

p − 1

p
) =

1

1 − z p−1
p

α+2p−3
p−1 − z2 (p−1)2

p2

(p−2)(α+p−2)
(p−1)2 ξ

=

=
1

1 − z α+2p−3
p − z2 (p−2)(α+p−2)

p2 ξ
≤

≤ 1

1 − z α+2p−1
p − z2 (p−1)(α+p−1)

p2 ξ
= η(α)p (ξ, z) ,

proving that

(2.22) g
(α)
(p−1)−

(
z
p − 1

p

)
≤ g

(α)
p− (z) .
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But equation (2.17) implies that for ξ = f
(α)
p−1

(
z p−1

p

)
η(α)p (ξ, z) = f (α)

p (z) .

Comparing (2.21) and (2.22) we obtain that for 0 ≤ z < ζ
(α)
p

f (α)
p (z) ≤ g

(α)
p− (z)

proving the induction step.

Since a
(αp)
p → c + 2, b

(αp)
p → c + 1 and so ζ

(αp)
p → 1

(
√
c+1+1)2

, if αp/p → c

as p → ∞ the following implication holds for large enough p:[
0,

1

2(
√
c+ 1 + 1)2

)
⊂

[
0, ζ(αp)

p

)
.

Hence for 0 ≤ z < 1
2(

√
c+1+1)2

we have that g
(αp)
p− (z) −−−→

p→∞ fc−(z) as p → ∞,

thus inequality (2.20) implies that

lim
p

f (αp)
p (z) = fc−(z).

Now let Mc(z) = limp
1
pM

(αp)
p

(
z
p

)
. According to (2.12) we have that

Mc(z) = (c+ 1)zfc−(z) + 1

from which one has

Mc(z) =
1 − cz − √

[1 − (c+ 2)z]2 − 4(c+ 1)z2

2z
=(2.23)

=
1 − cz − √

(1 − cz)2 − 4z

2z
.

Case 2. Consider now the case when αp ∈ {−p + 1, . . . ,−1} for all p in such
a way that limαp/p = c exists and c > −1. Obviously this implies c ≤ 0.

In this case the recursion (2.8) is still valid, but orthogonality (with respect
to zαpe−z1[0,∞)(z)dz) cannot be assured. According to (2.6) one has that

�(αp)
p (z) = z−α�

(−αp)
p+αp

(z)

and so

�̂(αp)
p (z) = zp�(αp)

p (1/z) = zpzαp�
(−αp)
p+αp

(1/z) = zp+αp�
(−αp)
p+αp

(1/z) =

= �̂
(−αp)
p+αp

(z)
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hence

M(αp)
p (z) = −z

d
dz �̂

(−αp)
p+αp

(z)

�̂
(−αp)
p+αp

(z)
+ p = M(−αp)

p+αp
(z) − αp ,

therefore we immediately get that M(αp)
p (z) is monotonically increasing convex

function if z ≥ 0 and

1

p
M(αp)

p

(
z

p

)
=

p+ αp

p

1

p+ αp
M(−αp)

p+αp

(
p+ αp

p

z

p+ αp

)
− αp

p
.

Due to αp/p → c we have − αp

p+αp
→ − c

c+1 and

1

p+ αp
M(−αp)

p+αp

(
z

p+ αp

)
→ M− c

c+1
(z).

Since f
(−αp)
p+αp

is a sequence with uniformly bounded derivatives ( according

to (2.15) ) one has that for 0 ≤ z <
[
2(

√
c+ 1 + 1)2

]−1

Mc(z) = (c+ 1)M −c
c+1

((c+ 1)z) − c

implying that

Mc(z) =
1 − cz − √

(1 − cz)2 − 4z

2z
.

Since Mc(z) coincides with the generating function of the moments of μc,
i.e.

Mc(z) =
∑
k≥0

∫
xkdμc(x) · zk , for z ∈ [0,

1

2
(
√
c+ 1 + 1)−2)

and μc is fully determined by its moments we have that the weak limit of the

empirical measure of the normalized zeros of �
(αp)
p (z) is μc.

Theorem 2.1 is hereby proved. �

Corollary 2.1. Theorem 2.1 also implies the convergence of the moments of

the empirical distribution of the normalized roots of �
(αp)
p . In other words if

m
(αp)
p denotes the empirical distribution of the normalized roots of �

(αp)
p , then

∫
xkdm(αp)

p (x) −−−→
p→∞

∫
xkdμc(x) =

k∑
j=1

1

k

(
k

j

)(
k

j − 1

)
(c+ 1)k−j+1 ∀k ≥ 0

when
αp

p → c.
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3. The sum of the kth power of the roots of L(α)
p

The following theorem shows that the connection between the root distri-
bution of the Laguerre-polynomials and the Marchenko–Pastur distribution is
not only an asymptotic connection but in a ”dominating way” it holds for large
enough p values, as well.

Theorem 3.1. Let p ∈ N, M
(α)
p (k) :=

∑p
j=1 ξ

k
p,j, where 0 ≤ ξ

(α)
p,1 < ξ

(α)
2,p <

< . . . < ξ
(α)
p,p < ∞ denotes the roots of L

(α)
p . Then for α ∈ R, α + p > k − 1

one has

M (α)
p (k) =

k∑
j=1

1

k

(
k

j

)(
k

j − 1

)
pj(α+ p)k−j+1 + f(α+ p, p) ,

where f is a polynomial in two variables with deg f ≤ k.
In case α + p ≤ k − 1 one has that the coefficient of the dominating term in

M
(α)
p (k) is less than or equal to the quantity above.

Proof. Let us consider the Newton identities
∑k−1

j=0 M
(α)
n (k−j)ap−j = −kan−k,

where ap−j denotes the corresponding coefficient of �
(α)
p (x). It is known that

aj = (−1)p+jp!
(
α+p
p−j

)
1
j! (see e.g. [4]), hence

ap−j = (−1)j
(α+ p)j(p)j

j!
.

Writing the Newton identities in matrix form we obtain that⎡⎢⎢⎢⎢⎢⎣
1 0 0 . . . 0

ap−1 1 0 . . . 0
ap−2 ap−1 1 . . . 0

. . .

ap−(k−1) ap−(k−2) ap−(k−3) . . . 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
M

(α)
p (1)

M
(α)
p (2)

M
(α)
p (3)
...

M
(α)
p (k)

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
−ap−1

−2ap−2

−3ap−3

...
−kap−k

⎤⎥⎥⎥⎥⎥⎦ .(3.1)

Thus

M (α)
p (k) = det

⎡⎢⎢⎢⎢⎢⎣
1 0 0 . . . −ap−1

ap−1 1 0 . . . −2ap−2

ap−2 ap−1 1 . . . −3ap−3

. . .

ap−(k−1) ap−(k−2) ap−(k−3) . . . −kap−k

⎤⎥⎥⎥⎥⎥⎦
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according to Cramer’s rule and the fact that the determinant of the matrix in
(3.1) is 1. In general, let us introduce the following notation:

A(k, l) := det

⎡⎢⎢⎢⎢⎣
1 0 . . . (α+ p)l · p

ap−1 1 . . . −2 (α+p)l+1·(p)2
2

. . .

ap−(k−1) ap−(k−2) . . . −k (−1)k(α+p)l−k+1·(p)k
k!

⎤⎥⎥⎥⎥⎦
for k ≥ 2, l ≥ 1 and A(1, l) = (p+ α)lp for l ≥ 1. With this notation A(k, 1) =

= M
(α)
p (k) and it can be proved by induction that for k ≥ 2

A(k, l) =
l∑

r=1

p(α+ p − r)l−rA(k − 1, r) +A(k − 1, l + 1),(3.2)

In fact, for k ≥ 3 let us subtract p(α+ p)l times the first column of the matrix
in the definition of A(k, l) from the last of the same. The jth element of the
last column obtained this way can be written as

− (−1)j
(α+ p)l+j−1(p)j

(j − 1)!
− (−1)j−1 (α+ p)lp(α+ p)j−1(p)j−1

(j − 1)!
=

= −(−1)j−1 (α+ p)j−1(p)j−1

(j − 1)!
[(α+ p − j + 1)l(p − j + 1) − (α+ p)lp] =

= (−1)j−1 (α+ p)j−1(p)j−1

(j − 1)!
(j − 1)

(
l∑

r=1

(α+ p − j + 1)r(α+ p − r)l−rp+ 1

)

due to
m∏
i=1

ci −
m∏
i=1

di =

m∑
h=1

∏
1≤e<h

ce(ch − dh)
∏

m≥e>h

de,

with m = l + 1, ci = (α+ p− j − i+ 2), di = (α+ p− i+ 1) for 1 ≤ i ≤ l and
cl+1 = (p − j + 1), dl+1 = p. This proves the recursion in (3.2) for k ≥ 3. On
the other hand

A(2, l) = det

[
1 (α+ p)lp

−(α+ p)p −(α+ p)l+1(p)2

]
= (α+ p)lp(α+ p − l + lp) =

=
l∑

r=1

p(α+ p − r)l−r(α+ p)rp+ (α+ p)l+1p

proving (3.2) for k = 2.
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Note that in case k ≤ p + α we have (α + p)l > 0 for 0 ≤ l ≤ k, and
(p + α)l = (p + α)l + O((p + α)l−1) hence the multiplier in the sum in (3.2)
does not change the (positive) coefficient - nor its sign - of the highest order
terms of A(k − 1, r).

We are going to prove that viewing A(k, l) as a polynomial of the variables
p and p+α one has degA(k, l) = k+ l. The proof goes by induction on k. For
k = 1 and l arbitrary this is an immediate consequence of its definition. In fact
– assuming the induction hypotesis for k − 1 and l arbitrary – we have that

deg p(p+ α)l−rA(k − 1, r) = k − 1 + r + l − r + 1 = k + l

for 1 ≤ r ≤ l ≤ k ≤ p+ α, and

degA(k − 1, l + 1) = k + l,

and using that there is no cancellation in the highest degree terms we obtain

that degA(k, l) = k + l, hence we immediately get that degp M
(α)
p (k) = k + 1.

Computing the leading coefficient in p and α + p of A(k, 1) leads to the

following graph theoretical question: Let G = ((Z≥0)
2,

−→
E ) be the following

graph: there is a directed arrow from (a1, b1) pointing to (a2, b2) if and only
if a2 = a1 + 1 and b2 ≥ b1 − 1. We shall also use the word edge instead
of arrow in case we are not interested in its direction. We will call an edge
(a, b1) → (a+ 1, b2) an upward edge if b2 ≥ b1, if b2 = b1 − 1 we will refer to it
as a downward edge. The height of an edge ((a, b1), (a + 1, b2)) is going to be
defined as b2 − b1, total height of a set of edges is the sum of their heights.

Let us call a path ending in (k, l) for k ≥ 1, l ≥ 1 legal if it starts in the origin
and after that it stays strictly above the line y = 0. Since degp A(k, l) = k+l, it

can be written as A(k, l) =
∑k+l

j=0 a
(k,l)
j pj(α+ p)k+l−j +L.O.T., for some a

(k,l)
j ,

j = 0, . . . , k+ l, where L.O.T. means lower order terms. But the recursion (3.2)
implies that the degree of p in A(k, l) cannot be larger then k and it is at least

1, for any l ≥ 1, thus A(k, l) =
∑k

j=1 a
(k,l)
j pj(α+ p)k+l−j + L.O.T. Using the

recursion (3.2) again we obtain that

a
(k,l)
j =

l∑
h=1

a
(k−1,h)
j−1 + a

(k−1,l+1)
j .

Our claim is that a
(k,l)
j is equal to the number of legal paths b

(k,l)
j ending

in (k, l) with exactly j upward edges.

For k = 1, l ≥ 1 we have that A(1, l) = p(α+p)l thus the highest order term

is p(α + p)l and so a
(1,l)
1 = 1, while a

(1,l)
j = 0 for j �= 1 obviously coinciding

with the values b
(1,l)
j , j ≥ 0, l ≥ 1 since in this case the path consists of one

single upward edge.

For the induction step k − 1 �→ k consider the following: Each of the legal
paths ending in (k, l) has to go through exactly one of the points (k − 1, r)
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1 ≤ r ≤ l + 1. A path with exactly j upward edges going through the points
(k − 1, r) for 1 ≤ r ≤ l should have j − 1 upward edges before these points,
while a path going through (k − 1, l+ 1) has j upward edges before this point.
Therefore the number of legal paths ending in (k, l) and having j upward edges
is the sum of the number of legal paths ending in (k− 1, r) with 1 ≤ r ≤ l with
j − 1 upward edges plus the number of legal paths ending in (k− 1, l+1) with
j upward edges. In other words:

b
(k,l)
j =

l∑
r=1

b
(k−1,r)
j−1 + b

(k−1,l+1)
j .

Thus the number of legal paths satisfies the same recursion as the coefficients
in the sequence A(k, l). Since for k = 1 they are equal the induction argument

gives that a
(k,l)
j = b

(k,l)
j for j = 1, . . . k, k ≥ 1, l ≥ 1.

Now let us turn our attention to computing the coefficients of the highest

order term of M
(α)
p (k) = A(k, 1) =

∑k
j=1 a

(k,1)
j pj(α + p)k−j+1 + L.O.T. As

we proved before the coefficient a
(k,1)
j is given by the number of legal paths

ending in (k, 1) with j upward edges. In this case there are k − j downward
edges with total height −(k − j) hence the total height of the upward edges
is k − j + 1. Since the length of the legal path from the origin to (k, 1) is k
there are

(
k
j

)
possibilities to choose the positions of the j upward edges. On the

other hand the total height of the upward edges is k−j+1, and there are
(

k
j−1

)
ways writing it as a sum of j non-negative numbers when the sequence of the
summands matters. Choosing these numbers as the heights of the upward edges
we obtain a path from the origin to (k, 1) which is not necessarily legal, since
they can cross the line y = 0. For such a given path let (x, y) denote the node
of the path with the largest first coordinate such that its second coordinate is
not greater than the second coordinate of any other node of the path (i.e. the
latest ”global minimum” of the path). By placing this node with the tail of
the path in the origin this new path is a legal path ending in (k − x, 1 + y).
Taking the first part of the original path (connecting the origin with (x, y) )
and gluing it to (k− x, 1+ y) we will get a legal path ending in (k, 1). We will
say that two paths are equivalent if the cut-and-glue process described above
results in the same legal path. The equivalence class of a path consists of its
periodic horizontal translations, so in each equivalence class there are k paths.
Since the cut-and-glue process gives the same legal path for each equivalence
class, thus the number of legal paths ending in (k, 1) having j upward edges is
given by 1

k

(
k
j

)(
k

j−1

)
, hence

M (α)
p (k) =

k∑
j=1

1

k

(
k

j

)(
k

j − 1

)
pj(α+ p)k−j+1 + L.O.T

and so Theorem 3.1 is proved. �



Asymptotics of Laguerre polynomials 151

Remark 3.1. If α/p = c with c ∈ (−1,∞) and k < α+ p+ 1 then

(3.3)

p∑
l=1

(ξ
(α)
p,l )

k =

k∑
j=1

1

k

(
k

j

)(
k

j − 1

)
(c+ 1)k−j+1pk+1 + f(α+ p, p)

hence we immediately get that∫
xkdm(αp)

p (x) −−−→
p→∞

∫
xkdμc(x)

if
αp

p → c for all k ≥ 0.

We also emphasize that even in the case when α < 0 is not an integer

thus L
(α)
p (z) has complex roots with nonzero imaginary part, the limit relation

above holds true. But since now the measure is not concentrated on the real
line this property is not enough for the identification of the the limit measure.
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