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Abstract. We determine all solutions of those f : N → C for which
f(n2 +Dm2) = f2(n) +Df2(m) is satisfied for all positive integers n,m,
where D is a given positive integer. This solves a problem of Kátai and
Phong.

1. Introduction

Let, as usual, P, N, Z, C be the set of primes, positive integers, integers
and complex numbers, respectively.

In 1992, C. Spiro [15] proved that if a multiplicative function f : N → C
satisfies the relations

f(p0) �= 0 for some p0 ∈ P
and

f(p+ q) = f(p) + f(q) for every p, q ∈ P,

then f(n) = n for all n ∈ N.

In 1997 J.-M. De Koninck, I. Kátai and B. M. Phong [5] proved that if a
multiplicative function f : N → C satisfies the relation

f(p+ n2) = f(p) + f(n2) for every p ∈ P, n ∈ N,
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then f is the identity function. K.-H. Indlekofer and B. M. Phong [6] proved
that if k ∈ N, f ∈ M satisfy f(2)f(5) �= 0 and f

(
n2 +m2 + k + 1

)
=

= f(n2+1)+f(m2+k) for all n,m ∈ N, then f(n) = n for all n ∈ N, (n, 2) = 1.

For some generalizations of the above results, we refer the other works of
P. V. Chung [2], B. M. Phong [10],[11], [12].

In 2014 B. Bojan determined all solutions of those f : N → C for which

f(n2 +m2) = f2(n) + f2(m) for every n,m ∈ N.

Our purpose in this paper is to prove a conjecture of Kátai and Phong [3].

Theorem. Assume that the number D ∈ N and the arithmetical function
f : N → C satisfy the equation

(1.1) f(n2 +Dm2) = f2(n) +Df2(m) for every n,m ∈ N.

Then one of the following assertions holds:

a) f(n) = 0 for every n ∈ N,

b) f(n) =
ε(n)

D + 1
for every n ∈ N,

c) f(n) = ε(n)n for every n ∈ N,

where E := {n2 +Dm2 | n,m ∈ N}, ε(n) = 1 if n ∈ E and ε(n) ∈ {−1, 1} if
n ∈ N \ E.

It is proved earlier for the case D = 2, 3 in [4] and for D = 4, 5 in [14] (see
also [16]).

Corollary 1. Assume that the number D ∈ N and a multiplicative function
f : N → C satisfy the equation (1.1). Then

f(n) = ε(n)n for every n ∈ N,

where E := {n2 +Dm2 | n,m ∈ N}, ε(n) = 1 if n ∈ E and ε(n) ∈ {−1, 1} if
n ∈ N \ E.

Corollary 2. Assume that the number k ∈ N, k ≥ 2 and an arithmetic function
f : N → C satisfy the relation

f(n2
1 + n2

2 + · · · + n2
k) = f2(n1) + f2(n2) + · · · + f2(nk)
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for all n1, n2, . . . , nk ∈ N. Then one of the following assertions holds:

a) f(n) = 0 for every n ∈ N,

b) f(n) =
ε(n)

k
for every n ∈ N,

c) f(n) = ε(n)n for every n ∈ N,

where F := {n2
1 + n2

2 + · · · + n2
k | n1, n2, · · · , nk ∈ N}, ε(n) = 1 if n ∈ F and

ε(n) ∈ {−1, 1} if n ∈ N \ F .

We note that Corollary 2 is proved by Park in [8] and [9] for multiplicative
function and recently by Lee in [7] for general arithmetic functions.

2. Lemmas

In this section we assume that the function F,G : N → C and the numbers
D ∈ N, U ∈ C, U �= 0 satisfy the relation

(2.1) F (n2 +Dm2) = G(n) + UG(m) for every n,m ∈ N.

Lemma 1. Assume that the function F,G : N → C and the numbers D ∈ N,
U ∈ C, U �= 0 satisfy (2.1). Then

G(�+ 12m) = G(�+ 9m) +G(�+ 8m) +G(�+ 7m)−
− G(�+ 5m) − G(�+ 4m) − G(�+ 3m) +G(�)

(2.2)

holds for every �,m ∈ N and

(2.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

G(7) = 2G(5) − G(1)

G(8) = 2G(5) +G(4) − 2G(1)

G(9) = G(6) + 2G(5) − G(2) − G(1)

G(10) = G(6) + 3G(5) − G(3) − 2G(1)

G(11) = G(6) + 4G(5) − G(3) − G(2) − 2G(1)

G(12) = G(6) + 4G(5) +G(4) − G(2) − 4G(1)

Proof. We note from (2.1) that

(2.4) F (x2 +Dy2) = G(|x|) + UG(|y|) for every x, y ∈ Z \ {0}.
First we prove the following assertion:

(2.5) G(n+ 2m) − G(|n − 2m|) = G(2n+m) − G(|2n − m|)
for every n,m ∈ N, n �= 2m,m/2.
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Assume that the numbers n,m ∈ N satisfy the conditions n �= 2m,n �= m/2.
If Dn − 2m �= 0, then we infer from (2.4) and the next relations

(Dn+ 2m)2 +D(n − 2m)2 = (Dn − 2m)2 +D(n+ 2m)2

and
(Dn+ 2m)2 +D(2n − m)2 = (Dn − 2m)2 +D(2n+m)2

that

G(Dn+ 2m) + UG
(
|n − 2m|

)
= G(|Dn − 2m|) + UG

(
n+ 2m

)
and

G(Dn+ 2m) + UG
(
|2n − m|

)
= G(|Dn − 2m|) + UG

(
2n+m

)
.

These prove (2.5) in the case Dn − 2m �= 0.

If Dn − 2m = 0, then 2Dn − m �= 0. In this case, we infer from (2.4) and
the next relations

(2Dn+m)2 +D(n − 2m)2 = (2Dn − m)2 +D(n+ 2m)2

and
(2Dn+m)2 +D(2n − m)2 = (2Dn − m)2 +D(2n+m)2

that

G(2Dn+m) + UG
(
|n − 2m|

)
= G(|2Dn − m|) + UG

(
n+ 2m

)
and

G(2Dn+m) + UG
(
|2n − m|

)
= G(|2Dn − m|) + UG

(
2n+m

)
.

These prove (2.5) in the case Dn − 2m = 0, and so (2.5) is proved.

Applications of (2.5) in the cases (n,m) ∈ {(1, 3); (2, 3); (1, 4); (1, 5);
(3, 4); (2, 5)} prove that (2.3) holds forG(7), G(8), G(9), G(11), G(10) andG(12).
Thus, (2.3) is proved.

Now we prove (2.2).

By applying (2.5) with n = �+ 2m, we have

G(2�+ 5m) − G(2�+ 3m) = G(�+ 4m) − G(�) for every �,m ∈ N.

This shows that

G(�+ 12m) − G(�) = G(2�+ 15m) − G(2�+ 9m)
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and

G(2�+ 15m) − G(2�+ 9m) =
[
G
(
2(�+ 5m) + 5m

)
− G

(
2(�+ 5m) + 3m

)]
+

+
[
G
(
2(�+ 4m) + 5m

)
− G

(
2(�+ 4m) + 3m

)]
+

+
[
G
(
2(�+ 3m) + 5m

)
− G

(
2(�+ 3m) + 3m

)]
=

=
[
G
(
�+ 9m

)
− G

(
�+ 5m

)]
+

+
[
G
(
�+ 8m)

)
− G

(
�+ 4m

)]
+

+
[
G
(
�+ 7m)

)
− G

(
�+ 3m

)]
,

which prove (2.2).

Lemma 1 is proved. �

In the proof of the next lemma we shall follow a method in part similar to
the one used in the proof of Lemma 2 of the paper [13].

Lemma 2. Assume that the function F,G : N → C and the numbers D ∈ N,
U ∈ C, U �= 0 satisfy (2.1). Let

A :=
1

120

(
G(6) + 4G(5) − G(3) − G(2) − 3G(1)

)
,

Γ2 :=
−1

8

(
G(6) − 4G(5) + 4G(4) − G(3) + 3G(2) − 3G(1)

)
,

Γ3 :=
−1

3

(
G(6) − 2G(5) + 2G(3) − G(2)

)
,

Γ4 :=
1

4

(
G(6) − 2G(4) − G(3) +G(2) +G(1)

)
,

Γ5 :=
1

5

(
G(6) − G(5) − G(3) − G(2) + 2G(1)

)
,

Γ :=
1

4

(
G(6) − 4G(5) + 2G(4) + 3G(3) +G(2) +G(1)

)
,

Bk :=Γ2χ2(k) + Γ3χ3(k) + Γ4χ4(k − 1) + Γ5χ5(k) + Γ,

where χ2(k) (mod 2), χ3(k) (mod 3) are the principal Dirichlet characters and
χ4(k) (mod 4), χ5(k) (mod 5) are the real, non-principal Dirichlet characters,
i.e.

χ2(0) = 0, χ2(1) = 1, χ3(0) = 0, χ3(1) = χ3(2) = 1,

χ4(0) = χ4(2) = 0, χ4(1) = 1, χ4(3) = −1,

χ5(2) = χ5(3) = −1, χ5(1) = χ5(4) = 1.

Then we have

(2.6) G(�) = A�2 +B� for every � ∈ N.
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Proof. By computation, we proved that (2.6) holds for 1 ≤ k ≤ 12.

Assume that G(k) = Ak2 + Bk holds for � ≤ k ≤ � + 11, where � ≥ 1. By
applying (2.2) with m = 1, we have

G(�+ 12) = G(�+ 9) +G(�+ 8) +G(�+ 7)−
− G(�+ 5) − G(�+ 4) − G(�+ 3) +G(�) =

= A
[
(�+ 9)2 + (�+ 8)2 + (�+ 7)2−

− (�+ 5)2 − (�+ 4)2 − (�+ 3)2 + �2
]
+

+
[
B�+9 +B�+8 +B�+7 − B�+5 − B�+4 − B�+3 +B�

]
=

= A(�+ 12)2 +B�+12,

which proves that (2.6) holds for � + 12 and so it is true for all �. In the last
relation we have used

B�+9 +B�+8 +B�+7 − B�+5 − B�+4 − B�+3 +B� =

= Γ2

[ �+9∑
k=�+6

χ2(k) −
�+6∑

k=�+3

χ2(k) + χ2(�)
]
+

+ Γ3

[ �+9∑
k=�+7

χ3(k) −
�+5∑

k=�+3

χ3(k) + χ3(�)
]
+

+ Γ4

[ �+9∑
k=�+6

χ4(k − 1) −
�+6∑

k=�+3

χ4(k − 1) + χ4(� − 1)
]
+

+ Γ5

[ �+10∑
k=�+6

χ5(k) −
�+6∑

k=�+2

χ5(k) − χ5(�+ 10) + χ5(�+ 2) + χ5(�)
]
+ Γ =

= Γ2χ2(�) + Γ3χ3(�) + Γ4χ4(� − 1) + Γ5χ5(�+ 2) + Γ =

= Γ2χ2(�+ 12) + Γ3χ3(�+ 12) + Γ4χ4(�+ 11) + Γ5χ5(�+ 12) + Γ = B�+12.

Lemma 2 is proved. �

3. Proof of the Theorem

Assume that the numbers D ∈ N and the arithmetical function f : N → C
satisfy the equation (1.1), that is

f(n2 +Dm2) = f2(n) +Df2(m) for every n,m ∈ N.
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Let G(n) := f2(n) for every n ∈ N and U = D. We shall use the notations of
Lemmas 1-2. From (2.6) we have

G(�) = f2(�) = A�2 +B� for every � ∈ N,

where
B� := Γ2χ2(�) + Γ3χ3(�) + Γ4χ4(� − 1) + Γ5χ5(�) + Γ.

Consequently, we obtain from (1.1) that

G(n2 +Dm2) = f2(n2 +Dm2) =
(
G(n) +DG(m)

)2

,

and so (2.6) implies

(3.1) A(n2 +Dm2)2 +Bn2+Dm2 =
(
A(n2 +Dm2) +Bn +DBm

)2

for every n,m ∈ N. Since

|B�| ≤ |Γ2| + |Γ3| + |Γ4| + |Γ5| + |Γ| for every � ∈ N

and
n2 +Dm2 → ∞ as n,m → ∞,

we infer from (3.1) that

A = lim
n,m→∞

[
A+

Bn2+Dm2

(n2 +Dm2)2

]
=

= lim
n,m→∞

(
A+

Bn +DBm

n2 +Dm2

)2

= A2.

Therefore, we have A ∈ {0, 1}.
Case I. A = 1. From (3.1) we obtain that

(n2 +Dm2)2 +Bn2+Dm2 −
(
(n2 +Dm2) +Bn +DBm

)2

=

= (−2Bn − 2DBm)n2 +W (n,m) = 0,
(3.2)

holds for every n,m ∈ N, where

W (n,m) := Bn2+Dm2 − B2
n − D2B2

m−
− 2D2m2Bm − 2Dm2Bn − 2DBnBm.

(3.3)

Now let m ∈ N be fixed, n ∈ N, n ≡ a (mod 60) with some a ∈ N,
0 ≤ a < 60. Then Bn = Ba and

|W (n,m)| < ∞
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and so we obtain from (3.2) that

Ba +DBm = lim
n→∞

n≡a (mod 60)

−W (n,m)

2n2
= 0,

consequently

(3.4) Bm =
−Ba

D
= c for every m ∈ N,

where c ∈ C is some fixed constant. This shows that

(3.5) c(D + 1) = 0 and c = 0.

This proves

Bm = c = 0 and G(m) = m2 for every m ∈ N

and in the case A = 1, we proved that

f2(m) = m2 and f(n2 +Dm2) = f2(n) +Df2(m) = n2 +Dm2

for every n,m ∈ N.

The part (c) of the theorem is proved.

Case II. A = 0. In this case, we have

(3.6) T (n,m) := Bn2+Dm2 −
(
Bn +DBm

)2

= 0 for every n,m ∈ N.

We prove now that

(3.7) Γ4 = 0.

Assume that Γ4 �= 0. By applying (3.6) with T (2, 2) and T (30, 30), we obtain
that

B4+4D = (Γ3 + Γ4 − Γ5 + Γ +D(Γ3 + Γ4 − Γ5 + Γ))2

and

B0 = (Γ4 + Γ +D(Γ4 + Γ))2.

Consequently

T (8, 8) = 4(D + 1)2Γ4(−Γ5 + Γ + Γ3) = 0

and

T (60, 60) = 4Γ4Γ(D + 1)2 = 0,
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which with (D + 1)2Γ4 �= 0 imply that

Γ = 0 and Γ5 − Γ3 = 0.

Finally, we obtain (3.6) that

0 = T (2, 8) = B22+D82 −
(
B2 +DB8

)2

= B4+4D −
(
B2 +DB8

)2

=

=
(
Γ3 + Γ4 − Γ5 + Γ +D(Γ3 + Γ4 − Γ5 + Γ)

)2

−

−
(
Γ3 + Γ4 − Γ5 + Γ +D(Γ3 − Γ4 − Γ5 + Γ)

)2

=
(
Γ4(D + 1)

)2

−
(
Γ4(D − 1)

)2

= 4DΓ2
4.

This is impossible, because Γ4 �= 0. Thus, (3.4) is proved.

In the next part, we assume that Γ4 = 0, and so

(3.8) Bk := Γ2χ2(k) + Γ3χ3(k) + Γ5χ5(k) + Γ for every k ∈ N,

furthermore

(3.9) Bk = Bk+30 for every k ∈ N.

Since
T (30, 30) = Γ− (Γ +DΓ)2 = 0,

consequently

(3.10) Γ ∈ {0, 1

(D + 1)2
}.

Lemma 3. Assume that (3.6) and (3.8) hold. If Γ = 0, then Bn = 0 for every
n ∈ N.

Proof. We deduce from Γ = 0, (3.6) and (3.8) that

B30 = Γ2χ2(30) + Γ3χ3(30) + Γ5χ5(30) + Γ = 0

and

Bn2 − B2
n = Bn2+D.302 −

(
Bn +DB30

)2

= T (n, 30) = 0 for every n ∈ N.

Since

Bn2 = Γ2χ2(n
2) + Γ3χ3(n

2) + Γ5χ5(n
2) = Γ2χ

2
2(n) + Γ3χ

2
3(n) + Γ5χ

2
5(n),
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we have

Γ2χ
2
2(n) + Γ3χ

2
3(n) + Γ5χ

2
5(n) =

(
Γ2χ2(n) + Γ3χ3(n) + Γ5χ5(n)

)2

holds for every n ∈ N. This with n = 2, 3, 5, 6, 10, 15 gives the following equa-
tions ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ3 + Γ5 = (Γ3 − Γ5)
2

Γ2 + Γ5 = (Γ2 − Γ5)
2

Γ2 + Γ3 = (Γ2 + Γ3)
2

Γ2
5 = Γ5

Γ2
3 = Γ3

Γ2
2 = Γ2.

Solve this systems of equations, the solutions (Γ2,Γ3,Γ5) are

(Γ2,Γ3,Γ5) ∈ {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}.

Now we prove that (Γ2,Γ3,Γ5) = (0, 0, 0). Assume that (Γ2,Γ3,Γ5) �= (0, 0, 0).
Then

Bk := χi(k) (i = 2, 3, 5),

and by applying (3.6) for the case n = m = 1, we have

BD+1 = (B1 +DB1)
2,

which implies
χi(D + 1) = (D + 1)2.

This is impossible, because 1 ≥ |χi(D + 1)| = (D + 1)2 ≥ 4.

Lemma 3 is proved.

Thus we proved the part (a) of the theorem. �

Lemma 4. Assume that (3.6) and (3.8) hold. If

Γ =
1

(D + 1)2
,

then Bn = Γ = 1
(D+1)2 for every n ∈ N.

Proof. We shall prove that Γ2 = Γ3 = Γ5 = 0.

We infer from (3.6) that

T (6, 30) = B62+D.302 −
(
B6 +D.B30

)2

= B6 −
(
B6 +

D

(D + 1)2

)2

= 0
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and

T (12, 30) = B122+D.302 −
(
B12 +D.B30

)2

= B24 −
(
B12 +

D

(D + 1)2

)2

= 0.

Since
B6 = B24,

B6 = Γ5 +
1

(D + 1)2
, B6 +

D

(D + 1)2
= Γ5 +

1

D + 1

and

B12 = −Γ5 +
1

(D + 1)2
, B12 +

D

(D + 1)2
= −Γ5 +

1

D + 1
,

we obtain that

(DΓ5 − D + Γ5 + 1)Γ5 = 0, (DΓ5 − D + Γ5 − 3)Γ5 = 0.

These relations show that Γ5 = 0. Thus, we have

Bk = Γ2χ2(k) + Γ3χ3(k) +
1

(D + 1)2

and
Bk+6 = Bk

hold for k ∈ N. By using (3.6) for (n,m) = (1, 6), (2, 6), (3, 6), we have

T (1, 6) = B12+D.62 −
(
B1 +DB6

)2

= B1 −
(
B1 +

D

(D + 1)2

)2

=

= − (Γ2 + Γ3)(DΓ2 +DΓ3 − D + Γ2 + Γ3 + 1)

D + 1
= 0,

T (2, 6) = B22+D.62 −
(
B2 +DB6

)2

= B4 −
(
B2 +

D

(D + 1)2

)2

=

= − (DΓ3 − D + Γ3 + 1)Γ3

D + 1
= 0

and

T (3, 6) = B32+D.62 −
(
B3 +DB6

)2

= B3 −
(
B1 +

D

(D + 1)2

)2

=

= − (DΓ2 − D + Γ2 + 1)Γ2

D + 1
= 0.

Solving the above system of equations, we obtain

(Γ2,Γ3) ∈
{
(0, 0),

(D − 1

D + 1
, 0

)
,
(
0,

D − 1

D + 1

)}
.
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Let H := D−1
D+1 . If (Γ2,Γ3) �= (0, 0), then Bk = Hχi(k) +

1
(D+1)2 (i = 2, 3).

Therefore

T (1, 1) = B12+D12 −
(
B1 +DB1

)2

=

= Hχi(D + 1) +
1

(D + 1)2
− (D + 1)2(H +

1

(D + 1)2
)2 =

= Hχi(D + 1) +
1

(D + 1)2
− D4

(D + 1)2
=

= H
(
χi(D + 1) − (D2 + 1)

)
= 0.

This is impossible, because H �= 0 and |χi(D + 1)| ≤ 1 < D2 + 1 .

Lemma 4 is proved. �

Thus we proved the part (b) of the theorem, and so the proof of the theorem
is completes.

4. Proof of Corollaries

Corollary 1 follows from the theorem, because if f is multiplicative, then
f(n) �= 0 for some n ∈ N and f2(m) �= 1

(D+1)2 for some m ∈ N.

Corollary 2 is a consequence of the theorem by applying x2 = · · · = xk and
D = k − 1.

References

[1] Bojan, Basic, Characterization of arithmetic functions that preserve the
sum-of-squares operation, Acta Mathematica Sinica, English Series, 30
(2014), Issue 4, 689–695.

[2] Chung, P. V., Multiplicative functions satisfying the equation
f(m2 + n2) = f(m2) + f(n2), Math. Slovaca, 46 (1996), 165–171.

[3] Kátai, I. and B.M. Phong, Some unsolved problems on arithmetical
functions, Ann. Univ. Sci. Budapest., Sect. Comp., 44 (2015), 233–235.

[4] Khanh, B.M.M., On the equation f(n2 + Dm2) = f(n)2 + Df(m)2,
Ann. Univ. Sci. Budapest. Sect. Comput., 44 (2015), 59–68.



On conjecture concerning the functional equation 135
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