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Abstract. We prove that if the q-additive functions f and g satisfy
the equation f(n2) = g2(n) for every n ∈ N and {a ∈ {0, 1, . . . , q − 1},
k ∈ N | g(aqk) �= 0} is an infinite set, then there is a non-zero complex
number c such that g(n) = cn and f(n2) = c2n2 for every n ∈ N.

1. Introduction

Let, as usual, N, C be the set of positive integers and complex numbers,
respectively. Let N0 = N∪ {0} be the set of non-negative integers. Let M∗ be
the class of completely multiplicative functions.

For some integer q ≥ 2 let Aq be the set of q-additive functions. Let

Aq := {0, 1, · · · , q − 1}.
Every n ∈ N0 can be uniquely represented in the form

n =
∞∑
r=0

ar(n)q
r with ar(n) ∈ Aq
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and ar(n) = 0 if qr > n. We say that f ∈ Aq, if f : N0 → C,

f(0) = 0 and f(n) =

∞∑
r=0

f
(
ar(n)q

r
)

holds for every n ∈ N0.

Recently we proved in [2] the following assertion:

Theorem A. Assume that f ∈ M∗, g ∈ Aq satisfy the condition

f(n) = g2(n) for every n ∈ N.

Then either

f(q0) = 0, q0|q, and f(n) = χq0(n), g
2(n) = χq0(n),

where χq0 is a Dirichlet character (mod q0), or f(n) = n2, and either g(n) =
= n, or g(n) = −n for all n ∈ N.

Let
K(g) := {(a, �) ∈ (Aq,N) | g(aq�) �= 0}.

In this paper, we prove the following

Theorem 1. Assume that f, g ∈ Aq satisfy

(1.1) f(n2) = g2(n) for every n ∈ N.

If

(1.2) |K(g)| = ∞,

then there is a non-zero complex number c such that g(n) = cn and f(n2) =
= c2n2 for every n ∈ N.

If
|K(g)| < ∞,

then
|K(f)| < ∞.

We are unable to give all solutions of (1.1) if K(g) is finite. We prove

Theorem 2. Assume that f ∈ Aq satisfies

f(n2) = f2(n) for every n ∈ N.
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If K(f) = {(a, �) ∈ (Aq,N) | f(aq�) �= 0} is a finite set, then there are integers
0 = m0 < · · · < mk such that

Aq = S(m0) ∪ · · · ∪ S(mk)

and either f(mν) = 0 or f(mν) is a root of unity, for which

f(n) = ε ·
(
f(mν)

)2e

if n ∈ S(mν) (ν ∈ {0, · · · , k}),

where e ∈ N0 and ε is a root of unity.

2. Proof of Theorem 1

We shall use the following two lemmas.

Lemma 1. If h ∈ Aq ∩ M∗, h(1) = 1 and h(q) �= 0, then h(n) = n for every
n ∈ N.

Proof. This lemma is a consequence of Theorem 2 in [1]. �

Lemma 2. Assume that f, g ∈ Aq satisfy (1.1). Then g(1) �= 0 and the

function G(n) := g(n)
g(1) is an element of M∗.

Proof. Since K(g) is an infinite set and g ∈ Aq, then there exists an infinite
sequence k1 < k2 < · · · of positive integers and A ∈ Aq such that

g(Aqki) �= 0 for every i ∈ N.

Let n,m ∈ N. Then the above relation shows that there exists K ∈
∈ {k1, k2, · · · } such that

(2.1) qK > max(2nm, (nm)2, (Aqk1)2) and g(AqK) �= 0.

Since f, g ∈ Aq, we can assume that f, g ∈ AqK .

Then, we infer from (2.1) that

f
(
(AqKn+m)2

)
= f

(
A2q2Kn2 + 2AqKnm+m2

)
=

= f
(
A2q2Kn2

)
+ f

(
2AqKnm

)
+ f(m2)
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and (
g(AqKn+m)

)2

=
(
g(AqKn) + g(m)

)2

=

= g2(AqKn) + 2g(AqKn)g(m) + g2(m).

From (1.1), we have

f
(
A2q2Kn2

)
= g2

(
AqKn

)
, f(m2) = g2(m),

consequently

(2.2) f
(
2AqKnm

)
= 2g(AqKn)g(m).

By taking n = 1 into (2.2), we have

f
(
2AqKm

)
= 2g(AqK)g(m),

which gives

(2.3) f
(
2AqKnm

)
= 2g(AqK)g(nm).

It is clear from (2.2) and (2.3) that

(2.4) g(AqKn)g(m) = g(AqK)g(nm),

which with m = 1 implies

g(AqKn)g(1) = g(AqK)g(n).

This relation with n = Aqk1 shows that g(1) �= 0. Therefore

g(AqKn) =
g(AqK)

g(1)
g(n).

Finally, we obtain from (2.4) and the fact g(AqK) �= 0 that

(2.5) g(AqK)g(nm) = g(AqKn)g(m) =
g(AqK)

g(1)
g(n)g(m),

which implies
g(nm)

g(1)
=

g(n)

g(1)

g(m)

g(1)

and so
G(nm) = G(n)G(m) for every n,m ∈ N.

Lemma 2 is thus proved. �



On the equation f(n2) = g2(n) for q-additive functions f and g 119

Proof of Theorem 1. Assume that f, g ∈ Aq satisfy (1.1) and (1.2). Since

G(n) = g(n)
g(1) , we have G ∈ Aq, consequently

(2.6) G ∈ Aq ∩ M∗.

We shall prove that g(q) �= 0. Assume that g(q) = 0. Then we obtain from
(2.6) that

g(mqe) = g(1)G(mqe) = g(1)G(m)G(q)e =

= g(1)
g(m)

g(1)

(g(q)
g(1)

)e

= 0 for every m, e ∈ N,

which contradicts the assumption (1.2).

Assume now that g(q) �= 0. Then G(1) = 1, G(q) �= 0 and we infer from
Lemma 1 that

G(n) =
g(n)

g(1)
= n, g(n) = g(1)n, and f(n2) = g(n)2 = g(1)2n2,

consequently Theorem 1 is proved for c = g(1) �= 0.

Now we prove the second assertion of Theorem 1. Assume that |K(g)| < ∞.
Then there is a number K ∈ N,K ≥ 3 such that g(mqk) = 0 for every m ∈ N
and k ≥ K. Then g(n) = g(ν) if n ≡ ν (mod qK). Let ν, s ∈ Aq, n = ν + sqk.
Then n2 = ν2 + 2νsqk + s2q2k and in the case k ≥ K, we have

2νs < 2q2 ≤ q3 ≤ qK < qk and ν2 < qK ≤ qk,

consequently

g2(n) =
(
g(ν + sqk)

)2

=
(
g(ν) + g(sqk)

)2

= g2(ν) + 2g(ν)g(sqk) + g2(sqk)

and

g2(n) = f
(
(ν + sqk)2

)
= f(ν2) + f(2νsqk) + f(s2q2k) =

= g2(ν) + f(2νsqk) + g2(sqk).

Thus

(2.7) f(2νsqk) = 0 if k ≥ K and ν, s ∈ Aq.

Assume first that q is even, q = 2Q. Let s = Q. Then 2νsqk = νqk+1, and
so f(νqk+1) = 0 for every ν ∈ Aq if k ≥ K. Therefore, we have |K(f)| < ∞.

Assume now that q is odd. If ν ∈ Aq, ν is even, then ν/2 ∈ Aq and we infer
from (2.7) with s = 1 that f(νqk) = 0 if k ≥ K.
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We note from (2.7) that

f(qk) + f(qk+1) = f
(
(q + 1)qk

)
= 0 if k ≥ K

and
f(q2t) = g2(qt) = 0 for every t ≥ K,

consequently

(2.8) f(q�) = 0 if � ≥ 2K.

Let now ν ∈ Aq and ν is odd. Then q+ν
2 ∈ Aq and we obtain from (2.7)

that

f
(
(q + ν)qk

)
= f

(
2
q + ν

2
qk

)
= 0

and so we obtain from (2.8) that

0 = f
(
(q + ν)qk

)
= f

(
qk+1

)
+ f

(
νqk

)
= f

(
νqk

)
if k ≥ 2K.

Consequently |K(f)| < ∞ in the case q is odd.

Theorem 1 is thus proved. �

3. Proof of Theorem 2

Assume that f ∈ Aq satisfies |K(f)| < ∞ and

(3.1) f(n2) = f2(n) for every n ∈ N.

If
f(qm) �= 0 for some m ∈ N,

then we infer from (3.1) that

f
(
(qm)2

α
)
=

(
f(qm)

)2α

�= 0 for every α ∈ N,

which is impossible. Thus we proved that

(3.2) f(qm) = 0 for every m ∈ N,

and so f ∈ Aq implies that

f(qm+ a) = f(a) for every a ∈ Aq, m ∈ N.
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It is clear that f is a solution of (3.1) under the condition (3.2) if and only if

(3.3) f2(�) = f
(
�2 (mod q)

)
for every � ∈ Aq.

Let us define the directed graph � → �2 (mod q) over Aq. We shall classify the
elements of Aq, saying that a ∼ b if there is a path from a to b, or from b to a.
Let U0, U1, . . . , Uk be the classes we obtain. Let

mi := min{t ∈ Ui} and S(mi) := Ui.

These are the connected components of this graph. Each S(mi) contains a
directed circle (loop is allowed):

h0 → h1 → · · · → ht−1(→ h0).

Then

h1≡h2
0 (mod q), h2≡h22

0 (mod q), . . . , ht−1≡h2t−1

0 , h0≡h2t

0 (mod q),

and so, if f is a solution, then

f(hj) = f2j (h0) and f(h0) = f2t(h0),

consequently f(h0) is a root of unity of rank 2t − 1, or f(h0) = 0.

The values f(hj) are determined by f(h0). Let m ∈ S(m�) which is not on
the circle. Let

m → t1 → · · · → ts−1 → h�

be the path from m to the circle. Then f(h�) = f(m)2
s

, and f(m) = f(h�)
2−s

.

If we do this for every element of S(mj) and for every j, then we choose a
solution of (3.1) satisfying f(mq) = 0 for every m ∈ N.

Examples. 1. q = 24.

S(0) = {0, 6, 12, 18}, S(1) = {1, 5, 7, 11, 13, 17, 19, 23},
S(2) = {2, 4, 8, 10, 14, 16, 20, 22} and S(3) = {3, 9, 15, 21}.

It is clear that f(1) ∈ {0, 1} and

f(n) =

{
0 if n ∈ S(0),

±f(1) if n ∈ S(1).

We have f(2)4 = f(2)8, consequently f(2) ∈ {0,±1,±i}. It is easy to check
that f(4) = f(2)2, f(8) = ±f(2)2, f(10) = ±f(2), f(14) = ±f(2), f(16) =
= f(2)4, f(20) = ±f(2)2, f(22) = ±f(2).



122 I. Kátai and B. M. Phong

In S(3) it is obvious that S(3) ∈ {0,±1}, furthermore f(9) = f(3)2, f(15) =
= ±f(3), f(21) = ±f(3).

2. q = 40.
S(0) = {0, 10, 20, 30},

S(1) = {1, 3, 7, 9, 11, 13, 17, 19, 21, 23, 27, 29, 31, 33, 37, 39},
S(2) = {2, 4, 6, 8, 12, 14, 16, 18, 22, 24, 26, 28, 32, 34, 36, 38}

and
S(5) = {5, 15, 25, 35}.

It is easy to check that f(1) ∈ {0, 1} and

f(n) =

⎧⎪⎨⎪⎩
0 if n ∈ S(0),

±f(1) if n ∈ {1, 9, 11, 19, 21, 29, 31, 39},
±f(1),±if(1) if n ∈ {3, 7, 13, 17, 23, 27, 33, 37}.

In S(2), we have f(2) ∈ {0,±1,±i}, furthermore f(4) = f(2)2, f(16) = f4(2)
and

f(n) =

⎧⎪⎨⎪⎩
±f(2) if n ∈ {18, 22, 38},
±f2(2) if n ∈ {24, 36},
±f(2),±if(2) if n ∈ {6, 8, 12, 14, 18, 26, 28, 32, 34}.

Finally, we have f(5) ∈ {0,±1},
f(15) = ±f(5), f(25) = f(5)2 and f(35) = ±f(5).
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