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Abstract.  We prove that if the g-additive functions f and g satisfy
the equation f(n?) = ¢*(n) for every n € N and {a € {0,1,...,q — 1},
k€ N | g(ag®) # 0} is an infinite set, then there is a non-zero complex
number ¢ such that g(n) = en and f(n?) = ¢*n? for every n € N.

1. Introduction

Let, as usual, N, C be the set of positive integers and complex numbers,
respectively. Let No = NU {0} be the set of non-negative integers. Let M* be
the class of completely multiplicative functions.

For some integer g > 2 let A, be the set of g-additive functions. Let
A,:={0,1,--- ,¢—1}.

Every n € Ny can be uniquely represented in the form

n= Z ar(n)q" with a,(n) € A,
r=0
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and ar(n) =0 if ¢" > n. We say that f € A,, if f: Ny — C,

f(0)=0 and f(n)= Z f(ar(n)q’“> holds for every n € Np.
r=0

Recently we proved in [2] the following assertion:
Theorem A. Assume that f € M*, g € A, satisfy the condition
f(n) =g*(n) for every m €N.
Then either
flg0) =0, aolg, and  f(n) = xg,(n), 5*(n) = xgo (),

where X4, is a Dirichlet character (mod qo), or f(n) =n?, and either g(n) =
=n, or g(n) = —n for alln € N.

Let
K(g) :={(a,0) € (Ag,N) | g(aq") # 0}.

In this paper, we prove the following

Theorem 1. Assume that f,g € Ay satisfy

(1.1) f(n?) = g¢*(n) for every n €N.
If
(1.2) K (g)| = o0,

then there is a non-zero compler number ¢ such that g(n) = cn and f(n?) =
= c®n? for every n € N.

If
[K(g)| < o0,

then
[K(f)| < o0

We are unable to give all solutions of (1.1) if K(g) is finite. We prove
Theorem 2. Assume that f € A, satisfies

f(n?) = f*(n) for every mn €N.
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IfK(f) ={(a,0) € (Ay,N) | f(ag’) # 0} is a finite set, then there are integers
0=mg < --- < my such that

Ay = S(mo)U---US(my)

and either f(m,) =0 or f(m,) is a root of unity, for which

fmy=c-(fm) i nesm) ve{o- .k},

where e € Ny and € is a root of unity.
2. Proof of Theorem 1

We shall use the following two lemmas.

Lemma 1. Ifh e A, N M*, h(1) =1 and h(q) # 0, then h(n) = n for every
n € N.

Proof. This lemma is a consequence of Theorem 2 in [1]. n

Lemma 2. Assume that f,g € Ay satisfy (1.1). Then g(1) # 0 and the

function G(n) := % is an element of M*.

Proof. Since K(g) is an infinite set and g € A, then there exists an infinite
sequence k1 < ko < --- of positive integers and A € A, such that

g(Agh) #0 for every i€ N.

Let n,m € N. Then the above relation shows that there exists K €
€ {ki1, ko, -} such that

(2.1) ¢ > max(2nm, (nm)?, (A¢*)?) and g(Ag®) # 0.

Since f,g € Ay, we can assume that f,g € Ajx.
Then, we infer from (2.1) that

f ((AqKn + m)2) = f(A2q2Kn2 +24¢%nm + mz) =

= f(Azqunz) + f(?AqKnm> + f(m?)
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and

(g(AqKn + m))2 = (9(Ag"n) + g(m))2 =

= ¢*(Ag"n) +29(Ag" n)g(m) + ¢*(m).
From (1.1), we have
7(426*n2) = g*(Aq"n), f(m?) = g*(m),
consequently
(2.2) f (2AqK nm) = 29(Ag"n)g(m).
By taking n = 1 into (2.2), we have
f (2AqK m) = 29(Aq™)g(m),

which gives

(2.3) f (2AqKnm) = 29(Aq™)g(nm).
It is clear from (2.2) and (2.3) that
(24) 9(Aq" n)g(m) = g(Aq")g(nm),

which with m = 1 implies
9(Aq"n)g(1) = g(Aq")g(n).
This relation with n = Ag** shows that g(1) # 0. Therefore

K
9(Ag"n) = g(;g) )g(n)-

Finally, we obtain from (2.4) and the fact g(Aq¢”) # 0 that

(2.5) 9(Ag"™)g(nm) = g(Aq"n)g(m) =

which implies
g(nm) _ g(n) g(m)
g(1)  g(1) 9(1)

and so
G(nm) = G(n)G(m) for every n,m € N.

Lemma 2 is thus proved. |



On the equation f(n?) = ¢g*(n) for g-additive functions f and g 119

Proof of Theorem 1. Assume that f,g € A, satisfy (1.1) and (1.2). Since
G(n) = %» we have G € A, consequently
(2.6) GeA,NM*

We shall prove that g(q) # 0. Assume that g(¢) = 0. Then we obtain from
(2.6) that
g9(mq°) = g(1)G(mq®) = g(1)G(m)G(q)° =

= g(l)M(M)P =0 forevery m,e €N,

g9(1) \g(1)
which contradicts the assumption (1.2).

Assume now that g(q) # 0. Then G(1) = 1, G(q) # 0 and we infer from
Lemma 1 that

G(n) = Z(g)) —n,g(n) = g(Un, and  F(n?) = g(n)? = g(1)%n?,

consequently Theorem 1 is proved for ¢ = ¢g(1) # 0.

Now we prove the second assertion of Theorem 1. Assume that |K(g)| < oo.
Then there is a number K € N, K > 3 such that g(mg¢*) = 0 for every m € N
and k > K. Then g(n) = g(v) if n = v (mod ¢&). Let v,s € Ay, n = v + s¢.
Then n? = v? 4+ 2vsq® + s2¢?F and in the case k > K, we have

ws <2 <¢® < ¢ <" and 1< ¥ <,

consequently

g?n) = (90 + 56) " = (90) + 9(s0")) = (W) + 20(0)(s0") + g2(s5")
and
g2(n) = f((w+s0")?) = F0°) + F(2vsq") + F(s%%) =
= ¢*(v) + f(2vs4") + ¢*(sq").
Thus

(2.7) fQusg®) =0 if k>K and v,s€A,.

Assume first that ¢ is even, ¢ = 2Q. Let s = Q. Then 2vsq¢® = vg"*!, and
so f(vg"*1) =0 for every v € A, if k > K. Therefore, we have |K(f)| < oo.

Assume now that ¢ is odd. If v € A, v is even, then v/2 € A, and we infer
from (2.7) with s = 1 that f(vq*) =0if k > K.
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We note from (2.7) that

f(qk)+f(qk“)=f((q+1)qk)=0 if k>K

and

f(@®) =4*(¢") =0 forevery t>K,
consequently
(2:8) f@) =0 if €>2K.

Let now v € A, and v is odd. Then %} € A, and we obtain from (2.7)
that g+
K\ _ K\ _
f((q+l/)q ) —f(2 54 ) 0
and so we obtain from (2.8) that
0= f((q + V)qk) = f(q’““) + f(vq’“) = f(vq’“) if k>2K.

Consequently |K(f)| < oo in the case ¢ is odd.
Theorem 1 is thus proved. ]

3. Proof of Theorem 2

Assume that f € A, satisfies |K(f)| < oo and
(3.1) f(n?) = f*(n) forevery ne€N.

If
f(gm) #0 for some m €N,

then we infer from (3.1) that

9
#(0 forevery «a€N,

7 (@) = (Fam))
which is impossible. Thus we proved that
(3.2) f(gm) =0 for every m €N,
and so f € A, implies that

flgm+a) = f(a) forevery ach, meN.
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It is clear that f is a solution of (3.1) under the condition (3.2) if and only if
(3.3) f2(0) = f(¢* (mod q)) forevery (€A,

Let us define the directed graph £ — ¢? (mod q) over A,. We shall classify the
elements of Ay, saying that a ~ b if there is a path from a to b, or from b to a.
Let Uy, Uy, ..., Uy be the classes we obtain. Let

m; == min{t € U;} and S(m;):=U,.

These are the connected components of this graph. Each S(m;) contains a
directed circle (loop is allowed):

ho — h1 — s = ht_l(g) ho)
Then
hi=h% (mod q), h25h82 (mod q), ..., ht,lzhgt_l, hozhgt (mod gq),

and so, if f is a solution, then

f(hg) = f¥ (ho) and f(ho) = f* (o).
consequently f(hg) is a root of unity of rank 2! — 1, or f(hg) = 0.

The values f(h;) are determined by f(ho). Let m € S(my) which is not on
the circle. Let
m—ty = =>ts_1 = hy

be the path from m to the circle. Then f(hs) = f(m)?", and f(m) = f(he)? .

If we do this for every element of S(m;) and for every j, then we choose a
solution of (3.1) satisfying f(mgq) = 0 for every m € N.
Examples. 1. g = 24.
5(0) = {0,6,12,18}, S(1) = {1,5,7,11,13,17, 19,23},
S(2) = {2,4,8,10,14,16,20,22} and S(3) = {3,9,15,21}.
It is clear that f(1) € {0,1} and
0 if ne S(0),
fn) = neso
+f(1) if neS(1).

We have f(2)* = f(2)%, consequently f(2) € {0,+1,4i}. It is easy to check
that f(4) = f(2)%, f(8) = £f(2)%, f(10) = ££(2), f(14) = £f(2), f(16) =
= f(2)*, f(20) = ££(2)*, £(22) = £/(2).
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In S(3) it is obvious that S(3) € {0, £1}, furthermore f(9) = f(3)2, f(15) =
=£f(3), f(21) = £/(3).
2. q = 40.
S(0) = {0, 10, 20, 30},
S(1)=11,3,7,9,11,13,17,19, 21, 23, 27,29, 31, 33, 37, 39},
S(2) ={2,4,6,8,12,14, 16, 18,22, 24, 26, 28, 32, 34, 36, 38}
and
S(5) = {5,15,25,35}.
It is easy to check that f(1) € {0,1} and

0 it nes0),
fn) =< ££(1) if ne{1,9,11,19,21,29,31,39},
LF(1),4if(1) it me {3,7,13,17,23,27, 33,37}
In S(2), we have f(2) € {0, £1, +i}, furthermore f(4) = £(2)2, f(16) = f4(2)
and
+1(2) it n e (18,22,38),
f(n) =< ££2(2) if ne{24,36},
LF(2),4if(2) if ne {6,812, 14,18,26,28,32, 34}.

Finally, we have f(5) € {0,£1},
F(15) = ££(5), f(25)=f(5)* and f(35) = £f(5).
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