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Abstract. Let k € {1,2,3}. For a polynomial P(z) = ap + a1z + --- +
+arz® € Clz] let P(E)f(n) = aof(n) +aif(n+1)+---+arf(n+k). We
give all multiplicative functions f which satisfy the relation

5 1PESON _ 05,

n<x

In the case P(z) = (E® — I)¥, we also give all completely multiplicative
function with the conditions |f(n)] = 1 if (n,B) = 1 and f(n) = 0 if
(n, B) > 1 which satisfy

Z |P(E7)Lf(n)| _ o(loga:).

where B is a positive integer.

1. Introduction

Let € be the set of arithmetical functions having complex values. Sometimes
a function f € Q is considered as an infinite dimensional vector, the n/th coor-
dinate of which is f(n). We write: f = (f(1), f(2),---). Let z = (z1, 22, )
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be a general element of Q. The operators I, E, A, Ag (2 — Q) are defined ac-
cording to the following rules: the n’th coordinate of Iz, Fx, Az, Agzx are x,,,
Tpil, Tl —Tn, Tny B —Tn, Tespectively. Let A* = (E—1)*, A’fg = (EB -1k,
If P(z) = ap + arz + -+ + axz® € C[z], then the n’th coordinate of P(E)z
equals

agTy + 1Tn41 +---+ ApTn k-

Let M (M*) be the set of complex-valued multiplicative (completely mul-
tiplicative) functions. In paper [3], K-H. Indlekofer and I. Kdtai proved a
theorem which is more general than the following.

Theorem A. If f € M, P € C[z], P # 0 with k = deg P and

(1.1) Y IPE)f(n)| = O(x) (z— o0),

n<z

then, either

(1.2) S 1f ()] = Oa),

n<a
or there are s € C and F € M with 0 < Rs < k such that
(1.3) f(n)=n°F(n) and P(E)F(n)=0
are satisfied for every positive integer n.
For other results we refer to works [1], [2], [4], [5] and [9)].
We shall prove
Theorem 1. Let f € M, P € Clz], P # 0 with k = deg P < 3. Assume that
P(E)f(n
(1.4) ; w =O(logz) (x— ),

then, either

(1.5) 3 L _ oog ),

n

n<lz

or there are s € C and ' € M with 0 < Rs < k such that
(1.6) f(n)=n°F(n) and P(E)F(n)=0

are satisfied for every positive integer n.
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We think that Theorem 1 is true for every k € N. Now we can only prove
the following result.

Theorem 2. Let k € N, k > 1, P € C[z] be the smallest degree monic
polynomial for which (1.4) holds. Then

P(z) = (z® = 1%, B s a suitable natural number

and
|f(n)| =n® a is a positive constant.

The proof of Theorem 1 is based on a simple generalization of a famous
theorem of O. Klurman [8], which we state as follows.

Theorem B. Let f € M*, B €N,

)1 if(n,B) =
)= {0 if (n,B) > 1
and assume that
(1.7) Z mizﬂ =o(logz) (z — 00).

n<zx
Then

f(n) =n'"xp(n), where xp is a Dirichlet character (mod B).

Theorem 3. If f € M*, B €N,

k=2 ork=23, and
Ak
(1.8) Z |Bnﬂ =o(logz) (z — 00),
n<zx
then (1.7) is true, and so

f(n) =n'"xp(n), where xp is a Dirichlet character (mod B).
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2. Proof of Theorem 3

The case k = 2.

Let e(r) := e?™@ arg f(n) = 27u(n), u(n) (mod 1) is additive, Agu(n) =
=u(n + B) — u(n).

Assume that A% f(n) =€ (< 1/4). Since

A%f(n)‘(m1)+(%1)‘<e

therefore cos Agu(n + B) > 1 — ¢, cos(—Apu(n)) > 1 — ¢, whence

‘M_l‘m/;

consequently (1.8) implies (1.7).

The case k = 3.

Lot = L0 ¢ =S80 6 22080

‘We have
|AL f(n)] = 616265 — 361& + 38 — 1]

Assume that |[A% f(n)] < e (< 1/8). Then

[€2(& —3) — (& — 3] <,

& - 23] <2ab sl
1= |23 < 21 s

165 = 31 = [E1 - 31| < 1A%/ (),
165 = 32 &, — 3| < 641A% ()],

‘GCOS Apu(u+2B) — 6cos(—ABu(n))‘ < 64|A% f(n)|.
It implies that

[Agu(n+2B) — Agu((n) (mod 1)|| < c|A% f(n)|=.
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Thus
€2 — 1] < | AL f(n)]=.

The condition (1.8) is equivalent to the assertion:

1 1
(2.1) logz Z . 0 for every € > 0.

1A% f(n)|>e

n<x

Thus our assertion is true, since we proved if |A% f(n)| < €, in which case
|Apf(n+ B)| < ce'/?.

3. Proof of Theorem 1 and Theorem 2

The proof is similar to the proof of Theorem A, therefore we can shorten
the argument.

Let f be given, A be the set of those P € Cz] for which (1.4) holds. If
there is a polynomial P with deg P = 0, then (1.5) clearly holds. It is clear
that A is an ideal (see page 122 in [3]).

Let p(n) be the smallest prime factor of n, and for some prime divisor p of
n let £,(n) be that exponent for which p’ (™ ||n.

Let P be the generator element of A, k = deg P. If k = 0, then (1.5) holds.
Let k > 0. If P(0) =0, then P(z) = 2Q(x), P(E)f(n) = Q(E)f(n+1), and so
(1.4) holds with @ instead of P. Thus @ € A. This cannot occur. Repeating
the argument used in pages 122-124 of [3], we obtain the following.

Lemma 1. Assume that P is the minimal degree monic polynomial for which
(1.4) holds, and that k > 1. Then f(nm) = f(n)f(m) whenever p(n) > 2k + 2
or p(m) > 2k + 2.

Arguing as in pages 124-126 (see [3]) we obtain Lemma 2 and Lemma 3.
Lemma 2. Let P € Clx] be the minimal degree monic polynomial for which

(1.4) holds. Let k = deg P > 1. Then P(x) is a divisor of (z® —1)*, B is a
suitable integer. Consequently

(3.1) Z w = O(log z).

n<zx
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Lemma 3. If there exists an integer D such that

(3.2) Z @ = O(log z),
(nDy=1

then (1.5) holds.

We note that if (3.1) is true with B, then it remains valid with Br instead

of B with » = 1,2,3,---. We may assume that all the primes up to 2k + 2
divide B.

Assume this. Let
(3:3) f(n) == xo,5(n)f(n),

where xo,5(n) is the principal character (mod B).
Then f* € M*, and

(3.4) Z [ 1n)kf*(n)| = O(log z).

n<x

From Lemma 3 we obtain that

(3.5) lim sup ;—— Z |f*

Let q be coprime to B, ¢ > 1. Let
H(n) := (zB — 1)1 (n).
Let K be arbitrary large fixed positive integer. From (3.4) we obtain that

1
(3.6) Z ﬁog%(m(njuw) H(n)| = O(log ).
(n,B)=1

The constant on the right hand side of (3.6) may depend on K. Let h =
k-1
= (¢—1)(k—1), and let Bo, - - - , B be the coefficients of (f:__ll) . Therefore

(Itz+- -+ Y =8+ + B, =B+ + B
We have
(BP9 — D)1 (gn) =

— (I+ EB 4. +EB(q—1))k—1(EB _ I)k—lf*(qn) —
(3.7)

h
=> BiH(qn+jB).
=0



Multiplicative functions with small increments 111

Let (n,B) = 1. The left hand side of (3.7) is f*(q)H(n). Let K be a large
constant, £, any integer, 0 < £,, < K. From (3.6) we obtain that

f(q)

(3.8) H(gn+?¢,B) = e H(n) + e, ,
where

‘en,in -
(3.9) g - = O(log z).
Let

|H(N)|

3.10 E@ =Y =/
(3.10) 0= 5y

For an integer N let a(N) € {0, - ,g—1} be the integer for which ¢|N —a(n)B,

and let
N —a(N)B

q

Some fixed integer M plays the role of Ny for ¢ distinct values of N, namely
for gM +¢N (£=0,---,q—1).

From (3.8) we obtain that (for N > ¢B, (N, B) =1)

N =

(3.11) H(N) = J;Z(_ql)H(Nl) T ENya(N)-

Let 0 =6, = %. Then
(3.12) |[H(N)| = 04|H(N1)| + ony a(v)

lony o) < leny o l-

Since N N
——B S Nl S R
q q
therefore
(3.13) E(z) = 0,(1 +5(x))E(§) +O(log z),

where |§(z)| — 0 as z — oc.
If E(z) = O(log x), then k can be reduced to k — 1.
Assume that E(x) # O(log x).
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Let ¢1,92 € N, (g1,92) = 1, 1,92 > 1. There exist infinitely many pairs

hl,hg for which
logqn M1 1

loggz  ha ~ ho’

and for which
1 _ loggn M

hy loggz  ho
From (3.13) we obtain that

(3.14) E(zq") = 03(1 + 6(z¢™))E(z) + O(log z)

for every fixed ¢”. Since E(z) is monotonic, we obtain that

ha

if ¢/ >qb?, then 0211 > 0,2,

and this may hold only in the case

log | f*(q)]

= constant = A.
log q

If 0, < 1, then
sup E(x) < oo,
which contradicts our assumption. Thus A > k — 1.

Theorem 2 is thus proved. |

Now we complete the proof of Theorem 1.
Assume that k£ < 3.
Let us write f*(n) = nt(n)xo0,5(n), [t(n)| =1 (n € N). We have

Ak (n) = n? Alyt(n) + O(n),

and so 1 1
b)) < LAk )+ o).
Ifk=1, A= 0, then |f*(n)| =1 if (n,B) =1, and so (1.5) holds. If k =1,
A >0, then
Apt
St _
n

neN

In [6] and [7] we proved that t(n) = n'" in this case.
Let k =2. If A=1, then

ZIA%tm)ngWB{li*WHZ%’

n<x n<x n<x
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and so

S Abt(n)| = Oflog ).

n<lz

If k=2 A>1orif k=3, then

Y 1Aaktn)| = 0(1).

n<lx

In these cases, for every € > 0,

“t{ne Sl | 1Akl > ) o,

consequently the Theorem 3 can be applied.

1]

Theorem 1 is thus proved. |
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