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Abstract. Let k ∈ {1, 2, 3}. For a polynomial P (x) = a0 + a1x + · · · +
+akx

k ∈ C[x] let P (E)f(n) = a0f(n) + a1f(n+1)+ · · ·+ akf(n+ k). We
give all multiplicative functions f which satisfy the relation

∑
n≤x

|P (E)f(n)|
n

= O(log x).

In the case P (x) = (EB − I)k, we also give all completely multiplicative
function with the conditions |f(n)| = 1 if (n,B) = 1 and f(n) = 0 if
(n,B) > 1 which satisfy

∑
n≤x

|P (E)f(n)|
n

= o(log x).

where B is a positive integer.

1. Introduction

Let Ω be the set of arithmetical functions having complex values. Sometimes
a function f ∈ Ω is considered as an infinite dimensional vector, the n′th coor-
dinate of which is f(n). We write: f = (f(1), f(2), · · · ). Let x = (x1, x2, · · · )
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be a general element of Ω. The operators I, E, Δ, ΔB (Ω → Ω) are defined ac-
cording to the following rules: the n′th coordinate of Ix, Ex, Δx, ΔBx are xn,
xn+1, xn+1−xn, xn+B −xn, respectively. Let Δ

k = (E−I)k, Δk
B = (EB −I)k.

If P (x) = a0 + a1x + · · · + akx
k ∈ C[x], then the n′th coordinate of P (E)x

equals
a0xn + a1xn+1 + · · · + akxn+k.

Let M (M∗) be the set of complex-valued multiplicative (completely mul-
tiplicative) functions. In paper [3], K-H. Indlekofer and I. Kátai proved a
theorem which is more general than the following.

Theorem A. If f ∈ M, P ∈ C[x], P �= 0 with k = degP and

(1.1)
∑
n≤x

|P (E)f(n)| = O(x) (x → ∞),

then, either

(1.2)
∑
n≤x

|f(n)| = O(x),

or there are s ∈ C and F ∈ M with 0 < �s ≤ k such that

(1.3) f(n) = nsF (n) and P (E)F (n) = 0

are satisfied for every positive integer n.

For other results we refer to works [1], [2], [4], [5] and [9].

We shall prove

Theorem 1. Let f ∈ M, P ∈ C[x], P �= 0 with k = degP ≤ 3. Assume that

(1.4)
∑
n≤x

|P (E)f(n)|
n

= O(log x) (x → ∞),

then, either

(1.5)
∑
n≤x

|f(n)|
n

= O(log x),

or there are s ∈ C and F ∈ M with 0 < �s ≤ k such that

(1.6) f(n) = nsF (n) and P (E)F (n) = 0

are satisfied for every positive integer n.
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We think that Theorem 1 is true for every k ∈ N. Now we can only prove
the following result.

Theorem 2. Let k ∈ N, k ≥ 1, P ∈ C[x] be the smallest degree monic
polynomial for which (1.4) holds. Then

P (x) = (xB − 1)k, B is a suitable natural number

and
|f(n)| = na, a is a positive constant.

The proof of Theorem 1 is based on a simple generalization of a famous
theorem of O. Klurman [8], which we state as follows.

Theorem B. Let f ∈ M∗, B ∈ N,

|f(n)| =
{
1 if (n,B) = 1

0 if (n,B) > 1

and assume that

(1.7)
∑
n≤x

|ΔBf(n)|
n

= o(log x) (x → ∞).

Then

f(n) = niτχB(n), where χB is a Dirichlet character (mod B).

Theorem 3. If f ∈ M∗, B ∈ N,

|f(n)| =
{
1 if (n,B) = 1

0 if (n,B) > 1,

k = 2 or k = 3, and

(1.8)
∑
n≤x

|Δk
Bf(n)|
n

= o(log x) (x → ∞),

then (1.7) is true, and so

f(n) = niτχB(n), where χB is a Dirichlet character (mod B).
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2. Proof of Theorem 3

The case k = 2.

Let e(x) := e2πix, arg f(n) = 2πu(n), u(n) (mod 1) is additive, ΔBu(n) =
= u(n+B) − u(n).

Assume that Δ2
Bf(n) = ε (< 1/4). Since

Δ2
Bf(n) =

∣∣∣(f(n+ 2B)

f(n+B)
− 1

)
+

( f(n)

f(n+B)
− 1

)∣∣∣ < ε,

therefore cosΔBu(n+B) > 1 − ε, cos(−ΔBu(n)) > 1 − ε, whence∣∣∣f(n+B)

f(n)
− 1

∣∣∣ < c
√
ε,

consequently (1.8) implies (1.7).

The case k = 3.

Let ξ1 := f(n+B)
f(n) , ξ2 := f(n+2B)

f(n+B) , ξ3 := f(n+3B)
f(n+2B) .

We have
|Δ3

Bf(n)| = |ξ1ξ2ξ3 − 3ξ1ξ2 + 3ξ1 − 1|.
Assume that |Δ3

Bf(n)| < ε (< 1/8). Then

|ξ2(ξ3 − 3) − (ξ1 − 3| < ε,∣∣∣ξ2 − ξ1 − 3

ξ3 − 3

∣∣∣ < 2|Δ3
Bf(n)|,

∣∣∣1 −
∣∣∣ξ1 − 3

ξ3 − 3

∣∣∣∣∣∣ < 2|Δ3
Bf(n)|,

∣∣∣|ξ3 − 3| − |ξ1 − 3|
∣∣∣ < 8|Δ3

Bf(n)|,
∣∣∣|ξ3 − 3|2 − |ξ1 − 3|2

∣∣∣ < 64|Δ3
Bf(n)|,

∣∣∣6 cosΔBu(u+ 2B) − 6 cos(−ΔBu(n))
∣∣∣ < 64|Δ3

Bf(n)|.

It implies that

‖ΔBu(n+ 2B) − ΔBu((n) (mod 1)‖ < c|Δ3
Bf(n)|

1
2 .
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Thus

|ξ2 − 1| < c|Δ3
Bf(n)|

1
2 .

The condition (1.8) is equivalent to the assertion:

(2.1)
1

log x

∑
|Δ3

B
f(n)|>ε

n≤x

1

n
→ 0 for every ε > 0.

Thus our assertion is true, since we proved if |Δ3
Bf(n)| ≤ ε, in which case

|ΔBf(n+B)| ≤ cε1/2.

3. Proof of Theorem 1 and Theorem 2

The proof is similar to the proof of Theorem A, therefore we can shorten
the argument.

Let f be given, A be the set of those P ∈ C[x] for which (1.4) holds. If
there is a polynomial P with degP = 0, then (1.5) clearly holds. It is clear
that A is an ideal (see page 122 in [3]).

Let p(n) be the smallest prime factor of n, and for some prime divisor p of
n let �p(n) be that exponent for which p�p(n)‖n.

Let P be the generator element of A, k = degP . If k = 0, then (1.5) holds.
Let k > 0. If P (0) = 0, then P (x) = xQ(x), P (E)f(n) = Q(E)f(n+1), and so
(1.4) holds with Q instead of P . Thus Q ∈ A. This cannot occur. Repeating
the argument used in pages 122–124 of [3], we obtain the following.

Lemma 1. Assume that P is the minimal degree monic polynomial for which
(1.4) holds, and that k ≥ 1. Then f(nm) = f(n)f(m) whenever p(n) > 2k + 2
or p(m) > 2k + 2.

Arguing as in pages 124–126 (see [3]) we obtain Lemma 2 and Lemma 3.

Lemma 2. Let P ∈ C[x] be the minimal degree monic polynomial for which
(1.4) holds. Let k = degP ≥ 1. Then P (x) is a divisor of (xB − 1)k, B is a
suitable integer. Consequently

(3.1)
∑
n≤x

|(xB − 1)kf(n)|
n

= O(log x).
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Lemma 3. If there exists an integer D such that

(3.2)
∑
n≤x

(n,D)=1

|f(n)|
n

= O(log x),

then (1.5) holds.

We note that if (3.1) is true with B, then it remains valid with Br instead
of B with r = 1, 2, 3, · · · . We may assume that all the primes up to 2k + 2
divide B.

Assume this. Let

(3.3) f∗(n) := χ0,B(n)f(n),

where χ0,B(n) is the principal character (mod B).

Then f∗ ∈ M∗, and

(3.4)
∑
n≤x

|(xB − 1)kf∗(n)|
n

= O(log x).

From Lemma 3 we obtain that

(3.5) lim sup
x→∞

1

log x

∑
n≤x

|f∗(n)|
n

= ∞.

Let q be coprime to B, q > 1. Let

H(n) := (xB − 1)k−1f∗(n).

Let K be arbitrary large fixed positive integer. From (3.4) we obtain that

(3.6)
∑
n≤x

(n,B)=1

1

n
max

0≤�≤K
|H(n+ �B) − H(n)| = O(log x).

The constant on the right hand side of (3.6) may depend on K. Let h =

= (q−1)(k−1), and let β0, · · · , βh be the coefficients of
(

xq−1
x−1

)k−1

. Therefore

(1 + x+ · · · + xq−1)k−1 = β0 + · · · + βhx
h, qk−1 = β0 + · · · + βh.

We have

(3.7)

(EBq − I)k−1f∗(qn) =

= (I + EB + · · · + EB(q−1))k−1(EB − I)k−1f∗(qn) =

=
h∑

j=0

βjH(qn+ jB).
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Let (n,B) = 1. The left hand side of (3.7) is f∗(q)H(n). Let K be a large
constant, �n any integer, 0 ≤ �n ≤ K. From (3.6) we obtain that

(3.8) H(qn+ �nB) =
f∗(q)
qk−1

H(n) + εn,�n ,

where

(3.9)
∑
n≤x

|εn,�n |
n

= O(log x).

Let

(3.10) E(x) =
∑
N≤x

|H(N)|
N

.

For an integer N let a(N) ∈ {0, · · · , q−1} be the integer for which q|N−a(n)B,
and let

N1 =
N − a(N)B

q
.

Some fixed integer M plays the role of N1 for q distinct values of N , namely
for qM + �N (� = 0, · · · , q − 1).

From (3.8) we obtain that (for N ≥ qB, (N,B) = 1)

(3.11) H(N) =
f∗(q)
qk−1

H(N1) + εN1,a(N).

Let θ = θq = |f∗(q)|
qk−1 . Then

(3.12) |H(N)| = θq|H(N1)| + �N1,a(N)

|�N1,a(N)| ≤ |εN1,a(N)|.
Since

N

q
− B ≤ N1 ≤ N

q
,

therefore

(3.13) E(x) = θq(1 + δ(x))E
(x
q

)
+O(log x),

where |δ(x)| → 0 as x → ∞.

If E(x) = O(log x), then k can be reduced to k − 1.

Assume that E(x) �= O(log x).
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Let q1, q2 ∈ N, (q1, q2) = 1, q1, q2 > 1. There exist infinitely many pairs
h1, h2 for which

0 <
log q1
log q2

− h1

h2
<

1

h2
,

and for which

− 1

h2
<

log q1
log q2

− h1

h2
< 0.

From (3.13) we obtain that

(3.14) E(xqh) = θhq (1 + δ(xqh))E(x) +O(log x)

for every fixed qh. Since E(x) is monotonic, we obtain that

if qh1
1 > qh2

2 , then θh1
q1 > θh2

q2 ,

and this may hold only in the case

log |f∗(q)|
log q

= constant = A.

If θq < 1, then
supE(x) < ∞,

which contradicts our assumption. Thus A ≥ k − 1.

Theorem 2 is thus proved. �

Now we complete the proof of Theorem 1.

Assume that k ≤ 3.

Let us write f∗(n) = nAt(n)χ0,B(n), |t(n)| = 1 (n ∈ N). We have

Δk
Bf

∗(n) = nAΔk
Bt(n) +O(nA−1),

and so

|Δk
Bt(n)| ≤

1

nA
|Δk

Bf
∗(n)| +O(

1

n
).

If k = 1, A = 0, then |f∗(n)| = 1 if (n,B) = 1, and so (1.5) holds. If k = 1,
A > 0, then ∑

n∈N

|ΔBt(n)|
n

< ∞.

In [6] and [7] we proved that t(n) = niτ in this case.

Let k = 2. If A = 1, then∑
n≤x

|Δ2
Bt(n)| ≤

∑
n≤x

|Δ2
Bf

∗(n)|
n

+ c
∑
n≤x

1

n2
,
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and so ∑
n≤x

|Δ2
Bt(n)| = O(log x).

If k = 2, A > 1 or if k = 3, then

∑
n≤x

|Δk
Bt(n)| = O(1).

In these cases, for every ε > 0,

1

x
�
{
n ∈ [x

2
, x

] ∣∣∣ |Δk
Bt(n)| > ε

}
→ 0,

consequently the Theorem 3 can be applied.

Theorem 1 is thus proved. �
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