
Annales Univ. Sci. Budapest., Sect. Comp. 46 (2017) 81–96

SOME IMPROVEMENTS ON

NUMBER EXPANSION COMPUTATIONS

Péter Hudoba and Attila Kovács

(Budapest, Hungary)

Communicated by Imre Kátai
(Received July 2, 2017; accepted September 18, 2017)

Im Memoriam Professor Antal Iványi

He was that rare mathematician who could effectively communicate at all levels,
imparting his love for the mathematical algorithms with the same ease to under-
graduates, graduates and all his colleagues at the University of ELTE, Faculty of
Informatics. Tóni was my friend, my department colleague, my tennis partner,
whom we could always consult for advice. We keep him in our souls. – Attila
Kovács

Abstract. In this paper we present some algorithmic problems and their
analysis regarding number expansions in lattices. We show how to compute
more efficiently the discrete dynamics of the expansions. We implemented
our solutions in the computer algebra system Sage and we measured and
analysed the improvements.

1. Introduction

Let Λ be a lattice in Rn and let M : Λ → Λ be a linear operator such that
det(M) �= 0. Let furthermore 0 ∈ D ⊆ Λ be a finite subset.

Lattices can be seen as finitely generated free abelian groups. They have
many significant applications in pure mathematics (Lie algebras, number the-
ory and group theory), in applied mathematics (coding theory, cryptography)
because of conjectured computational hardness of several lattice problems, and
are used in various ways in the physical sciences.

In this paper we consider number expansions in lattices.

Key words and phrases: Number expansion, expansive operator.
2010 Mathematics Subject Classification: 11Y55.
The project has been supported by the European Union, co-financed by the European Social
Fund (EFOP-3.6.3-VEKOP-16-2017-00001)

https://doi.org/10.71352/ac.46.081

https://doi.org/10.71352/ac.46.081


82 P. Hudoba and A. Kovács

Definition 1.1. The triple (Λ,M,D) is called a number system (GNS) if every
element x of Λ has a unique, finite representation in the form

x =
L∑

i=0

M idi ,

where di ∈ D, L ∈ N, and dL �= 0.

Here M is called the base (or radix ) and D is the digit set. The length of
expansion of x in Definition 1.1 is L+ 1.

It is easy to see that similarity preserves the number system property, i.e.,
if M1 and M2 are similar via the matrix Q then the systems (Λ,M1, D) and
(QΛ,M2, QD) are number systems at the same time. If we change the basis
in Λ a similar integer matrix can be obtained, hence, no loss of generality in
assuming that M is integral acting on the lattice Zn.

If two elements of Λ are in the same coset of the factor group Λ/MΛ then
they are said to be congruent modulo M . The following theorem shows some
necessary conditions for the number system property.

Theorem 1.1. ([6, 3]) If (Λ,M,D) is a number system then
(1) D must be a full residue system modulo M ,
(2) M must be expansive,
(3) det(In − M) �= ±1 (unit condition).

If a system fulfills the first two conditions then it is called a radix system.
It is known that these conditions are not always sufficient (see [1]).

Let ϕ : Λ → Λ, x
ϕ�→ M−1(x − d) for the unique d ∈ D satisfying x ≡ d

(mod M). Since M−1 is contractive and D is finite, there exists a norm ‖.‖
on Λ and a constant C such that the orbit of every x ∈ Λ eventually enters
the finite set S = {x ∈ Λ | ‖x‖ < C} for the repeated application of ϕ.
This means that the sequence x, ϕ(x), ϕ2(x), . . . is eventually periodic for all
x ∈ Λ. Clearly, (Λ,M,D) is a number system iff for every x ∈ Λ the orbit of x
eventually reaches 0.

A point p is called periodic if ϕk(p) = p for some k > 0. The orbit of
a periodic point p is a cycle. The set of all periodic points is denoted by P.
A signature (s1, s2, . . . , sω) of a radix system (Λ,M,D) is a finite sequence of
nonnegative integers in which the periodic structure P consists of #si cycles
with period length i (1 ≤ i ≤ ω).

The following problem classes are in the mainstream of the research: for a
given (Λ,M,D)

(1) the decision problem asks if the triple form a number system or not;
(2) the classification problem means finding all cycles (witnesses);



Number expansion computations 83

(3) the parametrization problem means finding parametrized families of
number systems;

(4) the construction problem aims at constructing a digit set D to M for
which (Λ,M,D) is a number system. In general, it aims at constructing a digit
set D to M such that (Λ,M,D) satisfies a given signature.

At the time of writing this paper the algorithmic complexities of the de-
cision and classification problems are unknown. Computer experiments show
that the worst cases are exponential. In this paper we suggest new methods
improving the running time of the computations. The improved methods still
do not have polynomial runtime. The measurements are performed using the
computer algebra system Sage. The experiments based on the systems, which
are operators created by the companion of monic, integer polynomials with
constant terms ±2,±3,±5, or ±7.

2. Preliminaries

There are various deterministic methods for solving the decision and clas-
sification problems. In [4, 2] the authors proposed the method Decide (see
Algorithm 1 below) that solves the decision problem.

Algorithm 1 Decide(Λ,M,D)

1: finished := {}
2: Compute K(M,D)
3: for z ∈ K(M,D) ∩ Λ do
4: if z �∈ finished then
5: orbit := {}
6: repeat
7: orbit := orbit ∪ {z}
8: finished := finished ∪ {z}
9: z := ϕ(z)

10: until z �∈ finished
11: if z �= 0 and z ∈ orbit then
12: return false
13: end if
14: end if
15: end for
16: return true

The algorithm computes the orbit of each integer point in a bounded set
K(M,D) ⊂ Rn which contain all the periodic points. If an orbit ends up in



84 P. Hudoba and A. Kovács

a nonzero cycle, a witness is found, therefore it cannot be a number system.
Otherwise the system is a number system.

Example 2.1. Let M =

(
1 −2
1 1

)
, D =

{[
0
0

]
,

[
1
0

]
,

[−1
0

]}
. The system

(Z2,M,D) is a number system, Figure 1 shows the orbits of the integers in
K(M,D) = [−1, 1]2.

Figure 1: The integer points in K(M,D) and their orbits.

2.1. Fraction set

In order to compute the setK(M,D) various methods are available. Instead
of constructing an appropriate norm and determining the set S a computation-
ally simpler model was suggested in [4]. Let us consider the set

H =

{ ∞∑
i=1

M−idi : di ∈ D

}
⊂ Rn ,

the fundamental set, or set of fractions. It is known that P ⊂ −H, hence it is
enough to calculate a cover of −H. Since H is compact in Rn, its cover can
easily be calculated. There are various cover set computing procedures known,
see [2, 5]. Clearly, the cover set K(M,D) can be any set of Rn which contain
the periodic elements and the integers inside are easily enumerable.

Example 2.2. Let M =

(
2 −1
1 2

)
, D =

{[
0
0

]
,

[
1
0

]
,

[
2
0

]
,

[
3
0

]
,

[
4
0

]}
. Figure 2

reveals the set −H, Figure 3 the orbits of the integers in K(M,D) = [−3, 1]×
×[−1, 3] showing that there are three different loops in the system.



Number expansion computations 85

Figure 2: The set −H in
(Z2,M,D).

Figure 3: The integer points in K(M,D) and
their orbits.

2.2. Volume optimization

In Algorithm 1 the pairs (x, ϕ(x)) are computed for all x ∈ K(M,D) ∩ Λ,
hence the running time T of the decision problem can roughly be estimated by

(2.1) T (decide) ∼ V olumeOfK · T (computingPhi) .

We can reduce the computation time if we are able to reduce the volume of
the set K(M,D) by finding a better basis, or we can improve the efficiency of
computing the function ϕ.

In order to get a better basis in [2] the authors focused on the Volume-
OfK part of (2.1), i.e, they aimed at finding an unimodular integer matrix Q
by which the algorithm Decide(Zn, Q−1MQ,QD) has smaller running time.
They suggested to perform the following steps:

(1) Start with a diagonal matrix Q with ±1 entries;
(2) Choose a position (i, j) randomly from the upper triangle of Q;
(3) Modify the matrix at position (i, j) and compute the new volume;
(4) If improvements were found then Goto (3) otherwise Goto (2).



86 P. Hudoba and A. Kovács

The process can be performed until a time limit is reached or there are no
improvements in a limited number of steps. For this task in [2] AI algorithms
were suggested, like simulated annealing or genetic algorithm. The following
algorithm realizes the steps (3)-(4), i.e., it searches a basis with smaller covering
by modifying the position (i, j) of Q randomly using a direction value ±1.

Algorithm 2 VolumeOptSearchAtPosition(M,D,Q, i, j, direction)

1: vol ← V olumeOfK(Q−1MQ,QD)
2: Q1 ← Q
3: improved ← true
4: while improved do
5: oldV ol ← vol
6: Q1[i, j] ← Q1[i, j] + direction
7: vol ← V olumeOfK(Q−1

1 MQ1, Q1D)
8: improved ← vol < oldV ol
9: end while

10: Q1[i, j] ← Q1[i, j] − direction
11: return (Q1, oldV ol)

After executing the algorithm VolumeOptSearchAtPosition repeatedly at
different positions as we described above, we can find a transformation matrix
Q (denoted by arrows on Figure 4) to achieve a smaller volume for the covering
of K(Q−1MQ,QD).

Example 2. (contd.) Figure 4 and 5 visualize the fraction sets in different
bases. The second case can be obtained by using the transformation matrix
Q = ( 1 1

0 1 ). The cover in the optimized base is smaller, and still has every
periodic point in it.

Figure 4: |K(M,D) ∩ Z2| = 9. Figure 5: |K(M,D) ∩ Z2| = 3.



Number expansion computations 87

In Garsia systems (companions of monic integer polynomials with constant
term ±2) up to dimension 7 the VolumeOfK optimization resulted in 75%
smaller cover on average. For more details see [2].

3. Our contribution

The Decide algorithm (Algorithm 1) is deterministic, but the running time
may grow exponentially with the dimension. To decrease the computation time
let us investigate the algorithm in detail. It can be divided into three steps:

(1) Determining an appropriate set K(M,D) (optimized in [2]),
(2) Calculating the graph G with edges (x, ϕ(x)) for all x ∈ K(M,D) ∩ Λ,
(3) Finding the cycles in G.

In this paper, we are focusing on minimizing the runtime of Step (2). For
searching the cycles (Step 3) there are many known algorithms, in this paper
we do not discuss that part.

3.1. Estimating the ϕ computation

Next we concentrate on the T (computingPhi) part of (2.1). Recall that

ϕ : Λ → Λ, x
ϕ�→ M−1(x − d) for the unique d ∈ D satisfying x ≡ d (mod M).

The computation of ϕ is performed in the following way:

(1) Find the congruent d ∈ D digit;
(2) Subtract two vectors;
(3) Multiply by M−1 (shift).

Clearly, it is enough to consider (1) and (3). If we store the inverse matrix
in sparse representation then we do not need to calculate multiplications for
zero elements in the inverse matrix, hence we get the estimation

(3.1) T (computingPhi) ∼ Tm(inverseWeight) + T (findCongrElement) ,

where inverseWeight of M denotes the number of nonzeros in M−1, and Tm(x)
means the time of multiplications of x objects. In order to find the congruent
element normal forms can be used (see[4]). Let UMV = G be the Smith normal
form of M where U and V are unimodular. Let furthermore the diagonal of G
be g1, ..., gn.



88 P. Hudoba and A. Kovács

Theorem 3.1 (Congruence with Smith normal form [4]). Let z1, z2 ∈ Zn.
For a radix M let the numbers u1, u2, . . . , un and û1, û2, . . . , ûn denote the
coordinates of Uz1 and Uz2, respectively. Then z1 ≡ z2 modulo M if and only
if ui ≡ ûi modulo gi for all i = 1, 2, . . . , n.

Clearly, we need to compute the Smith normal form only once before the
Decide algorithm, so the computational overhead is negligible. To determine
the congruent element for a given z ∈ Zn we must find Uz (mod G) in the set
{Ud (mod G), d ∈ D} which can be performed by hashing (as was suggested
in [4]). Having the sparse representation of U one needs to consider only its
nonzero elements. Moreover, we have to perform the multiplications only in
those rows where |gi| > 1. Suppose that we have s ≤ n such rows. Let us
denote by smithWeight of M the number of nonzero values in those the rows
of U where the corresponding gi absolute values are bigger than one. Then we
get that

T (findCongrElement) ∼ Tm(smithWeight+ s) ,

so our final estimation for the time of computing ϕ is

(3.2) T (computingPhi) ∼ Tm(inverseWeight+ smithWeight+ s) .

In 3.2 the value s counts the number of divisions, but we consider them equiv-
alent to multiplications. We start our investigations based on this estimation
and present some improvements of the Decide algorithm. In the rest of this
paper we always assume that all the matrices are stored in sparse form in the
computing environment.

Our aim is to show how to find an unimodular basis transformation Q in
which

(1) the volume of K(Q−1MQ,QD),
(2) the inverseWeight of Q−1MQ, and
(3) the smithWeight of Q−1MQ.

are as small as possible.

3.2. Generic optimization

The following generic optimization algorithm can be used with a custom
targetFunction. The method is a slight modification of Algorithm 2, making it
more generic.



Number expansion computations 89

Algorithm 3 GenericOptSearchAtPosition(M,D,Q, i, j, direction,
targetFunction)

1: value ← targetFunction(M,D,Q)
2: Q1 ← Q
3: improved ← true
4: while improved do
5: oldV alue ← value
6: Q1[i, j] ← Q1[i, j] + direction
7: value ← targetFunction(M,D,Q)
8: improved ← value < oldV alue
9: end while

10: Q1[i, j] ← Q1[i, j] − direction
11: return (Q1, oldV ol)

Observe that using V olumeOfK(Q−1MQ,QD) as the targetFunction we
got Algorithm 2. Algorithm 3 can be used to achieve the optimal basis searching
in the following straightforward way:

Algorithm 4 SimpleGenericOptSearch(M,D,Q, targetFunction,
iterateNum, time)

1: Q ← I
2: for i to iterateNum do
3: i ← choose randomly an integer from [1, dim (M)]
4: j ← choose randomly an integer from [1, dim (M)]
5: direction ← choose randomly an integer from {−1, 1}
6: (Q, value) ← GenericOptSearchAtPosition(M,D,Q, i, j, direction,

targetFunction)
7: end for
8: return Q

In practice we applied simulated annealing with 2 cooldown. Algorithm 5
describes the generic optimization.



90 P. Hudoba and A. Kovács

Algorithm 5 GenericOptSearch(M,D, targetFunction, candNum,
iterateNum, time)

1: Qbest ← I
2: improvementFound ← True
3: while improvementFound do
4: Candidates ← [Qbest]
5: while running time ≤ time do
6: for c to candNum do
7: for i to iterateNum do
8: i ← choose randomly an integer from [1, dim (M)]
9: j ← choose randomly an integer from [1, dim (M)]

10: direction ← choose randomly an integer from {−1, 1}
11: (Q1, value) ←
12: GenericOptSearchAtPosition(M,D,Candidates[c], i, j,

direction, targetFunction)
13: Append Q1 to Candidates
14: end for
15: end for
16: Candidates ← choose the best candNum number of candidates from

Candidates
17: end while
18: Qbest ← pick the best candidate from Candidates
19: if no improvements in Qbest then
20: improvementFound ← False
21: end if
22: end while
23: return Qbest

3.3. One-step optimization

In the following we define a new target function for the optimization.
Clearly, the optimization process is unnecessary if the volume of K(M,D)
is small, i.e., it has less than a few thousand integer points inside which
are easily enumerable. Otherwise for a given transformation Q we estimate
T (Decide) ∼ volumeOfK ·T (computingPhi) based on (3.2). Then, our target-
Function changes in the following way:

Algorithm 6 OneStepTargetFunction(M,D,Q)

1: vol ← V olumeOfK(Q−1MQ,QD)
2: inverseWeight ← number of nonzeros in Q−1M−1Q
3: smithWeight ← number of nonzeros in smith U of Q−1MQ
4: return vol · (inverseWeight+ smithWeight)



Number expansion computations 91

The constant s from (3.2) does not appear in the algorithm, because the
integer basis transformation with Q does not change the value of s. With
this method we try to find a better basis starting from a given position by
optimizing the values of the volume, the inverseWeight and smithWeight at
the same time.

3.4. Two-step optimization

In this approach the volume of K(M,D) and the factors inverseWeight
and smithWeight are minimized separately by transformations Qvol and Qphi,
respectively. It means that in order to decide the GNS property we have to

1. iterate through the integer points z ∈ K(Q−1
volMQvol, QvolD)

in a way that

2. transform each point z to the system (Zn, Q−1
phiMQphi, QphiD)

with QphiQ
−1
vol and

3. calculate ϕ(z) in this system.

After determining the transformationQvol by VolumeOptSearchAtPosition
we traverse the integer points in the Qvol transformed covering, transforming
again each point by QphiQ

−1
vol to the ϕ computation optimized system and solve

the decision problem there.

With this approach, compared to the original optimized algorithm, the
number of necessary ϕ computations are the same but their execution is faster.
The efficiency of the optimization for Qphi can be measured by the sum

inverseWeight+ smithWeight+ transformationWeight,

where transformationWeight is the number of nonzeros in the matrix QphiQ
−1
vol.

Algorithm 7 PhiOptimizedTargetFunction(M,D,Q)

1: inverseWeight ← number of nonzeros in Q−1M−1Q
2: smithWeight ← number of nonzeros in smith U of Q−1MQ
3: tansfWeight ← number of nonzeros in QQ−1

vol (Qvol is the
volume optimized transformation)

4: return inverseWeight+ smithWeight+ transfWeight



92 P. Hudoba and A. Kovács

Algorithm 8 DecideWithTransform(Λ,M,D, T )

1: finished := {}
2: K ← K(M,D)
3: for z1 ∈ K ∩ Λ do
4: z ← Tz1
5: if z �∈ finished then
6: orbit := {}
7: repeat
8: orbit := orbit ∪ {z}
9: finished := finished ∪ {z}

10: z := ϕ(z)
11: until z �∈ finished
12: if z �= 0 and z ∈ orbit then
13: return false
14: end if
15: end if
16: end for
17: return true

The two-step approach calls the
DecideWithTransform(Λ, Q−1

volMQvol, QvolD,QphiQ
−1
vol) function, whereQvol

and Qphi are the results of the volume and the ϕ optimization process.

3.5. Experimental results

We implemented the algorithms in Sage and ran it for roughly two weeks on
two Amazon EC2 c4.xlarge and three Amazon EC2 c4.large servers. In order
to estimate the runtime we calculated 10 000 steps of ϕ for each randomly
chosen radix systems. As we mentioned earlier, we used companion matrices
as operators generating from monic integer polynomials with constant terms
±2,±3,±5, or ±7 for the measurements.

First of all we measured the runtime of the volume optimized decision algo-
rithm (denote below with “original”) and our two new approaches. As you can
see in the Figure 6, the two-step (two-transform) solution was more efficient in
most cases.



Number expansion computations 93

Figure 6: Ratio of efficiency between various approaches for GNS Garsia oper-
ators.

Figure 7: Comparing the efficiency of the approaches for arbitrary Garsia op-
erators.

Moreover, our experiments show that in the GNS cases with higher dimen-
sions the two-transform approach is always superior (Figure 8).



94 P. Hudoba and A. Kovács

Figure 8: Comparing the efficiency of the approaches for GNS Garsia operators.

Finally, Figure 9 shows the overall runtime improvements in different di-
mensions (approximated with splines).

Figure 9: Runtime improvements in different dimensions for Garsia systems –
the speedup is compared to the simple optimized original version.

3.6. Further analysis

Our approaches resulted in reasonable improvements in Garsia cases, but
somewhat less in systems with higher constant terms. Therefore we combined
our algorithms and measured the speedup. Table 1 shows the result.



Number expansion computations 95

1. Two-step, version 2

(a) Run the volume optimization on (Λ,M,D) to get Qvol

(b) Run the ϕ optimization on (Λ, Q−1
volMQvol, QvolD) to get Qphi

(c) Run DecideWithTransform with T = QphiQvol

2. Combined

(a) Run the One-step optimization to get Qos

(b) Run the ϕ optimization on (Λ,M,D) to get Qphi

(c) Run DecideWithTransform with T = QphiQ
−1
os

3. Combined, version 2

(a) Run the One-step optimization to get Qos

(b) Run the ϕ optimization on (Λ, Q−1
os MQos, QosD) to get Qphi

(c) Run DecideWithTransform with T = QphiQos

One-step Two-step Two-step 2
Garsia 92.14% 204.55% 209.41%

With ±3 constant term 99.66% 117.82% 257.58%
With ±5 constant term 84.09% 111.40% 242.11%
With ±7 constant term 96.40% 151.34% 293.81%

Overall 95.23% 125.12% 255.63%

Combined Combined 2
Garsia 71.48% 178.45%

With ±3 constant term 115.09% 253.64%
With ±5 constant term 92.92% 163.19%
With ±7 constant term 145.00% 265.66%

Overall 109.20% 225.04%

Table 1: Average speedup compared to the original volume optimized approach.

4. Summary

The proposed new algorithms in Garsia systems show better performance
with increasing dimensions, and the two-transform approach looks generally



96 P. Hudoba and A. Kovács

better than the others. Random experiments in dimension 14 resulted in more
than 145% speedup. Experimental results show also that the algorithms may
get stuck in a local optimum, but if we combine the one-step and two-step
approaches and execute them one after another, a globally better result can be
achieved.

References

[1] Barbé, A. and F. von Haeseler, Binary number systems for Zk,
J. Number Theory, 117(1), (2006), 14–30.

[2] Burcsi, P., A. Kovács and Zs. Papp-Varga, Decision and classifica-
tion algorithms for generalized number systems, Annales Univ. Sci. Bu-
dapest., Sect. Comp., 28, (2008), 141–156.

[3] Kovács, A., Radix Expansion in Lattices, PhD dissertation, Eötvös
Loránd University, Budapest, 2001.

[4] Kovács, A., On computation of attractors for invertible expanding linear
operators in Zk, Publ. Math. Debrecen, 56(1-2), (2000), 97–120.

[5] Kovács, A., On number expansions in lattices, Math. and Comp. Mod-
elling, 8, (2003), 909–915.

[6] Vince, A., Radix representation and rep-tiling, Congressus Numeran-
tium, 98, (1993), 199–212.

P. Hudoba and A. Kovács
Department of Computer Algebra
Eötvös Loránd University
H-1117 Budapest
Pázmány Péter Sétány 1/C
Hungary
hudoba.peter@inf.elte.hu

attila.kovacs@inf.elte.hu




