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Abstract. Conjunctively polynomial-like Boolean functions form a class
of the Boolean functions invariant with respect to a special transform of
the linear space of the two-valued logical functions. In this article we
prove that every variable of such functions – with the exception of the zero
function of at least one variable – is essential.

In this article disjunction and logical sum, conjunction and logical product,
exclusive or and modulo two sum, as well as complementation and negation
are used in the same sense and they are denoted respectively by ∨, ∧, ⊕ and .
The elements of the field with two elements and the elements of the Boolean
algebra with two elements are denoted by the same signs, namely by 0 and 1;
N denotes the set of non-negative integers, and N+ denotes the set of the
positive ones.

1. Introduction

Logical functions and especially the two-valued ones have important role in
our everyday life, so it is easy to understand why they are widely investigated.
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A scope of the investigations is the representations of these functions and the
transforms from one representation to another ([3], [4], [5], [8]). Another area
of the examinations is the search of special classes of the set of these functions.
Post determined the closed classes of the switching functions [10], but there are
a lot of another classes of the Boolean functions invariant with respect to some
property. Such properties can be for example linear transforms. In [6] and [7]
it were introduced two classes of the Boolean functions invariant under some
linear transforms. These functions are called polynomial-like and conjunctively
polynomial-like.

1.1. Representations of a Boolean functions

It is well-known that an arbitrary two-valued logical function of n variables
can be written in the uniquely determined canonical disjunctive normal form,
i.e. as a logical sum whose members are pairwise distinct logical products of
n factors, where each of such logical products contain every logical variable
exactly once, either negated or not negated exclusively. Clearly, there exist
exactly 2n such products. Supposing that the variables are indexed by the
integers 0 ≤ j < n and the variable indexed by j is denoted by xj , these
products can be numbered by the numbers 0 ≤ i < 2n in such a way that we
consider the non-negative integer containing 0 in the j-th position of its binary
expansion if the j-th variable of the given product is negated, and 1 in the other
case. Of course, this is a one to one correspondence between the 2n distinct

products and the integers of the interval [0, 2n − 1], and if i =
∑n−1

j=0 a
(i)
j 2j ,

where a
(i)
j is either 0 or 1, then the product corresponding with it is

(1.1) m
(n)
i =

2n−1∧
j=0

x

(
a
(i)
j

)
j ,

where x(0) = x = 0⊕x and x(1) = x = 1⊕x. Such a product is called minterm
(of n variables).

With the numbering given above we numbered the Boolean functions of n
variables, too. A Boolean function is uniquely determined by the minterms
contained in its canonical disjunctive normal form, so a Boolean function is
uniquely determined by a 2n long sequence of 0-s and 1-s, where a 0 in the j-th

position (now 0 ≤ j < 2n) means that m
(n)
j doesn’t occur in that function, and

1 means that the canonical disjunctive normal form of the function contains
the minterm of the index j (this sequence is the spectrum of the canonical
disjunctive normal form of the function, and similarly will be defined the spectra

with respect to other representations of the function), i.e. for l =
∑2n−1

i=0 α
(l)
i 2i
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with α
(l)
i ∈ {0, 1}

(1.2) f
(n)
l =

2n−1∨
i=0

(
α
(l)
i ∧ m

(n)
i

)
.

Now f
(n)
l denotes the l-th Boolean function of n variables.

Another possibility for giving a Boolean function is the so-called Zhegalkin-

polynomial. Let S
(n)
i = ∧n−1

j=0 x
a
(i)
j

j , where x0 = 1 = 0 ∨ x, x1 = x = 1 ∨ x

and i =
∑n−1

j=0 a
(i)
j 2j again. This product contains only non-negated variables,

and the j-th variable is contained in it if and only if the j-th digit is 1 in the
binary expansion of i. There exist exactly 2n such products which are pairwise
distinct. Now any Boolean function of n variables can be written as a modulo
two sum of such terms, and the members occurring in the sum are uniquely
determined by the function. That means that we can give the function by a
2n-long 0 - 1 sequence, and if the i-th member of such a sequence is ki then

(1.3) f (n) =
2n−1⊕
i=0

(
ki ∧ S

(n)
i

)
.

But this polynomial can be considered as a polynomial over the field of two
elements, and in this case we write the polynomial in the following form:

(1.4) f (n) =

2n−1∑
i=0

kiS
(n)
i .

where now S
(n)
i =

∏n−1
j=0 x

a
(i)
j

j , and the sum, the product and the exponentiation
are the operations of the field.

Between the first and the second representation of the same Boolean func-
tion there is a very simple linear algebraic transform. Considering the coef-
ficients of the canonical disjunctive normal form of a Boolean function of n
variables and the coefficients of the Zhegalkin polynomial of a function of n
variables, respectively, as the components of an element of a 2n-dimensional
linear space over the field of two elements, denoted by F2, the relation between
the vectors belonging to the two representations of the same Boolean function
of n variables can be given by k = A(n)α. Here k is the vector containing
the components of the Zhegalkin polynomial, α is the vector, composed of the
coefficients of the disjunctive representation of the given function, and A(n) is
the matrix of the transform in the natural basis.

For the matrix of the transform it is true that

(1.5) A(n) =

⎧⎨⎩
(1) if n = 0(

A(n−1) 0(n−1)

A(n−1) A(n−1)

)
if n ∈ N+
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(this form of the matrix shows that for every n ∈ N, A(n) is the n-th power

of the two-order

(
1 0
1 1

)
regular quadratic matrix, if the operation is the

Kronecker-product).

From the previous results immediately follows that

(
A(n+1)

)2

=

(
A(n) 0(n)

A(n) A(n)

)(
A(n) 0(n)

A(n) A(n)

)
=

=

( (
A(n)

)2
0(n)

0(n)
(
A(n)

)2
)

(1.6)

and as
(
A(0)

)2
= (1), so we get by induction that

(1.7)
(
A(n+1)

)2

= I(n+1)

where I(n) denotes the n-order identity matrix.

A similar representation of a Boolean function is the canonical conjunctive
normal form of the function. Let’s consider

(1.8) M
(n)
i =

2n−1∨
j=0

x

(
a
(i)
j

)
j =

2n−1∨
j=0

(
a
(i)
j ⊕ xj

)
for 2n > i ∈ N. This function, the i-th maxterm of n variables is equal to 0

if and only if xj = a
(i)
j for every 0 ≤ j < n. By these maxterms a Boolean

function can be expressed as

(1.9) f (n) =
2n−1∧
i=0

(
αi ∨ M

(n)
i

)
where αi = f (n)

(
a
(i)
0 , . . . , a

(i)
n−1

)
. From this last property follows that f (n) =

= ∧2n−1
i=0

(
αi ∨ M

(n)
i

)
= f

(n)
l where l =

∑2n−1
i=0 αi2

i.

In [7] it were defined the modified maxterms by

(1.10) M
(n)′
i =

2n−1∨
i=0

x

(
a
(i)
j

)
j =

2n−1∨
i=0

(
a
(i)
j ⊕ xj

)
.
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It is easy to see that M
(n)
i = M

(n)′
2n−1−i. Now if f (n) = ∧2n−1

i=0

(
βi ∨ M

(n)′
i

)
=

= f
(n)
k then αi = f (n)

(
a
(i)
n−1, . . . , a

(i)
0

)
= β2n−1−i. This form of the function

given by the modified maxterms is the modified conjunctive normal form of the

function. For u⊕v = u⊕v, so a
(i)
j ⊕xj = a

(i)
j ⊕xj andM

(n)′
i = ∨n−1

j=0

(
a
(i)
j ⊕ xj

)
.

If g(n) =
∏2n−1

i=0

(
βi +M

(n)
i

)
, then

f (n) (x0, . . . , xn−1) =
2n−1∧
i=0

(
αi ∨

n−1∨
j=0

(
a
(i)
j ⊕ xj

))
=

=
2n−1∧
i=0

(
αi ∨ M

(n)
i

)
=

2n−1∧
i=0

(
βi ∨ M

(n)′
i

)
=

=
2n−1∧
i=0

(
βi ∨

n−1∨
j=0

(
a
(i)
j ⊕ xj

))
=(1.11)

= g(n) (x0, . . . , xn−1) = g(n) (x0, . . . , xn−1) =

= g(n)D (x0, . . . , xn−1)

where D denotes the dual of the function. As if f = gD then g = fD so g(n) is
the complement of the dual of f (n) in (1.11).

1.2. Polynomial-like and conjunctively polynomial-like Boolean
functions

Let us consider again the transform between the canonical disjunctive nor-
mal form and the Zhegalkin polynomial of the same function. If α is the
spectrum of the canonical disjunctive normal form of the function, and k is
the spectrum of the Zhegalkin polynomial of the function, then k = A(n)α. In
the special case when α = k, the corresponding function is a polynomial-like
Boolean function [6]. As A(0) = (1), so each of the two zero variable Boolean
functions is polynomial-like. Now let u = u0u1 be the spectrum of the canoni-
cal disjunctive normal form of a Boolean function f of n + 1 variables, where
n is a nonnegative integer. Then

(1.12)

(
u0

u1

)
=

(
A(n) 0(n)

A(n) A(n)

)(
u0

u1

)
if and only if u0 = A(n)u0 and u1 = A(n)u0+ A(n)u1 = u0+ A(n)u1, that is f
is polynomial-like if and only if u0 =

(
A(n) + I(n)

)
u1, where u1 is the spectrum

of the canonical disjunctive normal form of an arbitrary Boolean function of
n variables. As a consequence we get that the number of the n + 1 variable
polynomial-like Boolean functions is equal to 22

n

. It is easy to see, too, that
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the spectra of the canonical disjunctive normal forms of the polynomial-like
Boolean functions of n+1 variables make up a 2n-dimensional subspace of the
2n+1-dimensional linear space of the spectra of the canonical disjunctive nor-
mal forms of all of the n+1 variable Boolean functions. This space is spanned
by the columns of the following matrix:

(1.13)

(
A(n) + I(n)

I(n)

)
.

The definition of the conjunctively polynomial-like Boolean functions is sim-
ilar to the definition of the polynomial-like Boolean functions. An n-variable
Boolean function f is conjunctively polynomial-like if the spectra of its Zhe-
galkin polynomial and its modified conjunctive normal form are equal, that
is, if β = k = A(n)α =

(
A(n)P(n)

)
β = U(n)β where P(n) is a 2n × 2n ma-

trix with 1-s in the side diagonal, and with 0-s at the other positions, that

is, P
(n)
i,j = δi,2n−1−j for 2n > i ∈ N and 2n > j ∈ N, and, consequently,

U
(n)
i,j = A

(n)
i,2n−1−j . Then, applying (1.5), we get that

(1.14) U(n) =

⎧⎨⎩
(1) if n = 0(

0(n−1) U(n−1)

U(n−1) U(n−1)

)
if n ∈ N+.

The minimal polynomial of U(n) is equal to λ + 1, if n = 0, to λ2 + λ + 1, if
n = 1, and to λ3 + 1 in every other case. It means that U(n)3 = I(n) for every
nonnegative integer n, as (λ+ 1)(λ2 + λ+ 1) = λ3 + 1.

The condition β = U(n)β is fulfilled if and only if
(
I(n) +U(n)

)
β = 0,

where 0 is the 2n-dimensional zero vector over F2, and the last equation is true
if and only if β lies in the nullspace of I(n) +U(n).

In [7] it was stated that both of the 0-variable Boolean functions are conjunc-
tively polynomial-like, and the conjunctively polynomial-like Boolean functions
of n variables can be given by

(1.15) β =

(
Q(n)−1

R(n)

I(μn×μn)

)
u.

Here μn = 2n+2(−1)n

3 , 2n − μn is the rank of

(1.16) U(n) + I(n) =

(
Q(n) R(n)

S(n) T(n)

)
,
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Q(n) is a 2n − μn-order quadratic regular submatrix of U(n) + I(n), and u
is an arbitrary element of the μn-dimensional linear space over F2. If we

denote

(
Q(n)−1

R(n)

I(μn×μn)

)
by Y(n) then Y(n) is a 2n × μn matrix and the rank

of this matrix is equal to μn as the matrix has a μn-order identity matrix as a
submatrix.

2. New results

In the previous section a linear transform was given which makes a corre-
spondence between the coefficient-systems of the canonical disjunctive normal
form and the Zhegalkin polynomial of a given n-variable Boolean function, that
is, between of the spectra belonging to the before mentioned two forms of the
function. At the same time, a Boolean function of n variables can be considered
as a function over the field of two elements, such a function that maps the n-th
power of the field containing two elements into the same field, so f : Fn

2 → F2.

In a more general way, let P
(n;k)
q be the set of the polynomials in n indeter-

minates with degrees less than k in every indeterminate over the field of q el-

ements, formally let P
(n;k)
q = {p ∈ Fq [x0, , xn−1] |∀(n > i ∈ N) : degi (p) < k},

and let F
(n)
q = {f : Fn

q → Fq}. If f is an n-variable function mapping the field
of q elements into itself, then there exists one and only one polynomial p in

P
(n;q)
q that f (u0, . . . , un−1) = p̂ (u0, . . . , un−1) for every u = u0 . . . un−1 ∈ Fn

q ,
where p̂ denotes the polynomial function belonging to p. It is easy to give this
polynomial:

(2.1) p =
∑

v0...vn−1∈Fn
q

f (v0, . . . , vn−1)

n−1∏
j=0

(
e − (xj − vj)

q−1
)

(e denotes the unity of the field). The cardinalities of the two sets, P
(n;q)
q

and F
(n)
q are the same, namely qq

n

, and if p ∈ P
(n;q)
q , then the polynomial

corresponding to p̂ ∈ F
(n)
q is obviously p. It means that the given mapping

of F
(n)
q into P

(n;q)
q is surjective, consequently injective, too, hence the given

correspondence is bijective.

In the case when the field is F2, then q− 1 = 1, a− b = a+ b and e+ a = a,
so then

(2.2) p =
∑

v0...vn−1∈Fn
2

f (v0, . . . , vn−1)

n−1∏
j=0

(vj + xj).
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Now v is the opposite of v, and v = 1 − v = 1 + v (the identity of the field of
two elements is denoted by 1).

Let n ∈ N, f a Boolean function of n variables, φ (f) the Zhegalkin-
polynomial of f , f← = f∗ (f is the complement of the function and f∗ is the
dual of f , that is f∗ (x0, . . . , xn−1) = f (x0, . . . , xn−1)), π is a permutation of
the set Nn = {k ∈ N|k < n}, and f (π) (x0, . . . , xn−1) = f

(
xπ(0), . . . , xπ(n−1)

)
.

As f← is the complement of the dual of f , so f← (x0, . . . , xn−1) =
= f (x0, . . . , xn−1), and it can be seen that (f←)← = f . Furthermore(
f (π)

)(π−1)
= f is true, too. First of all, we will prove that the two opera-

tions, f → f← and f → f (π), are interchangeable.

Theorem 2.1. Let n ∈ N, f a Boolean function of n variables, f← = f∗,
π is a permutation of Nn, and let f (π) (x0, . . . , xn−1) = f

(
xπ(0), . . . , xπ(n−1)

)
.

Then (f←)
(π)

=
(
f (π)

)
←.

Proof. Let x be denoted by y. Then

(f←)
(π)

= (f (x0, . . . , xn−1))
(π)

= (f (y0, . . . , yn−1))
(π)

=

= f
(
yπ(0), . . . , yπ(n−1)

)
= f

(
xπ(0), . . . , xπ(n−1)

)
=(2.3)

=
(
f
(
xπ(0), . . . , xπ(n−1)

))
← =

(
f (π)

)
←

. �

From the above result follows that the composed operation can be denoted

simply by f (π)
← , and

(
f (π)
←

)(π−1)
← = f . This result can be achieved easily, as(

f (π)
←

)(π−1)

←
=

((
(f←)

(π)
)
←

)(π−1)
=

=

((
(f←)

(π)
)(π−1)

)
←

= (f←)← = f .(2.4)

Let us determine the polynomial φ
(
f (π)
←

)
belonging to f (π)

← .

Theorem 2.2. Permuting the order of the variables of a Boolean function, the
indeterminates of its Zhegalkin polynomial are rearranged in the same way.

Formally the statement of the theorem is φ
(
f (π)
←

)
= (φ (f←))

(π)
.

Proof. We apply the earlier mentioned connection that

p =
∑

v0...vn−1∈Fn
2

f (v0, . . . , vn−1)

n−1∏
j=0

(vj + xj).
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φ
(
f (π)
←

)
=

∑
v0...vn−1∈Fn

2

f (π)
← (v0, . . . , vn−1)

n−1∏
j=0

(vj + xj) =

=
∑

v0...vn−1∈Fn
2

f (π) (v0, . . . , vn−1)

n−1∏
j=0

(vj + xj) =

=
∑

v0...vn−1∈Fn
2

f
(
vπ(0), . . . , vπ(n−1)

) n−1∏
j=0

(vj + xj) =

=
∑

v0...vn−1∈Fn
2

f (v0, . . . , vn−1)

n−1∏
j=0

(
vπ−1(j) + xj

)
=(2.5)

=
∑

v0...vn−1∈Fn
2

f (v0, . . . , vn−1)

n−1∏
j=0

(
vj + xπ(j)

)
=

=
∑

v0...vn−1∈Fn
2

f← (v0, . . . , vn−1)

n−1∏
j=0

(
vj + xπ(j)

)
=

= φ (f←) ◦ (
xπ(0), . . . , xπ(n−1)

)
= φ (f←)

(π)
. �

The canonical disjunctive normal form of an n-variable Boolean function

is f = ∨2n−1
i=0 (ui ∧ mi), where ui ∈ {0, 1} and mi = ∧n−1

j=0 x

(
a
(i)
j

)
j so that

i =
∑n−1

j=0 a
(i)
j 2i, and x(0) = x, x(1) = x. Similarly, if p is the Zhegalkin

polynomial of the Boolean function f , then p =
∑2n−1

i=0 viSi, vi ∈ {0, 1} and

Si =
∏n−1

j=0 x
a
(i)
j

j . Both u composed of the sequence of the ui-s and v composed
of the sequence of the vi-s are the spectrum of the function, spectrum belonging
to the appropriate form of the function. It is obvious that changing the order
of the variables rearranges the spectra, too. Let us see now the alteration of
the spectra.

∧n−1
j=0 x

(
a
(i)
j

)
π(j) = ∧n−1

j=0 x

(
a
(i)

π−1(j)

)
j = ml and

∏n−1
j=0 x

a
(i)
j

π(j) =
∏n−1

j=0 x
a
(i)

π−1(j)

j = Sl,

where l =
∑n−1

j=0 a
(i)
π−1(j)2

j . If i1 �= i2, then a
(i1)
j �= a

(i2)
j for at least one j.

Then for such an index j a
(i1)
π−1(j) and a

(i2)
π−1(j), consequently l1 and l2 differ

from each other, too. As both values are in Nn, so permuting the indices
results in the rearrangement of the spectra, and by the former results the
orders of the elements of the two spectra change equivalently. Let Π denote
the rearrangement of the spectrum induced by π, that is, if w is a spectrum
then let Πw be the rearranged spectrum.
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Theorem 2.3. If f is a conjunctively polynomial-like Boolean function, then
f (π) is conjunctively polynomial-like, too.

Proof. If the spectrum of the conjunctively polynomial-like Boolean function
f is w ∈ F2n

2 , then w = APw, and by the previous result APΠw = ΠAPw,
where Π is the rearrangement of the spectrum induced by π. From these two
results, we get that AP (Πw) = APΠw = ΠAPw = Π (APw) = Πw. �

The next statement follows easily from the previous results.

Theorem 2.4. Each variable of a conjunctively polynomial-like Boolean func-
tion of at least one variable different from the zero function is essential.

Proof. It is enough to prove that the variable belonging to the greatest index
is essential, otherwise u0 = u1 in u = u0u1. But in that case we get from the
equation

(2.6)

(
u0

u1

)
=

(
0(n) U(n)

U(n) U(n)

)(
u0

u1

)
that u0 = U(n)u0 +U(n)u0 = 0, that is u = 0. �

3. Conclusion

In earlier papers we proved that there are bases of the space of the Boolean
functions containing only polynomial-like Boolean functions or only conjunc-
tively polynomial-like Boolean functions, so these classes of the Boolean func-
tions have nice properties. It was also proved that polynomial-like Boolean
functions of at least one variable different from the zero-function have no fictive
variables. Now, in this paper was proved that the conjunctively polynomial-
like Boolean functions have the same property, that is, every variable of a
non-constant conjunctively polynomial-like Boolean function is essential, the
function essentially depends on all of its variables.

In the article there is another result, too. As permuting the order of the vari-
ables, we get from a conjunctively polynomial-like Boolean function again a con-
junctively polynomial-like function, knowing such a function we can know other
conjunctively polynomial-like Boolean functions only rearranging the variables
of the function (it is only a possibility as there are conjunctively polynomial-like
Boolean functions that are invariant with respect to these rearrangements, for
instance all of the three-variable conjunctively polynomial-like Boolean func-
tions).
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Hungary
andog@inf.elte.hu






