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Abstract. Goldbach’s conjecture states that every even number greater
than 2 can be expressed as the sum of two primes. The aim of this paper
is to propose a generalization – or a set of increasingly generalized forms
– of Goldbach’s conjecture and to present relevant computational results.
The proposed statements also generalize Lemoine’s conjecture, according
to which every sufficiently large odd integer is the sum of a prime and the
double of another (or the same) prime. We present computational results
verifying several cases of the statement until certain values and information
regarding the resulting decompositions of even and odd integers.

1. Introduction

One of the best-known unsolved problems in number theory is Goldbach’s
conjecture, which appeared in a correspondence between Christian Goldbach
and Leonhard Euler in 1742 [7]. In modern form it reads as follows:
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Conjecture 1.1 (Goldbach’s Conjecture). Every even number larger then
2 can be expressed as the sum of two primes.

The above conjecture is also often referred to as the strong or even Goldbach
conjecture. Parallel to this there also appeared the so called week or odd
Goldbach conjecture, also known as ternary Goldbach conjecture, which states
that every odd integer greater than 5 can be expressed as the sum of three
primes. It is easy to see that this is implied by the strong Goldbach conjecture.
In [12] Vinogradov showed that the ternary Goldbach conjecture is true for all
n above a large constant C. In 2013 H. Helfgott claimed to have proved the
ternary Goldbach conjecture [2], [3], [4] and [5].

As the proof of even Goldbach conjecture is still out of reach, there have
been several attempts to verify the statement by computation until increasing
limits. For example, Nils Pipping in 1938 laboriously verified the conjecture
up to n ≤ 105 [9]. With the evolution of computers, the statement has been
verified until increasing limits: [1], [11], [10]. The most recent results of this
kind were published by T. Oliveira [8]. With his research team they verified
the even Goldbach conjecture until 4 · 1018.

A well-known, stronger variation of the odd Goldbach conjecture is Le-
moine’s conjecture, published in 1894, which states that every odd number
greater than five can be expressed in the form 2p+ q where p and q are prime
[6].

In this paper we would like to introduce some new generalizations of Gold-
bach’s conjecture, which have not been published before, and to present some
computational results verifying these generalizations until a certain limit
(∼ 109). The aim of these computations in this current paper is to provide sup-
port that these generalizations are worth considering. Our longer term goals
include extending the upper limits of our calculations by developing efficient
sieving algorithms.

2. Some generalizations of Goldbach’s conjecture

In this section increasingly general versions of Goldbach’s conjecture are
presented. The reasons for including the less general forms as well are twofold.
Firstly, we would like to demonstrate the process during which the most general
version gradually emerged. Secondly, from a computational point of view, the
different versions of the generalization require somewhat different approaches
in the design of a verifying algorithm, hence these can be worth tackling sepa-
rately. The generalizations are divided into two subsections.
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2.1. Initial steps of generalization

The versions in this subsection were inspired by Lemoine’s conjecture. Gold-
bach’s conjecture can be reformulated as follows: for every even number n ≥ 4
there is a prime p such that the only number x > 1 such that n ≡ p (mod x) is
some prime q. In Lemoine’s conjecture, because n is odd, for any prime p > 2,
n ≡ p (mod 2) holds, hence among the possible values of x for which n ≡ p
(mod x) 2 will always be present and so, in general, n ≡ p (mod x) holds at
least for x = 2, for a prime x = q and thus for x = 2q. In Lemoine’s conjecture
2 had to be a factor of n − p, because n is odd. However, in general, one can
ask whether we can use primes (or numbers) other than 2 in a role somewhat
similar to that of 2 in Lemoine’s conjecture.

Conjecture 2.1.

1. Every even integer n ≥ 14 which is not divisible by 3 can be expressed in the
form n = p+ 3q for some primes p and q.

2. Every odd integer n ≥ 17 which is not divisible by 3 can be expressed in the
form n = p+ 6q for some primes p and q.

Conjecture 2.2. Let r be an arbitrary odd prime or 1. Then:

1. Every sufficiently large even integer n which is relative prime to r can be
expressed in the form n = p+ rq for some primes p and q.

2. Every sufficiently large odd integer n which is relative prime to r can be
expressed in the form n = p+ 2rq for some primes p and q.

In the following two versions we use products of pairwise different primes
and powers of primes in the statements, respectively, instead of a single prime
r.

Conjecture 2.3. Let r1, r2, . . . , rk be arbitrary, pairwise different odd primes
for some k ≥ 1 or let k = r1 = 1. Then:

1. Every sufficiently large even integer n which is relative prime to the num-
ber(s) r1, . . . , rk can be expressed in the form n = p + r1r2 . . . rkq for some
primes p and q;

2. Every sufficiently large odd integer n which is relative prime to the number(s)
r1, . . . , rk can be expressed in the form n = p+2r1r2 . . . rkq for some primes
p and q.

Conjecture 2.4. Let r be arbitrary odd prime or 1. Then for any natural
k ≥ 1:
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1. Every sufficiently large even integer n which is relative prime to r can be
expressed in the form n = p+ rkq for some primes p and q.

2. Every sufficiently large odd integer n which is relative prime to r can be
expressed in the form n = p+ 2rkq for some primes p and q.

Below we replace r in Conjecture 2.2 by an arbitrary positive integer m.

Conjecture 2.5. Let m be an arbitrary positive integer.

1. If m is odd then every sufficiently large even integer n which is relative prime
to m can be expressed in the form n = p+mq for some primes p and q;

2. If m is even then every sufficiently large odd integer n which is relative prime
to m can be expressed in the form n = p+mq for some primes p and q.

2.2. Final steps of generalization

In the previous conjectures the coefficient of p was always 1. Now we fix
arbitrary positive integer coefficients m1 and m2 for the primes p and q. In
this case clearly we need to require that n satisfies certain further conditions.

Conjecture 2.6. Let m1 and m2 be arbitrary positive integers. Let d = 2ke be
the highest common factor of m1 and m2, where e is the highest common odd
factor of m1 and m2. Then every sufficiently large integer n such that

1. gcd (n,m1) = gcd (n,m2) = d and

2. n ≡ m1 +m2 (mod 2k+1)

can be expressed in the form n = m1p+m2q for some primes p and q.

Note that Goldbach’s conjecture is a special case of Conjecture 2.6 with
m1 = m2 = 1, while Lemoine’s conjecture corresponds to the case m1 = 1 and
m2 = 2.

Conjecture 2.6 can be reformulated equivalently for the case when m1 and
m2 are relative primes. This reformulation can be useful for example for the
purposes of computational verification:

Proposition 2.7. Conjecture 2.6 is equivalent to the following statement: Let
m1 and m2 be arbitrary positive relative primes. Then every sufficiently large
integer n such that

1. gcd (n,m1) = gcd (n,m2) = 1 and
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2. n ≡ m1 +m2 (mod 2)

can be expressed in the form n = m1p+m2q for some primes p and q.

Proof. Conjecture 2.6 clearly implies the statement in Proposition 2.7. For
the other direction let m1,m2 and n be integers satisfying the conditions of
Conjecture 2.6. Then m′

1 = m1/d, m
′
2 = m2/d and n′ = n/d are pairwise

relative primes. Also 2ken′ = n ≡ m1 + m2 = 2kem′
1 + 2kem′

2 (mod 2k+1)
implies n′ ≡ m′

1 +m′
2 (mod 2). Hence n′ = m′

1p+m′
2q for some primes p and

q and so n = m1p+m2q. �

In Propositions 2.8 and 2.9 we would like to demonstrate why the criteria
in Conjecture 2.6 on n are necessary and might be sufficient.

It is well-known that for any integers n,m1 and m2, n can be expressed in
the form n = m1a+m2b for some integers a and b if and only if gcd (m1,m2)
is a divisor of n. Howerer, as in our case a and b are primes, not arbitrary
numbers, further conditions on n are necessary. Below we consider the case of
odd numbers a and b.

Proposition 2.8. Let n, m1 and m2 be positive integers and d = 2ke be the
highest common factor of m1 and m2, where e is the highest common odd factor
of m1 and m2. Then there exist integers a and b such that

1. n = m1a+m2b and

2. a and b are odd

if and only if

1. d|n and

2. n ≡ m1 +m2 (mod 2k+1).

Proof. Suppose n = m1a + m2b for some odd numbers a and b. Then
Condition 1 clearly holds. For the integers m′

1 = m1/2
k, m′

2 = m2/2
k and

n′ = n/2k, n′ = m′
1a +m′

2b. Hence n′ ≡ m′
1a +m′

2b ≡ m′
1 +m′

2 (mod 2) and
so n = 2kn′ ≡ 2km′

1 + 2km′
2 = m1 +m2 (mod 2k+1).

For the converse, let n be an integer satisfying Conditions 1 and 2 and let
m′

1 = m1/d, m
′
2 = m2/d and n′ = n/d. Then by Condition 1, m′

1,m
′
2, n

′ are
all integers and by Condition 2, n′ ≡ m′

1 +m′
2 (mod 2). As gcd(m′

1,m
′
2) = 1,

there exists 1 ≤ a ≤ m′
2 such that am′

1 ≡ n′ (mod m′
2).

Case 1: m′
1 and m′

2 are odd and n′ is even. If a is odd then n − am′
1

is odd and divisible by m′
2, hence n − am′

1 = bm′
2 for some odd b. Hence

n′ = am′
1 + bm′

2 and so n = am1 + bm2, where a and b are odd. If a is even
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then a +m′
2 is odd and (a +m′

2)m
′
1 ≡ n′ (mod m′

2). Hence n′ − (a +m′
2)m

′
1

is odd and divisible by m′
2 and so n′ − (a + m′

2)m
′
1 = bm′

2, where b is odd.
Therefore n′ = (a+m′

2)m
′
1 + bm′

2 and n = (a+m′
2)m1 + bm2 where (a+m′

2)
and b are odd.

Case 2: m′
1 is even and m′

2 and n′ are odd. Suppose a is odd. As am′
1 is

even, n′−am′
1 is odd and divisible by m′

2 and so n′−am′
1 = bm′

2, for some odd
b. Hence n′ = am′

1+ bm′
2 and n = am1+ bm2, where a and b are odd. Suppose

now that a is even. Then a +m′
2 is odd and (a +m′

2)m
′
1 ≡ n′ (mod m′

2). As
n′ − (a + m′

2)m
′
1 is odd, n′ − (a + m′

2)m
′
1 = bm′

2 for some odd b. Therefore
n′ = (a+m′

2)m
′
1 + bm′

2 and n = (a+m′
2)m1 + bm2 where (a+m′

2) and b are
odd. �

The following statement is used in Proposition 2.9.

Lemma 2.1. Let m and r be relative prime nonzero integers. Let p1, p2, . . . , pk
be a list of pairwise distinct primes and q1, q2, . . . , qk be a list of (not necessarily
pairwise different) integers. Assume further that in case m is odd and pi = 2
for some 1 ≤ i ≤ k then: qi is even iff r is even (hence qi is odd iff r is odd).
Then there exists an integer x with the properties:

1. xm+ r �≡ 0 (mod pi), for every 1 ≤ i ≤ k and

2. x �≡ qi (mod pi), for every 1 ≤ i ≤ k.

Proof. Condition 1 is equivalent to the statement that xm �≡ −r (mod pi) for
every 1 ≤ i ≤ k. If pi|m then pi|xm and pi � |−r, as m and r are relative primes,
hence xm �≡ −r holds for every integer x. Let 1 ≤ i ≤ k such that pi � m.
Denote by mi the remainder of m modulo pi and by m−1

i the multiplicative
inverse of mi in Z/piZ. Then xm �≡ −r (mod pi) is equivalent to x �≡ −rm−1

i

(mod pi). Suppose first pi �= 2. Then |Z/piZ| = pi > 2, hence there exists
si ∈ Z/piZ such that si �≡ 0 (mod pi) and si �≡ qi (mod pi). Suppose now
pi = 2. Then m is odd. Assume qi is even. Then r is even, hence for pi = 2
Condition 1 means that xm is odd, equivalently, that x is odd. Similarly, for
pi = 2 Condition 2 means that x is odd. Define si = 1. Assume now that qi
is odd. Then r is odd, hence for pi = 2 Condition 1 means that xm is even,
equivalently, that x is even. Similarly, for pi = 2 Condition 2 means that x is
even. Define si = 0. By the Chinese Reminder Theorem there exists a positive
integer x such that x ≡ si (mod pi) for every 1 ≤ i ≤ k. Then x satisfies
Conditions 1 and 2. �

Beyond being odd numbers, a and b are also primes. Hence, in general,
they are relative primes to n (not necessarily always, but this is the case in
general).

Proposition 2.9. Let n, m1 and m2 be positive integers and d = 2ke be the
highest common factor of m1 and m2, where e is the highest common odd factor
of m1 and m2. Then there exist integers a and b such that
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1. n = m1a+m2b,

2. a and b are odd and

3. gcd (a, n) = gcd (b, n) = 1

if and only if:

1. gcd (n,m1) = gcd (n,m2) = d and

2. n ≡ m1 +m2 (mod 2k+1).

Proof. Suppose n = m1a + m2b for odd numbers a and b such that n =
= m1a + m2b and gcd(a, n) = gcd(b, n) = 1. Let d′ = gcd(n,m1). Clearly,
d|d′ and d′|bm2, hence – since gcd(n, b) = 1 –, d′|m2, thus d′|d and so d′ = d.
Similarly we can show gcd(n,m2) = d, hence Condition 1 holds. Hence n′ =
= n/2k, m′

1 = m1/2
k and m′

2 = m2/2
k are all integers. As n′ = am′

1 + bm′
2

and a and b are odd, n′ ≡ am′
1 + bm′

2 ≡ m′
1 +m′

2 (mod 2), thus n = 2kn′ ≡
≡ 2kam′

1 + 2kbm′
2 = am1 + bm2 (mod 2k+1).

Conversely, suppose that the integers n, m1 and m2 satisfy Conditions 1
and 2. We show that there exist odd integers a and b such that n = m1a+m2b
and gcd(a, n) = gcd(b, n) = 1. Let n′ = n/d, m′

1 = m1/d and m′
2 = m2/d.

By Condition 2, 2ken′ = n ≡ m1 +m2 = 2kem′
1 + 2kem′

2 (mod 2k+1), hence
– as e is odd – n′ ≡ m′

1 + m′
2 (mod 2). By Condition 1, m′

1, m
′
2 and n′ are

pairwise relative primes. Hence there is at most one even number among m′
1,

m′
2 and n′ and we have one of the following two possibilities: Case A: m′

1 and
m′

2 are odd and n′ is even or Case B: either of m′
1 and m′

2 is even, the other
one is odd and n′ is odd. Without loss of generality, in Case B we shall assume
that m′

1 is odd and m′
2 is even. As gcd(m′

1,m
′
2) = 1, there exists 1 ≤ a′ ≤ m′

2

such that a′m′
1 ≡ n′ (mod m′

2). Let a = a′ + xm′
2 and b =

n′−m′
1(a

′+xm′
2)

m′
2

for

some integer x. Then by a′m′
1 ≡ n′ (mod m′

2), b is an integer. Furthermore,

am′
1 + bm′

2 = (a′ + xm′
2)m

′
1 +

n′−m′
1(a

′+xm′
2)

m′
2

m′
2 = n′, hence am1 + bm2 = n.

We show that x can be chosen such that a and b satisfy Conditions 2 and
3 as well. Let p1, p2, . . . , pk be a list of the pairwise distinct prime factors (i.e.
without multiplicity) of n if n is even. If n is odd then let p1, p2, . . . , pk be a
list of the pairwise distinct prime factors of n and 2 included. Then Conditions
2 and 3 are equivalent to the statement: a �≡ 0 (mod pi) and b �≡ 0 (mod pi)
for every 1 ≤ i ≤ k, which in turn is equivalent to:

(2.1) a′ + xm′
2 �≡ 0 (mod pi)

and

(2.2)
n′ − m′

1(a
′ + xm′

2)

m′
2

�≡ 0 (mod pi)

for every 1 ≤ i ≤ k.
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We have
n′−m′

1(a
′+xm′

2)
m′

2
=

n′−m′
1a

′

m′
2

− m′
1x, where – as n′ ≡ m′

1a
′ (mod

m′
2) –

n′−m′
1a

′

m′
2

is an integer, therefore Congruence 2.2 is equivalent to m′
1x �≡

�≡ n′−m′
1a

′

m′
2

(mod pi) for every 1 ≤ i ≤ k. If some 1 ≤ i ≤ k is such that

pi|m′
1 then pi � n

′, hence pi � (n
′ − m′

1a
′) and so pi �

n′−m′
1a

′

m′
2

, but pi|m′
1x for

every integer x and thus m′
1x �≡ n′−m′

1a
′

m′
2

(mod pi) for every integer x. Now let

1 ≤ i ≤ k be such that pi � m
′
1. Denote by ri the remainder of m′

1 modulo pi
and by r−1

i the multiplicative inverse of ri in Z/piZ. Then for pi Congruence

2.2 is equivalent to x �≡ r−1
i

n′−m′
1a

′

m′
2

(mod pi). Denote by P the set of those

primes pi, 1 ≤ i ≤ k, such that pi|m′
1 and by R the set of those primes pj ,

1 ≤ j ≤ k such that pj � m
′
1. For every 1 ≤ i ≤ k define qi as follows:

qi ≡
{

any integer, if pi ∈ P

r−1
i

n′−m′
1a

′

m′
2

(mod pi), if pi ∈ R.

Then Congruence 2.3 below implies Congruence 2.2:

(2.3) x �≡ qi (mod pi), for every 1 ≤ i ≤ k

Next we show that with m = m′
2, r = a′ and x, the system of Congruences

2.1 and 2.3 satisfies the conditions of Lemma 2.1. As a′m′
1 ≡ n′ (mod m′

2) and
n′ and m′

2 are relative primes, a′m′
1 and m′

2 are relative primes and so r = a′

and m = m′
2 are relative primes. Suppose now that m = m′

2 is odd. Then
Case A must hold, i.e m′

1 is odd and n′ is even, hence 2 ∈ R, where pi0 = 2
for some 1 ≤ i0 ≤ k. We need to show that qi0 is even iff a′ is even. We have

qi0 ≡ m−1
i0

n′−m′
1a

′

m′
2

=
n′−m′

1a
′

m′
2

(mod 2). If a′ is even then - as n′ is also even

- n′ − m′
1a

′ is even and so qi0 ≡ n′−m′
1a

′

m′
2

(mod 2) is even. If a′ is odd then

n′ − m′
1a

′ is odd, hence qi0 ≡ n′−m′
1a

′

m′
2

(mod 2) is odd, as required. Hence the

system 2.1 and 2.3 satisfies the conditions of Lemma 2.1, therefore it has an
integer solution x0, which hence also satisfies the system 2.1 and 2.2. Then for

a = a′ + x0 and b =
n′−m′

1(a
′+x0m

′
2)

m′
2

Conditions 1, 2 and 3 hold. �

Below we formulate the most general version of the conjecture, containing
an arbitrary number of coefficients mi, 1 ≥ i ≥ r, where r ≥ 2.

Conjecture 2.10. Let m1,m2, . . . ,mr be arbitrary positive integers for some
r ≥ 2. Let d = 2ke be the highest common factor of m1,m2, . . . ,mr, where e
is the highest common odd factor of m1,m2, . . . ,mr. Then every sufficiently
large integer n such that

1. gcd (n,m2,m3, . . . ,mr) = gcd (m1, . . .mi−1, n,mi+1, . . . ,mr) =
= gcd (m1,m2, . . . ,mr−1, n) = d for every 2 ≤ i ≤ r − 1 and
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2. n ≡ m1 +m2 + . . .+mr (mod2k+1)

can be expressed in the form n = m1p1 +m2p2 + . . . +mrpr for some primes
p1, p2, . . . , pr.

The assertion below can be shown similarly to Proposition 2.7.

Proposition 2.11. Conjecture 2.10 is equivalent to the following statement:
Let m1,m2, . . . ,mr be positive integers (r ≥ 2) such that gcd (m1,m2,m3,
. . . ,mr) = 1 . Then every sufficiently large integer n such that

1. gcd (n,m2,m3, . . . ,mr) = gcd (m1, . . .mi−1, n,mi+1, . . . ,mr) =
= gcd (m1,m2, . . . ,mr−1, n) = 1 for every 2 ≤ i ≤ r − 1 and

2. n ≡ m1 +m2 + . . .+mr (mod 2)

can be expressed in the form n = m1p1 +m2p2 + . . . +mrpr for some primes
p1, p2, . . . , pr.

Generalized Goldbach partitions. In [8] the number of Goldbach par-
titions of a positive integer n was denoted by R(n) and by r(n), respectively,
depending on whether the order of the two primes in the partition matters.
Here we shall introduce analogous terminology and notations.

For a given integer r ≥ 2, any r-tuple (m1,m2, . . . ,mr) of positive integers
and positive integer n, we call a decomposition (if it exists) of n in the form
n = m1p1 +m2p2 + . . . +mrpr where p1, p2, . . . , pr are primes, a(n) (r-term)
generalized Goldbach partition of n with coefficients m1,m2, . . . ,mr.

A list m1,m2, . . . ,mr of coefficients may contain repetitions (identical num-
bers). Consider for example the coefficients m1 = 2,m2 = m3 = 4,m4 = 6.
Then 2p1+4p2+4p3+6p4 is a generalized Goldbach partition of n if and only if
2p1+4p3+4p2+6p4 is a generalized Goldbach partition of n. As suggested by
this example, for a given integer r ≥ 2, any r-tuple (m1,m2, . . . ,mr) of positive
integers and positive integer n, the number of generalized Goldbach partitions
of n with coefficients m1,m2, . . . ,mr can be interpreted in two different ways,
depending on whether we allow for the permutations of primes across identi-
cal coefficients. For a list m1,m2, . . . ,mr (r ≥ 2) of coefficients and positive
integer n, the number of generalized Goldbach partitions of n with coefficients
m1,m2, . . . ,mr shall be denoted by Rm1,m2,...,mr (n), if we regard two Goldbach
partitions n = m1p1 +m2p2 + . . . +mrpr and n = m1q1 +m2q1 + . . . +mrqr
identical iff pi = qi for every 1 ≤ i ≤ r. We denote the number of generalized
Goldbach partitions of n with coefficients m1,m2, . . . ,mr by rm1,m2,...,mr

(n), if
two partitions n = m1p1+m2p2+ . . .+mrpr and n = m1q1+m2q2+ . . .+mrqr
are considered identical if and only if there exists a permutation σ on the set
{1, 2, . . . , r} such that pi = qσ(i) and mi = mσ(i) for every 1 ≤ i ≤ r. Note that
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these notations are consistent with R(n) and r(n) for the number of Goldbach
partitions of n used in [8] and R1,1(n) = R(n) and r1,1(n) = r(n) for all positive
integers n.

Conjecture 2.10 clearly implies Conjecture 2.6. By making a further as-
sumption, the converse also becomes true.

Theorem 2.12. If Conjecture 2.6 is true and limn→∞ Rm1,m2
(n) = ∞ for all

integers m1,m2 and n satisfying the conditions of Conjecture 2.6 then Conjec-
ture 2.10 also holds.

Proof. Suppose Conjecture 2.6 is true and limn→∞ Rm1,m2
(n) = ∞ for all in-

tegers m1,m2 and n satisfying the conditions of Conjecture 2.6. By induction
on r we show that then Conjecture 2.10 also holds and that for any positive inte-
gers m1,m2, . . . ,mr (r ≥ 2) and n satisfying the conditions of Conjecture 2.10,
limn→∞ Rm1,m2,...,mr

(n) = ∞. By Proposition 2.11, it is sufficient to consider
the case when m1,m2, . . . ,mr are (not necessarily pairwise) relative primes.

Base Step: r = 2. This is true since we are assuming that Conjecture 2.6
holds.

Inductive Step: Suppose the statement of Conjecture 2.10 holds for some
r ≥ 2 and for all integersm1,m2, . . . ,mr and n satisfying the conditions of Con-
jecture 2.10, limn→∞ Rm1,m2,...,mr

(n) = ∞. Let m1,m2, . . . ,mr,mr+1 be pos-
itive integers. By Proposition 2.11 we can assume that m1,m2, . . . ,mr,mr+1

are (not necessarily pairwise) relative primes. Without loss of generality we
shall assume that mr+1 is odd. Let k be an arbitrary positive integer. We
show that there exists K such that for every n ≥ K satisfying the condi-
tions of Proposition 2.11 (or equivalently, the conditions of Conjecture 2.10),
Rm1,m2,...,mr+1

(n) > k. Denote gcd(m1,m2, . . . ,mr) by d. Let M = Πr
i=1mi

and denote by p the largest prime factor of M . By our inductive hypothesis
there exists L such that for every positive integer n ≥ L satisfying

(1) gcd(n,m2,m3, . . . ,mr) = gcd(m1, . . .mi−1, n,mi+1, . . . ,mr) =
gcd(m1,m2, . . . ,mr−1, n) = d for every 2 ≤ i ≤ r − 1 and

(2) n ≡ m1 +m2 + . . .+mr (mod 2k+1),

we have Rm1,...,mr
(n) > max{k}.

Let d′ an arbitrary divisor of mr+1.

Case 1: (m1 +m2 + . . .+mr)/d ≡ 1 (mod 2). Define a = dd′.

Case 2: (m1 +m2 + . . .+mr)/d ≡ 0 (mod 2). Define a = 2dd′.

As gcd (d,mr+1) = 1 and mr+1 is odd, in both of the above cases we have
gcd(a,mr+1) = d′. Hence, by our inductive hypothesis, here exists a Kd′ such
that for every n ≥ Kd′ satisfying
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(1) gcd(n,mr+1) = gcd(a, n) = gcd(a,mr+1) = d′ and
(2) a+mr+1 ≡ n (mod 2),

we have Ra,mr+1(n) > max{p, L}.
Now let K = max{Kd′ : d′|mr+1} and n ≥ K be an integer satisfying

(1) gcd (n,m2,m3, . . . ,mr+1) = gcd (m1, . . .mi−1, n,mi+1, . . . ,mr+1) =
= gcd (m1,m2, . . . ,mr, n) = 1 for every 2 ≤ i ≤ r and

(2) n ≡ m1 +m2 + . . .+mr+1 (mod 2).

We shall show Rm1,m2,...,mr+1(n) > k. Denote gcd(n,mr+1) by d′ and let
a = dd′ in Case 1 and let a = 2dd′ in Case 2.

Case 1: If d is even then m1 + m2 + . . . + mr and a are even and as
mr+1 is odd, n is odd. Hence a + mr+1 ≡ 1 ≡ n (mod 2). If d is odd then
m1 + m2 + . . . + mr and a are odd and since mr+1 is odd, n is even. Hence
a+mr+1 ≡ 0 ≡ n (mod 2).

Case 2: In this case m1 +m2 + . . .+mr is even and a is even. Since mr+1

is odd, n is odd and so a+mr+1 ≡ 1 ≡ n (mod 2).

As noted earlier, in both of the above cases we have gcd(a,mr+1) = d′. Since
d|mi for every 1 ≤ i ≤ r and gcd(m1, . . . ,mr, n) = 1, we have gcd(d, n) = 1.
Hence in both cases gcd(a, n) = d′. Therefore gcd(a,mr+1) = gcd(a, n) =
= gcd(mr+1, n) = d′ and as n ≥ K ≥ Kd′ , Ra,mr+1

(n) > max{p, L}. Therefore
we have n = aq1 +mr+1q2 for some primes q1 and q2 with q1 > max{p, L}.

We are going to demonstrate that

gcd (aq1,m2, . . . ,mr) = gcd (m1,m2, . . . ,mr−1, aq1) =

= gcd (m1, . . . ,mi−1, aq1,mi+1, . . . ,mr) = d

for every 2 ≤ i ≤ r − 1.

As d | a we have d | gcd (aq1,m2, . . . ,mr), d | gcd (m1,m2, . . . ,mr−1, aq1)
and d | gcd (m1, . . . ,mi−1, aq1,mi+1, . . . ,mr) for every 2 ≤ i ≤ r − 1.

We show that gcd (d′, aq1,m2, . . . ,mr) = gcd (d′,m1,m2, . . . ,mr−1, aq1) =
= gcd (d′,m1, . . . ,mi−1, aq1,mi+1, . . . ,mr) = 1 for every 2 ≤ i ≤ r − 1.

Suppose that it is false and for example gcd(d′, aq1,m2, . . . ,mr) > 1. Then
gcd (d′,m2, . . . ,mr) > 1 and as d′|mr+1 and d′ | n, hence

gcd (n,m2, . . . ,mr,mr+1) > 1

contradicting our assumption gcd (n,m2, . . . ,mr,mr+1) = 1. Hence

gcd (d′, aq1,m2, . . . ,mr) = 1

and similarly we can show that

gcd (d′,m1,m2, . . . ,mr−1, aq1) = gcd (d′,m1, . . . ,mi−1, aq1,mi+1, . . . ,mr) = 1

for every 2 ≤ i ≤ r − 1. As q1 > p, gcd(q1,mi) = 1 for every 1 ≤ i ≤ r.
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In Case 2, as gcd (m1,m2, . . . ,mr) = d, but 2d | (m1+m2+ . . .+mr), there
must be at least two among the numbers m1,m2, . . . ,mr which are not divisible
by 2d. Therefore in both Case 1 and Case 2 we have gcd (aq1,m2, . . . ,mr) =
= gcd (m1,m2, . . . ,mr−1, aq1) = gcd (m1, . . . ,mi−1, aq1,mi+1, . . . ,mr) = d for
every 2 ≤ i ≤ r − 1.

Next we show that m1 +m2 + · · ·+mr ≡ aq1 (mod 2s+1), where d = 2s is
the largest power of 2 which is a factor of d.

In Case 1: (m1 + m2 + · · · + mr)/d ≡ 1 ≡ d′ (mod 2), hence m1 + m2 +
+ · · · +mr ≡ d ≡ dd′ (mod 2s+1).

In Case 2: (m1 +m2 + · · · +mr)/d ≡ 0 ≡ 2d′ (mod 2), hence m1 +m2 +
+ · · · +mr ≡ d ≡ 2dd′ (mod 2s+1).

As aq1 ≥ q1 ≥ L, the above implies Rm1,m2,...,mr (aq1) > k. As for any
r-tuple of primes p1, p2, . . . , pr such that aq1 = m1p1 + m2p2 + · · · + mrpr
we have n = m1p1 + m2p2 + · · · + mrpr + mr+1q2, Rm1,m2,...,mr+1

(n) > k
follows. �

3. Computational results

To support our statements we developed some programs directly checking
the conjecture up to 109. We carried out a triple-checking, namely we imple-
mented three different methods, which we are planning to publish in details in
a future paper. According to Proposition 2.7 it is sufficient to verify Conjecture
2.6 for relative prime values of m1 and m2. We checked Conjecture 2.6 for all
possible cases when 1 ≤ m1,m2 ≤ 25 and gcd(m1,m2) = 1 until (n = 109). In
Table 1 we summarized the cases 1 ≤ m1 ≤ 25, 1 ≤ m2 ≤ 14. The values of m2

from 1 to 14 are found in the first row whereas, the first column contains the
values of m1 from 1 to 25. A letter x is shown when m1,m2 are not relative
prime. Otherwise a cell of the ith row and jth column contains the smallest
value of n from which the conjecture was found true for m1 = i,m2 = j until
n = 109 by our program.

The plot of the function R(n) assigning to each even integer n ≥ 4 the
number of its Goldbach partitions is known as Goldbach’s comet. Analogously,
for any fixed positive integers m1,m2 we shall call the plot of the function
Rm1,m2

(n) assigning to each n satisfying the conditions of Conjecture 2.6 the
number of its generalized Goldbach partitions with coefficientsm1,m2, a gener-
alized Golbach’s comet. Figure 1 shows some comets for different pairs m1,m2.
Investigating the anatomy of such comets can be an interesting challenge for
the near future.
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(a) m1 = 1,m2 = 50 (b) m1 = 1,m2 = 100

(c) m1 = 30,m2 = 31 (d) m1 = 5,m2 = 7

(e) m1 = 11,m2 = 13 (f) m1 = 14,m2 = 25

Figure 1: The Comets for some m1,m2 values
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