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Abstract. We introduce the notion of normal numbers for generalized
number systems in Euclidean spaces and then explore the relevance of
certain conjectures to normality.

1. Generalized number systems in Euclidean spaces

Given a positive integer k, let Rk and Zk stand respectively for the k-
dimensional real Euclidean space and the ring of k-dimensional vectors with
integer entries. Fix k and letM be a k×k matrix with integer elements. Assume
that M has k distinct eigenvalues λ1, λ2, . . . , λk such that |λ1| > |λ2| > · · · >
> |λk| > 1. Let L := M Zk. Then, L is a subgroup of Zk and let t stand
for the order of Zk/L, so that t = |detM |. Further let A0, A1, . . . , At−1 stand
for the residue classes mod L and let A0 = L. For each j ∈ {0, 1, . . . , t − 1},
choose an arbitrary element aj ∈ Aj such that the vector a0 is the zero vector
0 = (0, 0, . . . , 0), and then write

A := {a0, a1, . . . , at−1}.
If the norm ‖n‖ of n = (n1, . . . , nk) is ‖n‖ = max1≤i≤k |ni| or ‖n‖ =

∑
1≤i≤k |ni|,

then the operator norm ‖ · ‖ of M−1 is 1/|λk| while that of M is |λ1|.
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Let us now introduce the function J : Zk → Zk as follows. Since for each
n ∈ Zk, there exist a unique b0 ∈ A for which n− b0 ∈ L and a unique n1 ∈ Zk

for which n = b0 +M n1, that is, n1 = M−1(n− b0), we define J : Zk → Zk by
J(n) = n1.

We further define the real numbers K, ξ and L by

K = max
b∈A

‖b‖, ξ =
1

min1≤j≤k |λj | =
∣∣M−1

∣∣ , L =
Kξ

1 − ξ
.

In [3], the following result was proved.

Lemma 1.

(a) If ‖n‖ > L, then ‖J(n)‖ < ‖n‖.
(b) If ‖n‖ ≤ L, then ‖J(n)‖ ≤ L.

Since the disks contain only a finite number of elements of Zk, it follows
that the path

n, J(n), J2(n), . . .

is ultimately periodic.

Now, let P stand for the set of periodic elements. Then, n ∈ P if there is
an integer j ≥ 1 such that Jj(n) = n. The directed graph (over P) is defined
by n → J(n) (n ∈ P). It is clear that n ∈ P implies that J(n) ∈ P and that
the directed graph JP → P, which we denote by G(P), is the union of disjoint
directed circles (allowing for loops). Moreover, 0 (→ 0) ∈ P, and if π ∈ P, then
‖π‖ ≤ L.

Now, for each n ∈ Zk and integer h ≥ 1, we have

n = b0 +M b1 + · · · +Mh−1bh−1 +Mhnh,

nh = Jh(n0), bν ∈ A.

Further define

�(n) :=

{
0 if n ∈ P,
h if n �∈ P,

where h is the smallest integer for which nh ∈ P. For this reason, we will
say and write that the standard expansion of n is (b0, b1, . . . , bh−1|π), where
π = nh. In the special case where n = π ∈ P, the expansion is written as (∗|π).

We say that (A,M) is a number system (written for short as NS) in Zk if
each n ∈ Zk can be written as

n = b0 +M b1 + · · · +Mh−1bh−1.

In other words, (A,M) is a number system in Zk if and only if P = {0}.
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Let H be the set of those z ∈ Rk which can be expanded as

z =

∞∑
ν=1

M−νbν , bν ∈ A.

The set H is called the fundamental region with respect to (A,M).

For each integer h ≥ 0, let

Γh :=

⎧⎨⎩n : n =

h∑
j=0

M jbj , bj ∈ A
⎫⎬⎭ ,

so that in particular Γh ⊆ Γh+1. Letting Γ =

∞⋃
h=0

Γh, we have that Γ ⊆ Zk and

one can easily see that Γ = Zk if and only (A,M) is a number system.

Since we can write the fundamental region H as

H =
⋃
a∈A

(
M−1a+M−1H

)
,

it is easily seen that H is a compact set.

The following result was proved in [3].

Theorem A. Let λ stand for the Lebesgue measure in Rk.

(a) We have
⋃

n∈Zk

(H + n) = Rk.

(b) If n1, n2 ∈ Γ, n1 �= n2, then

λ(H + n1 ∩ H + n2) = 0.

(c) If Γ = Zk, that is if (A,M) is a number system, then

λ(H + n1 ∩ H + n2) = 0

for every n1, n2 ∈ Zk with n1 �= n2.

2. Just touching covering system

We now introduce the concept of just touching covering system. We say
that (A,M) is a just touching covering system (for short JTCS) if λ(H + n1 ∩
∩H + n2) = 0 for every n1, n2 ∈ Zk with n1 �= n2.
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Interestingly, if (A,M) is a JTCS, then

λ(M−hn1 +M−hH ∩ M−hn2 +M−hH) = 0

for every n1, n2 ∈ Zk with n1 �= n2.

The next two results reveal interesting properties regarding JTCS.

Theorem B. ([4]) The number system (A,M) is a JTCS if Γ − Γ = Zk, that
is if every n ∈ Zk can be written as n1 − n2, where n1, n2 ∈ Zk.

Theorem C. ([6]) Given D ∈ Z \ {0}, let A = {a0, a1, . . . , a|D|−1} (where
a0 = 0) be a complete residue system mod D. Then, (A, D) is a JTCS if and
only if gcd(a1, . . . , a|D|−1) = 1.

Let (A,M) be a JTCS and let

ξ =

∞∑
�=−r

M−�c� (c� ∈ A).

We write the “integer part” and “fractional part” of ξ as follows:

�ξ� =
0∑

�=−r

M−�c� (∈ Zk),

{ξ} =

∞∑
�=1

M−�c� (∈ H).

Observe that it is clear that

{Muξ} =

∞∑
�=1

M−�cu+� (∈ H).

Moreover, letting β = b1b2 . . . bk, let us define

Hβ :=

{
η : η =

∞∑
�=1

M−�c� : c� = b� for � = 1, 2, . . . , k

}
.

It is clear that, for a fixed k, any two Hβ1
and Hβ2

will be isomorphic since

H =
k∑

�=1

M−�b� +M−kH,

and
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(i) H =
⋃

β∈Ak

Hβ ,

(ii) λ(Hβ1
∩ Hβ2

) = 0,

(iii) λ(Hβ1
) = λ(Hβ2

),

(iv) λ(Hβ)t
k = λ(H).

3. Normal sequences and normal numbers in R

Let A = {a1, . . . , aN} be a finite set of letters. Let A∗ be the set of finite
words over A. Given a word α ∈ A∗, we write λ(α) to denote its length (that
is, the number of letters in the word α). We let Λ stand for the empty word
and write λ(Λ) = 0. The operation (α, β) → αβ is called concatenation. The
expression AN stands for the set of infinite sequences over A, that is, β ∈ AN if
it can be written as β = b1b2b3 . . ., where each bi ∈ A. Moreover, given β ∈ AN

and a positive integer T , we set βT := b1b2 . . . bT . Given γ, δ ∈ A∗, we let
S(δ|γ) stand for #{ε1, ε2 ∈ A∗ : γ = ε1δε2}, that is, the number of occurrences
of δ as a subword in γ.

Definition. Let β ∈ AN. We say that β is a normal sequence (over A) if

lim
T→∞

S(α|βT )

T
=

1

Nλ(α)

for every α ∈ A∗.

4. Normal sequences and normal numbers in Rk

Definition. Let (A,M) be a number system and let η =
∑∞

�=1 M
−�b�, with

each b� ∈ A. We say that η is a normal number in Rk with respect to (A,M)
if, for every β ∈ A∗,

lim
N→∞

1

N
#{n ≤ N : {Mnη} ∈ Hβ} =

1

tλ(β)
,

where t = |detM |.
The following two assertions are obvious.
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• (I) η is a normal number in Rk with respect to (A,M) if and only if
β = b1b2 . . . is a normal sequence over A.

• (II) Let E = {e1, . . . , ek}, D = {d1, . . . , dk}, ϕ : E → D defined by
ϕ(ej) = dj , β = b1b2 . . . ∈ EN, ϕ(β) = ϕ(b1)ϕ(b2) . . . (∈ DN). Then, β is
a normal sequence in EN if and only if ϕ(β) is a normal sequence in DN.

In light of these assertions, one can easily prove the following theorem.

Theorem 1. Let (A,M) be a JTCS with A = {a0 = 0, a1, . . . , at−1}, where
t = |detM |. Moreover, let E = {0, 1, . . . , t − 1} and let η = 0.ε1ε2 . . . be an

arbitrary t-ary normal number. Then, ψ =

∞∑
�=1

M−�aε� is a normal number in

Rk with respect to (A,M).

5. Construction of base Q normal numbers

Fix an integer Q ≥ 2. Let AQ = {0, 1, . . . , Q − 1} and let A∗
Q stand for

the set of words over AQ. For each integer N ≥ 1, let JN = [QN−1, QN − 1].

Given an integer n ∈ JN , write it as n =
∑N−1

ν=0 εν(n)Q
ν and define

n := ε1(n)ε1(n) . . . εN−1(n) ∈ A∗
Q. Finally, we let λ(n) = N stand for the

length of n.

For each integer N ≥ 3, consider a subset SN of {1, 2, . . . , N − 1}, writing
it as SN = {�(N)

1 , . . . , �
(N)
rN }, where the �

(N)
i ’s are in increasing order. Assume

that rN ≥ 1 and that (r1 + · · · + rN−1)/rN → ∞ as N → ∞.

To each prime p ∈ JN , let us associate the number

κ(p) = ε
�
(N)
1

(p) . . . ε
�
(N)
rN

(p).

Let p1 < · · · < pπ(JN ) be all the primes included in JN . Moreover, let σN be
an arbitrary permutation of {1, . . . , π(JN )}. Further define

ηN := κ(pσN (1)) . . . κ(pσN (π(JN ))).

Finally, consider the number

α = 0.η1η2 . . .

Theorem 2. The number α is a normal number in base Q.
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Proof. This is an easy consequence of an earlier result obtained by Har-
man and Kátai [8] and according to which, given r integers (1 ≤) j1 < · · · <
< jr (≤ N − 1), setting

Π

(
JN

∣∣∣∣ j1, . . . , jr
b1, . . . , br

)
:= #{p ∈ JN : aj�(p) = bj� for � = 1, . . . , r},

we have

max
1≤j1<···<jr≤N−1

b1,...,br

∣∣∣∣∣∣∣∣
QrΠ

(
JN

∣∣∣∣ j1, . . . , jr
b1, . . . , br

)
π(JN )

− 1

∣∣∣∣∣∣∣∣ → 0 (N → ∞)

for every fixed integer r ≥ 1. �

Theorem 3. If SN = {1, . . . , N − 1}, then Theorem 2 holds without the con-
dition (r1 + · · · + rN−1)/rN → ∞ as N → ∞.

Theorem 4. Let ℘N be the set of primes in JN . Given a prime p ∈ JN , write
its Q-ary expansion as

p = ε0(p)ε1(p) . . . εN−1(p).

Then, set

γN = Concat(p : p ∈ ℘N ).

Fix an integer D ∈ N and consider the real number

α = 0.γDγ2D . . . = 0.a1a2 . . . ,

say. Further consider the number

α(�) = 0.Concat(am : m ≡ � (mod D)) = 0.a�aD+�aD+2� . . . ,

say. Let �1, . . . , �h be a set of distinct residues mod D and consider the real
number

δ = 0.Concat(am : m ≡ � (mod D) for some � ∈ {�1, . . . , �h}).

Then the numbers α, α(�) for each � = 0, 1, . . . , D−1, δ for each � ∈ {�1, . . . , �h},
are all Q-normal numbers.

Proof. The proof can be obtained along the same lines as that of Theorem 2.

�
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6. The relevance of certain conjectures to normality

6.1. On the conjecture of Chowla and its generalisations

Let Ω(1) = 0 and, for each integer n ≥ 2, let Ω(n) :=
∑

pa‖n a. Then, the

Liouville function λ is defined on positive integers n by λ(n) = (−1)Ω(n). An
old conjecture of Chowla states that, for any given positive integers a1 < a2 <
< · · · < ak,

(6.1) lim
x→∞

1

x

∑
n≤x

λ(n)λ(n+ a1) · · ·λ(n+ ak) = 0.

If the Chowla conjecture were true, then, given any predetermined vector
(δ0, δ1, . . . , δk), where each δj ∈ {−1, 1}, it would follow that

lim
x→∞

1

x
#{n ≤ x : λ(n+ j) = δj for j = 0, 1, . . . , k} =

1

2k+1
,

in which case, by setting εn = (λ(n)+1)/2, it would also follow that the number

(6.2) α = 0.ε1ε2 . . .

is a binary normal number.

Recently, Terence Tao [9] obtained an important result in this direction,
namely by proving that, given any fixed positive integer a,

(6.3) lim
x→∞

1

log x

∑
n≤x

λ(n)λ(n+ a)

n
= 0.

From this, setting bn = (λ(n) + 1)/2 and

(6.4) γ = 0.b1b2 . . . ,

it follows that

lim
x→∞

1

log x

∑
n≤x

bn=ε1, bn+1=ε2

1

n
=

1

4

for every choice of (ε1, ε2) ∈ {0, 1}2.
If the Chowla conjecture is true (in the form given by (6.1)), one can prove

that

(6.5) lim
x→∞

1

log x

∑
n≤x

λ(n)λ(n+ a1) · · ·λ(n+ ak)

n
= 0.
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Perhaps (6.5) is easier to prove that the original conjecture (6.1).

In any event, from conjecture (6.5), it would follow that the real number γ
(in (6.4)) is a binary normal number with “weight 1/n”, meaning that if for
each positive integer n, we set γn := 0.bn+1bn+2 . . . and, for any given interval
E = [a, b) ⊆ [0, 1), we consider the characteristic function

χE(x) =

{
1 if x ∈ E,
0 if x �∈ E

along with the corresponding function SN (E) =

N∑
n=1

1

n
χE(γn), then

lim
N→∞

SN (E)

logN
= b − a,

namely the length of the interval E.

6.2. A conjecture of Elliott

The following conjecture was stated by Elliott [7] in 1994.

Conjecture 1. (Elliott) Let g1, . . . , gk be multiplicative functions such that
|gj(n)| ≤ 1 for all integers n ≥ 1, for each j ∈ {1, 2, . . . , k}. Moreover, for each
j = 1, 2, . . . , k, let aj ∈ N and bj ∈ Z be such that arbt − atbr �= 0 when ever
1 ≤ r < t ≤ k. Then, there exist constants A,α ∈ R and a slowly oscillating
function L(u) such that |L(u)| = 1 for all u ∈ R, such that, as x → ∞,

s(x) :=
1

x

∑
n≤x

g1(a1n+ b1) · · · gk(akn+ bk) = AxiαL(log x) + o(1).

If lim supx→∞ |s(x)| = |A| > 0, then there are Dirichlet characters χj and real
numbers τj for which the series

�
(∑

p

1 − gj(p)χj(p)p
−iτj

p

)

converges.

It is clear that the Chowla conjecture would follow from the Elliott con-
jecture. Another interesting consequence of Conjecture 1 is the following yet
unproven result.
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Conjecture 2. Let g be a multiplicative function such that |g(n)| = 1 for all
n ∈ N and assume that, for every τ ∈ R and Dirichlet character χ,∑

p

�(1 − g(p)χ(p)piτ )

p
= ∞.

Then, given arbitrary positive integers a1 < a2 < · · · < ak,

(6.6) lim
x→∞

1

x

∑
n≤x

g(n)g(n+ a1) · · · g(n+ ak) = 0.

As a special case of Conjecture 2, one has the following. Fix an integer
Q ≥ 2 and assume that g(n)Q = 1 for all integers n ≥ 1. Hence the range of
g(N) is {ξ� : � = 0, 1, . . . , Q − 1} for some root of unity ξ, namely ξ = e2πi/Q.
We can therefore write g(n) as g(n) = ξεn , where each εn ∈ AQ. With this set
up, let us introduce the real number

(6.7) α = 0.ε1ε2 . . .

If (6.6) were true, then this would imply that α is a normal number in base Q.

Observe that the multiplicative function g could have been chosen differ-
ently. Here are some appropriate choices for Q and g:

(I) Q = 2 and g(n) = (−1)Ω(n).

(II) Q = 2 and g(n) = (−1)ω(n).

(III) Q ≥ 2, ξ = e2πi�/Q with (�,Q) = 1 and then choose g(p) = ξ for each
prime p and, for each k ≥ 2, choose choose g(pk) in an arbitrary way as
long as |g(pk)| = 1.

(IV) Q ≥ 2, ξ = e2πi/Q and then, if p ≡ � (mod K) for any given � and K
with (�,K) = 1 and (e�, Q) = 1, choose g(p) = ξe� for each prime p, and
g(p) = 1 if p | K, while choosing g(pk) in an arbitrary way for each k ≥ 2
as long as |g(pk)| = 1.
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