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Abstract. In the present paper, we consider convergence analysis of a nu-
merical method considered in Shah and Noor (2015) to solve equations us-
ing decomposition technique under weaker assumptions. Using the idea of
restricted convergence domains we extend the applicability of this method.
Numerical examples where earlier results cannot apply to solve equations
but our results can apply are also given in this study.

1. Introduction

Consider the problem of approximating the solution x∗ of nonlinear equation

(1.1) F (x) = 0,

where F : D ⊆ X −→ Y is a Fréchet-differentiable function and D is a convex
set. Due to the wide applications, finding solutions of the equation (1.1) is
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an important problem in mathematics. Many authors considered Newton-like
method for obtaining an approximation for the solution x∗ of (1.1). Higher
order multi-point methods are studied in the literature (see [5, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17]) for approximating the solution x∗ of (1.1).

In the present paper, we consider the following construction considered
in [16]

yn = xn −A−1
n F (xn),

zn = yn −A−1
n F (yn),

xn+1 = zn −A−1
n F (zn),(1.2)

where x0 is an initial point and An = A(xn) = B(xn) + F ′(xn), B(x)(.) :
: D −→ L(X,Y ) is a bounded linear operator for each x ∈ D. If X =
= Y = R, B(x) = G′(x)

G(x) F (x), where G : D −→ R is a continuous function
then, the method reduces to the method considered in [16]. The method in
this special case was shown to be efficient for cases when F ′(x∗) ≈ 0.

Our goal is to weaken the assumptions in [16], so that the applicability of
the method (1.2) can be extended.

Assumptions of the form

(1.3) ‖F ′′′(x)− F ′′′(y)‖ ≤ L‖x− y‖, x, y ∈ Ω, L ≥ 0

or

(1.4) ‖F ′′′(x)− F ′′′(y)‖ ≤ w(‖x− y‖), x, y ∈ Ω,

where w(t) is a nondecreasing continuous function for t > 0 and w(0) = 0
(see [16]) are used in earlier studies such as [6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17].

Example 1.1. A typical function that does not satisfy (1.3) or (1.4) is defined
by

(1.5) F (x) =
{

x3 lnx2 + x5 − x4, x 	= 0
0, x = 0,

where F : [− 5
2 , 1

2 ] −→ R. We have that x∗ = 1,

F ′(x) = 3x2 lnx2 + 5x4 − 4x3 + 2x2,

F ′′(x) = 6x lnx2 + 20x3 − 12x2 + 10x,

and
F ′′′(x) = 6 lnx2 + 60x2 − 24x + 22.
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Then, obviously, function F ′′′ is unbounded on D. Hence, the results in [16]
cannot be used to solve (1.1) using (1.2). We also provide computable error
bounds on the distances ‖xn−x∗‖, radii of convergence and uniqueness results
not given in [16]. In this study, our local convergence is based only on the first
Fréchet-derivative. This technique can be used to extend the applicability of
other methods [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].

The rest of the paper is organized as follows. In Section 2 we present the lo-
cal convergence analysis. We also provide a radius of convergence, computable
error bounds and uniqueness result. Special cases and numerical examples are
given in the last section.

2. Ball convergence

The ball convergence of method (1.2) is based on some functions and pa-
rameters. Let w0, w, v, β : [0, +∞) −→ (0, +∞) be continuous, non-negative,
non-decreasing functions defined on the interval with w0(0) = w(0) = β(0) = 0.
Define the parameter r0 by

(2.1) r0 = sup{t ≥ 0 : w0(t) + β(t) < 1}.

Define functions gi, hi, i = 1, 2, 3 on the interval [0, r0) by

g1(t) =

∫ 1

0
w((1− θ)t)dθ

1− w0(t)
+

β(t)
∫ 1

0
v(θt)dθ

(1− w0(t))(1− p(t))
.

g2(t) =

(
1 +

∫ 1

0
v(θg1(t)t)dθ

1− p(t)

)
g1(t),

g3(t) =

(
1 +

∫ 1

0
v(θg2(t)t)dθ

1− p(t)

)
g2(t),

hi(t) = gi(t)− 1, i = 1, 2, 3,

where p(t) = w0(t) + β(t). We have that h1(0) = −1 < 0 and h1(t) → +∞ as
t → r−0 . It then follows from the intermediate value theorem that function h1

has zeros in the interval (0, r0). Denote by r1 the smallest such zero. Moreover,

we have h2(0) = −1 < 0 and h2(r1) =
∫ 1
0 v(θr1)dθ

1−p(r1)
> 0, since g1(r1) = 1. Denote

by r2 the smallest zero of function h2 on the interval (0, r1). Furthermore, we

get that h3(0) = −1 and h3(r2) =
∫ 1
0 v(θr2)dθ

1−p(r2)
> 0, since g2(r2) = 1. Denote by
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r3 the smallest zero of function h3 on the interval (0, r2). Then, we have for
each t ∈ [0, r3)

(2.2) 0 ≤ gi(t) < 1, i = 1, 2, 3.

Let U(a, ρ), Ū(a, ρ) stand respectively for the open and closed balls in X
with center a ∈ X and of radius ρ > 0. Next, we present the local convergence
analysis of method (1.2) using the preceding notation.

Theorem 2.1. Let F : D ⊂ X → Y be a continuously Fréchet-differentiable
operator. Suppose that there exist x∗ ∈ D, non-decreasing continuous functions
w0, w, v, β : [0, +∞) −→ [0, +∞) with w0(0) = w(0) = β(0) = 0 such that for
each x, y ∈ D

(2.3) F (x∗) = 0, F ′(x∗)−1 ∈ L(Y,X),

(2.4) ‖F ′(x∗)−1(F ′(x)− F ′(x∗)‖ ≤ w0(‖x− x∗‖),

(2.5) ‖F ′(x∗)−1(F ′(x)− F ′(y)‖ ≤ w(‖x− y‖),

(2.6) ‖F ′(x∗)−1F ′(x)‖ ≤ v(‖x− y‖),

(2.7) ‖F ′(x∗)−1B(x)‖ ≤ β(‖x− y‖),

and

(2.8) B̄(x∗, r3) ⊆ D,

where the r0 is defined by (2.1) and r3 is the smallest positive zero of function
h3. Then, the sequence {xn} generated for x0 ∈ U(x∗, r3) − {x∗} by method
(1.2) is well defined in U(x∗, r3), remains in U(x∗, r3) for each n = 0, 1, 2, . . .
and converges to x∗. Moreover, the following estimates hold

(2.9) ‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < r,

(2.10) ‖zn − x∗‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖,

and

(2.11) ‖xn+1 − x∗‖ ≤ g3(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖,

where, the functions gi, i = 1, 2, 3 are defined previously. Furthermore, if there
exists R ≥ r3 such that

(2.12)
∫ 1

0

w0(θR)dθ < 1,

then the limit point x∗ is the only solution of equation F (x) = 0 in D1 =
= D ∩ Ū(x∗, r0).
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Proof. We shall show using mathematical induction that sequence {xn} is well
defined, remains in U(x∗, r3) converges to x∗ so that estimates (2.9)–(2.11) are
satisfied. By hypothesis x0 ∈ U(x∗, r3)− {x∗}, (2.1) and (2.4), we get that

(2.13) ‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖ ≤ w0(‖x0 − x∗‖) ≤ w0(r0) < 1.

It follows from (2.13) and the Banach Lemma on invertible operators [1, 15, 17]
that F ′(x0)−1 ∈ L(Y,X) and

(2.14) ‖F ′(x0)−1F ′(x∗)‖ ≤ 1
1− w0(‖x0 − x∗‖) .

We also have by (2.1), (2.4) and (2.7) that

‖F ′(x∗)−1(A0 − F ′(x∗))‖ ≤ ‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖+

+‖F ′(x∗)−1B(x0)‖ ≤

≤ w0(‖x0 − x∗‖) + β(‖x0 − x∗‖) =

= p(‖x0 − x∗‖) ≤ p(r0) < 1,(2.15)

so A−1
0 ∈ L(Y,X), y0, z0, x1 are well defined by method (1.2) for n = 0 and

(2.16) ‖A−1
0 F ′(x∗)‖ ≤ 1

1− p(‖x0 − x∗‖) .

Notice that from (2.3) and (2.6), we have that

∥∥F ′(x∗)−1F (x0)
∥∥ =

∥∥∥∥∥∥
1∫

0

F ′(x∗)−1F ′(x∗ + θ(x0 − x∗))dθ(x0 − x∗)

∥∥∥∥∥∥ ≤
≤

1∫
0

v(θ‖x0 − x∗‖)dθ‖x0 − x∗‖.(2.17)

Using (2.1), (2.2)(for i = 2), (2.5)-(2.8), (2.14), (2.16) and (2.17), we get in
turn that

‖y0 − x∗‖ ≤ ‖x0 − x∗ − F ′(x0)−1F (x0) + (F ′(x0)−1 −A−1
0 )F (x0)‖ ≤

≤ ‖x0 − x∗ − F ′(x0)−1F (x))‖+

+‖F ′(x0)−1F ′(x∗)‖‖F ′(x∗)−1(A0 − F ′(x0)‖ ×

×‖A−1
0 F ′(x∗)‖‖F ′(x∗)−1F (x0)‖ ≤
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≤
∫ 1

0
w((1− θ)‖x0 − x∗‖)dθ‖x0 − x∗‖

1− w0(‖x0 − x∗‖) +

+
β(‖x0 − x−∗ ‖)

∫ 1

0
v(θ‖x0 − x∗‖)dθ‖x0 − x∗‖

(1− w0(‖x0 − x∗‖))(1− p(‖x0 − x∗‖)) =

= g1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r3.(2.18)

which shows (2.9) for n = 0 and y0 ∈ U(x∗, r3. Moreover, using (2.2) (for
i = 2), (2.6), (2.17) (for x0 = y0) and (2.18) we obtain that

‖z0 − x∗‖ ≤ ‖y0 − x∗‖+ ‖A−1
0 F ′(x∗)‖‖F ′(x∗)−1F (y0)‖ ≤(2.19)

≤
(

1 +

∫ 1

0
v(θ‖y0 − x∗‖)dθ

1− p(‖x0 − x∗‖)

)
‖y0 − x∗‖ ≤

≤ g2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r3,(2.20)

which shows (2.10) for n = 0 and z0 ∈ B̄(x∗, r3). Furthermore, using (2.2) (for
i = 3), (2.16), (2.17) (for x0 = z0) and (2.20), we get that

‖x1 − x∗‖ ≤ ‖z0 − x∗‖+ ‖A−1
0 F ′(x∗)‖‖F ′(x∗)−1F (z0)‖ ≤

≤
(

1 +

∫ 1

0
v(θ‖z0 − x∗‖)dθ)

1− p(‖x0 − x∗‖)

)
‖z0 − x∗‖ =

= g3(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r3,(2.21)

so (2.11) holds for n = 0 and x1 ∈ B(x∗, r3). By simply replacing x0, y0, z0, x1

by xk, yk, zk, xk+1 in the preceding estimates, we arrive at estimates (2.9) –
(2.11). Then, from the estimates

(2.22) ‖xn+1 − x∗‖ ≤ c‖xk − x∗‖ < r,

where c = g3(‖x0 − x∗‖) ∈ [0, 1), we deduce that lim
k→∞

xk = x∗ and xk+1 ∈
∈ U(x∗, r3). Finally to show the uniqueness part, let

T =

1∫
0

F ′(x∗ + θ(y∗ − x∗))dθ

where y∗ ∈ D2 with F (y∗) = 0. Using (2.13), we obtain that

(2.23)
‖F ′(x∗)−1(T − F ′(x∗))‖ ≤

∫ 1

0
w0(θ‖x∗ − y∗‖)dθ ≤

≤
∫ 1

0
w0(θR)dθ < 1,
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Hence, we have that T−1 ∈ L(R, R). Then, from the identity 0 = F (y∗) −
−F (x∗) = T (y∗ − x∗), we conclude that x∗ = y∗. �

Remarks 2.1. (a) In the case when w0(t) = L0t, w(t) = Lt, the radius rA =
= 2

2L0+L was obtained by Argyros in [1] as the convergence radius for Newton’s
method under condition (2.9)–(2.11). Notice that the convergence radius for
Newton’s method given independently by Rheinboldt [14] and Traub [17] is
defined by

ρ =
2

3L
< rA.

As an example, let us consider the function f(x) = ex − 1. Then x∗ = 0. Set
D = U(0, 1). Then, we have that L0 = e − 1 < L = e, so ρ = 0.24252961 <
< rA = 0.324947231.

Moreover, the new error bounds [1] are:

‖xn+1 − x∗‖ ≤ L

1− L0‖xn − x∗‖‖xn − x∗‖2,

whereas the old ones [4, 7]

‖xn+1 − x∗‖ ≤ L

1− L‖xn − x∗‖‖xn − x∗‖2.

Clearly, the new error bounds are more precise, if L0 < L. Clearly, we do
not expect the radius of convergence of method (1.2) given by r3 to be larger
than rA.

(b) The local results can be used for projection methods such as Arnoldi’s
method, the generalized minimum residual method(GMREM), the generalized
conjugate method(GCM) for combined Newton/finite projection methods and
in connection to the mesh independence principle in order to develop the cheap-
est and most efficient mesh refinement strategy [1, 2, 3, 4].

(c) The results can be also be used to solve equations where the operator
F ′ satisfies the autonomous differential equation [1, 2, 3, 4]:

F ′(x) = P (F (x)),

where P is a known continuous operator. Since F ′(x∗) = P (F (x∗)) = P (0),
we can apply the results without actually knowing the solution x∗. Let as an
example F (x) = ex − 1. Then, we can choose P (x) = x + 1 and x∗ = 0.
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(d) It is worth noticing that method (1.2) are not changing if we use the new
instead of the old conditions [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Moreover, for
the error bounds in practice we can use the computational order of convergence
(COC)

ξ =
ln
‖xn+2 − xn+1‖
‖xn+1 − xn‖

ln
‖xn+1 − xn‖
‖xn − xn−1‖

, for each n = 1, 2, . . .

or the approximate computational order of convergence (ACOC)

ξ∗ =
ln
‖xn+2 − x∗‖
‖xn+1 − x∗‖

ln
‖xn+1 − x∗‖
‖xn − x∗‖

, for each n = 0, 1, 2, . . . .

(e) In view of (2.4) and the estimate

‖F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1(F ′(x)− F ′(x∗)) + I‖ ≤

≤ 1 + ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ 1 + w0(‖x− x∗‖)

condition (2.6) can be dropped and can be replaced by

v(t) = 1 + w0(t)

or
v(t) = 1 + w0(r0),

since t ∈ [0, r0).

(f) Let X = Y = R and

(2.24) G(x) = e−αx.

Then, we have

‖F ′(x∗)−1B(x)‖ = |α|
1∫

0

v(θ‖x− x∗‖)‖x− x∗‖dθ

so

(2.25) β(t) = |α|
1∫

0

v(θt)tdθ.
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3. Numerical examples

Three numerical examples are presented in this section.

Example 3.1. Let X = Y = R3, D = Ū(0, 1), x∗ = (0, 0, 0)T . Define function
F on D for w = (x, y, z)T by

F (w) = (ex − 1,
e− 1

2
y2 + y, z)T .

Then, the Fréchet-derivative is given by

F ′(v) =

⎡⎣ ex 0 0
0 (e− 1)y + 1 0
0 0 1

⎤⎦ .

Notice that using the (2.9) conditions, we get w0(t) = L0t, w(t) = Lt, v(t) = 2,
B(x) = I, α = 0.25, β(t) is as in (2.25) L0 = e− 1, L = e. The parameters are

r1 = 0.2039, r2 = 0.0918, r3 = 0.0654.

Example 3.2. Let X = Y = C[0, 1], the space of continuous functions defined
on [0, 1] and be equipped with the max norm. Let D = U(0, 1). Define function
F on D by

(3.1) F (ϕ)(x) = ϕ(x)− 5

1∫
0

xθϕ(θ)3dθ.

We have that

F ′(ϕ(ξ))(x) = ξ(x)− 15

1∫
0

xθϕ(θ)2ξ(θ)dθ, for each ξ ∈ D.

Then, we get that x∗ = 0, w0(t) = L0t, w(t) = Lt, v(t) = 2, B(x) = I, α =
0.25, β(t) is as in (2.25) L0 = 7.5, L = 15. The parameters for method are

r1 = 0.0592, r2 = 0.0260, r3 = 0.0181.

Example 3.3. Returning back to the motivational example at the introduction
of this study, we have w0(t) = w(t) = 96.6629073t, α = 0.25, B(x) = I, β(t) is
as in (2.25) and v(t) = 2. Then the parameters are

r1 = 0.0068, r2 = 0.10034, r3 = 0.0024.
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