MULTIPLICATIVE FUNCTIONS WITH SMALL INCREMENT II.

Karl-Heinz Indlekofer (Paderborn, Germany) Imre Kátai and Bui Minh Phong

(Budapest, Hungary)

Communicated by Jean-Marie De Koninck (Received July 28, 2016; accepted November 14, 2016)

Abstract. We prove that if f is a multiplicative function satisfying the relations

$$\varlimsup_{n \to \infty} \frac{1}{\log x} \sum_{n \leq x} \frac{|f(n)|}{n} = \infty, \quad \varlimsup_{n \to \infty} \frac{1}{\log x} \sum_{n \leq x} \frac{|f(n+K) - f(n)|}{n} < \infty,$$

then there are real numbers σ, t with $(0 < \sigma \leq 1)$ and a Dirichlet character $\chi \pmod{K}$ such that $f(n) = n^{\sigma+it}\chi(n)$.

1. Introduction

Let, as usual, \mathcal{P} , \mathbb{N} , \mathbb{R} , \mathbb{C} be the set of primes, positive integers, real and complex numbers, respectively. Let \mathcal{M} , \mathcal{M}^* be the set of complex-valued multiplicative (completely multiplicative) functions. We say that $f \in \mathcal{M}_1$ (resp. \mathcal{M}_1^*), if $f \in \mathcal{M}$ (resp. \mathcal{M}^*) and |f(n)| = 1 for every $n \in \mathbb{N}$. For an arithmetical function $f, f : \mathbb{N} \to \mathbb{C}$ let

$$\Delta_K f(n) := f(n+K) - f(n), \quad K \in \mathbb{N},$$

where $K \in \mathbb{N}$.

Key words and phrases: Multiplicative function, a Dirichlet character, small increment. 2010 Mathematics Subject Classification: 11A07, 11A25, 11N25, 11N64. https://doi.org/10.71352/ac.45.269 In [1] we proved the following assertion.

Theorem A. Let $f \in \mathcal{M}$, assume that

(1.1)
$$\sum_{n \le x} |\Delta_K f(n)| = O(x),$$

then, either

(1.2)
$$\sum_{n \le x} |f(n)| = O(x),$$

or

$$f(n) = n^{\sigma+it}\chi(n)$$
 for every $n \in \mathbb{N}, (n, K) = 1$,

where $0 < \sigma \leq 1, t \in \mathbb{R}$ and χ is a Dirichlet character (mod K).

In [1] and [7] the following result is proved.

Theorem B. Assume that the functions $f, g \in \mathcal{M}$ and a number $K \in \mathbb{N}$ satisfy

$$\sum_{n \le x} |g(n+K) - f(n)| = O(x).$$

Then, either

$$\sum_{n \le x} |g(n)| = O(x), \quad \sum_{n \le x} |f(n)| = O(x)$$

or there are functions $F, G \in \mathcal{M}$ and a complex number s such that

$$f(n) = n^s F(n), \quad g(n) = n^s G(n), 0 < \Re s \le 1$$

and G(n+K) - F(n) = 0 for every $n \in \mathbb{N}$.

Let \mathcal{M}_K be the set of those multiplicative functions f, for which f(n) = 0 if (n, K) > 1.

Our purpose in this paper is to investigate those $f \in \mathcal{M}_K$ for which

(1.3)
$$\overline{\lim_{n \to \infty} \frac{1}{\log x} \sum_{n \le x} \frac{|f(n)|}{n}} = \infty,$$

and

(1.4)
$$\overline{\lim_{n \to \infty} \frac{1}{\log x}} \sum_{n \le x} \frac{|\Delta_K f(n)|}{n} < \infty.$$

Theorem 1. Let $f \in \mathcal{M}_K$ be such a function for which (1.3), (1.4) hold. Then

$$f(n) = n^{\sigma + it} \chi(n), \quad 0 \le \sigma \le 1, t \in \mathbb{R}$$

and χ is a Dirichlet character (mod K).

Remark 1. This theorem for K = 1 was proved in [3].

Remark 2. The proof is based upon a theorem of O. Klurman [5] which is referred here as

Lemma 1. Let
$$f \in \mathcal{M}^*$$
, $|f(n)| = \begin{cases} 1 & \text{if } (n, K) = 1 \\ 0 & \text{if } (n, K) > 1 \end{cases}$

and

(1.5)
$$\frac{1}{\log 2x} \sum_{n \le x} \frac{|\Delta_K f(n)|}{n} \to 0 \quad (x \to \infty).$$

Then

$$f(n) = n^{i\tau}\chi(n) \quad \text{for every} \quad n \in \mathbb{N}, \tau \in \mathbb{R},$$

where χ is a Dirichlet character (mod K). If f is such a function, then (1.5) holds true.

Remark 3. By using the method of J.-L Mauclaire and L. Murata [6], we have Lemma 2. If $f \in \mathcal{M}$,

$$|f(n)| = \begin{cases} 1 & \text{if } (n, K) = 1\\ 0 & \text{if } (n, K) > 1 \end{cases}$$

and (1.5) holds, then $f \in \mathcal{M}^*$, consequently

$$f(n) = n^{i\tau} \chi(n) \quad \text{for every} \quad n \in \mathbb{N}, \tau \in \mathbb{R}$$

where χ is a Dirichlet character (mod K).

2. Proof of Lemma 2

Let q be a prime, $q \nmid K$. It is enough to prove that $f(q^k) = f(q)^k$ for every q and $k = 1, 2, \ldots$

Let

$$S_{\ell}(q) = q^{\ell-1} + \dots + q + 1 \quad (\ell = 1, 2, \dots).$$

Thus

$$S_{\ell}(q) = qS_{\ell-1}(q) + 1 \quad (\ell = 2, 3, \ldots).$$

Since |f(m)| = 1 if (m, qK) = 1, therefore

(2.1)
$$\lim_{x \to \infty} \frac{1}{\log x} \sum_{\substack{m \le x \\ (m, Kq) = 1}} \frac{|f(m)|}{m} = c_q > 0.$$

Let $A \in \mathbb{N}$. Since

$$|\Delta_{AK}f(n)| \le \sum_{j=0}^{A-1} |\Delta_K f(m+jK)|,$$

therefore

(2.2)
$$\lim_{x \to \infty} \frac{1}{\log x} \sum_{\substack{m \le x \\ (m, Kq) = 1}} \frac{|f(q^k m + KS_k(q)) - f(q^k)f(m)|}{mq} = 0.$$

Furthermore,

$$f(q^{\ell}m + KS_{\ell}(q)) - f\left(q^{\ell}m + K(S_{\ell}(q) - 1)\right) =$$

= $f(q^{\ell}m + KS_{\ell}(q)) - f(q)f\left(q^{\ell-1}m + KS_{\ell-1}(q)\right).$

Applying this for $\ell = 1, \ldots, k$, we obtain that

$$\frac{1}{\log x} \sum_{\substack{m \le x \\ (m, Kq) = 1}} \frac{|f(q^k m + KS_k(q)) - f(q)^k f(m)|}{mq} \to 0,$$

which by (2.2) implies that

$$|f(q^k) - f(q)^k| \sum_{\substack{m \le x \\ (m, Kq) = 1}} \frac{|f(m)|}{m} = O(\log x),$$

and this by (2.1) implies that $f(q^k) = f(q)^k$ for every $k \in \mathbb{N}$.

3. Proof of Theorem 1

If f is a solution , then F(n) := |f(n)| is a solution also.

Let $p \in \mathcal{P}, (p, K) = 1, Q = p^{\alpha}$. For some $n \in \mathbb{N}$, let $n \equiv \ell_n K \pmod{Q}$, $\ell_n \in \{0, \ldots, Q-1\}$ and let n_1 be defined by the relation $n = Qn_1 + \ell_n K$. Then

(3.1)
$$|F(n) - F(Qn_1)| = |\Delta_{K\ell_n} F(Qn_1)|.$$

If $p|n_1$, then $(p, n_1 - K) = 1$, and so

$$\begin{split} F(Qn_1)) &= F(Q(n_1 - K)) + \Delta_{QK} F(Q(n_1 - K)) = \\ &= F(Q) F(n_1 - K) + \Delta_{QK} F(Q(n_1 - K)) = \\ &= F(Q) F(n_1) - F(Q) \Delta_K F(n_1 - K) + \Delta_{QK} F(Q(n_1 - K)), \end{split}$$

so, hence and from (3.1), we get

(3.2)
$$|F(n) - F(Q)F(n_1)| \le F(Q)|\Delta_K F(n_1 - K)| + |\Delta_{QK} F(Q(n_1 - K))| + |\Delta_{K\ell_n} F(Qn_1)|.$$

Let us assume that Q is fixed. $n_1 = m$ at the mapping $n \to n_1$ occurs for Q distinct n, furthermore $n_1 \leq n/Q$ and $n_1 \geq 1$ if $n \geq QK$.

Since

$$|\Delta_{Ks}F(m)| \le \sum_{j=0}^{s-1} |\Delta_KF(m+jK)|,$$

from (3.2) we obtain that

(3.3)
$$\frac{1}{\log x} \sum_{n \le x} \frac{1}{n} |F(n) - F(Q)F(n_1)| < C$$

if $x \ge 2$. C may depend on Q.

Let

$$E_F(x) = \sum_{n \le x} \frac{|F(n)|}{n}$$

From (3.3) we obtain that

(3.4)
$$E_F(x) \le F(Q)E_F\left(\frac{x}{Q}\right) + c_1,$$

and

(3.5)
$$F(Q)E_F\left(\frac{x-QK}{Q}\right) - C \le E_F(x).$$

If F(Q) < 1, then from (3.4) we obtain that $\limsup E_F(x) < \infty$, which contradicts our assumption. Thus $F(n) \ge 1$ for every *n* coprime to *K*.

Let $F(Q) = Q^{\eta}, \ \eta \ge 0$. If $\eta = 0$, then $E_F(x) = O(\log x)$ easily follows from (3.4).

Assume that $\eta > 0$. Let A > C + 1, x_0 be so large that $E_F(x_0) \ge A$. Let

$$x_{\nu+1} = Qx_{\nu} + QK \quad (\nu = 1, 2, \ldots).$$

Thus from (3.5)

$$E_F(x_{\nu+1}) \ge Q^{\eta} E_F(x_{\nu}) - E_F(x_{\nu+1}) \ge Q^{\eta} E_F(x_{\nu}) - C \quad (\nu = 1, 2, \ldots),$$

and this implies that

$$E_F(x_{\nu+1}) \ge c_2 Q^{(\nu+1)\eta}$$

where c_2 is a positive constant, and so

$$E_F(x) > c_3 x^{\eta}$$

with some positive constant c_3 if x is large.

On the other hand, from (3.4) we obtain that

$$E_F(x) \le c_4 x^\eta$$

with some positive constant c_4 if x is large. Hence we obtain that

$$F(Q) = Q^{\eta} \quad \eta \in \mathbb{R}, \eta \ge 0,$$

consequently η is a constant,

$$F(n) = \begin{cases} n^{\eta} & \text{if } (n, K) = 1\\ 0 & \text{if } (n, K) > 1 \end{cases}$$

If $\eta = 0$, from (3.4) we obtain that $E_f(x) = O(\log x)$.

Since $\Delta_K f(n) \asymp n^{\eta-1}$, therefore $\eta \leq 1$.

Let us write $g(n) = f(n) \cdot n^{-\eta}$. Then g(n) is multiplicative, |g(n)| = 1 if (n, K) = 1 and g(n) = 0, if (n, K) > 1.

We have

$$\Delta_{K}f(n) = (n+K)^{\eta}g(n+K) - n^{\eta}g(n) =$$

= $n^{\eta}\Delta_{K}g(n) + \left[(n+K)^{\eta} - n^{\eta}\right]g(n+K),$

and so

$$\sum_{n \le x} \frac{n^{\eta} |\Delta_K g(n)|}{n} \le \sum_{n \le x} \frac{|\Delta_K f(n)|}{n} + \sum_{n \le x} \frac{C n^{\eta-1}}{n} = O(\log x).$$

Consequently we obtain that

$$\frac{1}{\log x} \sum_{\substack{n \le x \\ (n,K)=1}} \frac{|\Delta_K g(n)|}{n} \to 0 \quad (x \to \infty).$$

From Lemma 1, 2 we obtain that

$$g(n) = n^{i\tau}\chi(n), \quad \tau \in \mathbb{R},$$

where χ is a Dirichlet character (mod K).

Theorem 1 is proved.

References

- Indlekofer, K.-H. and I. Kátai, Multiplicative functions with small increments, Acta Math. Hungar., 55(1-2) (1990), 97–101.
- [2] Indlekofer, K.-H. and I. Kátai, On some pairs of multiplicative functions, Annales Univ. Sci. Budapest, Sect. Math., 31 (1988), 129–134.
- [3] Indlekofer, K.-H., I. Kátai and B.M. Phong, Multiplicative functions with small increment I., Annales Univ. Sci. Budapest., Sect. Comp., 45 (2016), 261–267.
- [4] Klurman, O., Correlations of multiplicative functions and applications, arXiv:1603.08453v1 [math.NT] 28 Mar 2016.
- [5] Klurman, O., The proof is given in a letter to I. Kátai and B. M. Phong, 2016.
- [6] Mauclaire, J.-L. and L. Murata, On the regularity of arithmetic multiplicative functions, *Proc. Japan Acad.* 56 (1980), 438–440.
- [7] Phong, B.M., On some pairs of multiplicative functions with small increments, Ann. Univ. Sci. Budapest. Sect. Comput., 28 (2008), 97–106.

K.-H. Indlekofer

Faculty of Informatics Electrical Faculty of Informatics University of Paderborn D-33098 Paderborn Warburger Str. 100 Germany k-heinz@uni-paderborn.de I. Kátai and B. M. Phong Department of Computer Algebra Faculty of Informatics Eötvös Loránd University H-1117 Budapest, Pázmány Péter sétány 1/C Hungary katai@inf.elte.hu bui@inf.elte.hu