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Abstract. The functional equation of type

f(α + n3 + m3) = g(α) + h(n3) + h(m3)

is investigated, where n, m ∈ N, α ∈ A and A ⊆ N satisfies some conditions.
It follows from our results that if A = P (the set of all prime numbers), then
there exist numbers A, D, Q such that h(n3) = An3 +D and g(p) = Ap+Q
for every p ∈ P, n ∈ N. Similarly, if A = {n2|n ∈ N}, then h(n3) = An3+D
and g(m2) = Am2 + R for every n, m ∈ N, where A, D, R are suitable
numbers.

1. Introduction

Let P, N and C be the set of primes, positive integers and complex numbers,
respectively. For the sets A, B ⊆ N we define A+B,A+ 2B,A−B as follows:

A+ B := {a + b | a ∈ A, b ∈ B}, A+ 2B := {a + b + b′ | a ∈ A, b, b′ ∈ B}

and
A− B := {a− b | a ∈ A, b ∈ B, a > b}.

Let
M := {p1 + p2 + p3 | p1, p2, p3 ∈ P}.
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Recently, by using the result of H. A. Helfgott [1] concerning the ternary Gold-
bach conjecture, I. Kátai and B. M. Phong [2] proved that if the functions
f : M → C, g : P → C satisfy the condition

f (p1 + p2 + p3) = g(p1) + g(p2) + g(p3)

for every p1, p2, p3 ∈ P, then there exist suitable constants A, B ∈ C such that

f(n) = An + 3B and g(p) = Ap + B for all n ∈ M, p ∈ P.

It is proved in [3] that if the sets

A = {a1 < a2 < · · · } ⊆ N, B := {m2 | m ∈ N}

and the arithmetical functions f : A+B → C, g : A → C and h : B → C satisfy
the equation

f(a + n2) = g(a) + h(n2) for all a ∈ A, n ∈ N,

then the assumption 8N ⊆ A − A implies that there is a complex number A
such that

g(a) = Aa+g̃(a), h(n2) = An2+h̃(n) and f(a+n2) = A(a+n2)+g̃(a)+h̃(n)

hold for all a ∈ A, n ∈ N, furthermore

g̃(a) = g̃(b) if a ≡ b (mod 120), (a, b ∈ A)

and
h̃(n) = h̃(m) if n ≡ m (mod 60), (n, m ∈ N).

By assuming the unknown hypothesis that every positive number of the
form 8n is the difference of two primes, it follows from [3] that

F (p + n2) = G(p) + H(n2) for all p ∈ P, n ∈ N.

then there are complex numbers A, A2, D such that

G(p) = Ap + G(p)−Ap, G(2) = A + G(1) + A2,

H(n2) = An2 + A2χ2(n) + D

and
F (p + n2) = A(p + n2) + G(p)−Ap + A2χ2(n) + D

for all p ∈ P \ {2}, n ∈ N, where χ2(n) is the Dirichlet character (mod 2), that
is χ2(0) = 0, χ2(1) = 1.

The equation f(p + n4 + m4) = g(p) + h(n4) + h(m4) is investigated in [5].
Some similar result was proved for this equation.

In this paper we shall prove the following
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Theorem 1. Assume that the sets

A = {a1 < a2 < · · · } ⊆ N, B := {m3 | m ∈ N}

and the arithmetical functions f : A + 2B → C, g : A → C and h : B → C
satisfy the equation

(1.1) f(α + n3 + m3) = g(α) + h(n3) + h(m3) for all α ∈ A, n, m ∈ N.

If

(1.2) 126 ∈ A−A and 3402 ∈ A−A,

then there are complex numbers A, B,C, D and functions F : A + 2B → C,
G : P → C such that

h(n3) = An3 + Bχ7(n) + Cχ3(n) + D for all n ∈ N,

g(α) = Aα + G(α), G(α) = O(1)

and
f(β) = Aβ + F (β), F (α + n3 + m3) = G(α) + H(n) + H(m)

holds for α ∈ A, n, m ∈ N and β ∈ A + 2B, where χ3(n) (mod 3), χ7(n)
(mod 7) are non-principal Dirichlet characters, i.e.

χ3(0) = 0, χ3(1) = 1, χ3(2) = −1,

χ7(0) = 0, χ7(1) = χ7(2) = χ7(4) = 1, χ7(3) = χ7(5) = χ7(6) = −1.

Corollary 1. Let A := {M,M + 126, M + 3402} ⊆ N. If

f(α + n3 + m3) = g(α) + h(n3) + h(m3) for every α ∈ A, n, m ∈ N,

then all assertions of Theorem 1 are satisfied.

Corollary 2. Assume that the arithmetical functions f, g, h satisfy the condi-
tion

f(p + n3 + m3) = g(p) + h(n3) + h(m3) for all p ∈ P, n, m ∈ N.

Then there are complex numbers A, D, Q such that

h(n3) = An3 + D, g(p) = Ap + Q, f(β) = Aβ + Q + 2D

hold for p ∈ P, n ∈ N and β ∈ P + 2B.

By using a similar argument as in the proof of Theorem 1, we could prove
the following
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Theorem 2. Assume that the sets

A = {a1 < a2 < · · · } ⊆ N, B := {m3 | m ∈ N}

and the arithmetical functions f : A + 2B → C, g : A → C and h : B → C
satisfy the equation (1.1). If

(1.3) 1008 ∈ A−A and 8064 ∈ A−A,

then all assertions of Theorem 1 are satisfied.

Corollary 3. Let A := {M,M + 1008, M + 8064} ⊆ N. If

f(α + n3 + m3) = g(α) + h(n3) + h(m3) for every α ∈ A, n, m ∈ N,

then all assertions of Theorem 1 are satisfied.

Corollary 4. Assume that the arithmetical functions f, g, h satisfy the condi-
tion

f(k2 + n3 + m3) = g(k2) + h(n3) + h(m3) for every k, n, m ∈ N.

Then there are complex numbers A, D, R such that

h(n3) = An3 + D, g(k2) = Ak2 + R, f(β) = A(β) + R + 2D

hold for k, n ∈ N and β ∈ P + 2B.

Remark 1. It was proved in [4] that if f : N → C is multiplicative, and

f(p + m3) = f(p) + f(m3), f(π2) = f(π)2

for all p, π ∈ P and m ∈ N, then f(n) = n for n ∈ N.

Remark 2. Theorem 1 and Theorem 2 remain valid if f, g, h maps into an
arbitrary Abelian group.

Remark 3. We hope that Theorem 1 and Theorem 2 remain valid if f, g, h
satisfy (1.1) without (1.2) and (1.3).

2. Lemmas

In this section, we assume that the arithmetical functions f, g, h satisfy (1.1)
and (1.2). Let

Sn := h(n3).
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Lemma 1. For every n ∈ {5, 6, · · · , 24}, we have

(2.1) Sn = c1(n)S1 + c2(n)S2 + c3(n)S3 + c4(n)S4,

where c1(n), c2(n), c3(n), c4(n) are given in the following table:

Table 1

n (c1(n), c2(n), c3(n), c4(n)) n (c1(n), c2(n), c3(n), c4(n))

5 (−2, 1
2 , 1, 3

2 ) 15 (−53, 1
2 , 0, 107

2 )

6 (−3, 0, 1, 3) 16 (−64, 0, 0, 65)

7 (− 9
2 , − 1

4 , 1
2 , 21

4 ) 17 (−78, 1
2 , 1, 155

2 )

8 (−8, 1, 0, 8) 18 (−92, 1
2 , 0, 185

2 )

9 (−11, 1
2 , 0, 23

2 ) 19 (−108, − 1
2 , 1, 217

2 )

10 (−15, − 1
2 , 1, 31

2 ) 20 (−127, 1
2 , 1, 253

2 )

11 (−21, 1, 0, 21) 21 (− 293
2 , 1

4 , 1
2 , 587

4 )

12 (27, 0, 1, 27) 22 (−168, 0, 0, 169)

13 (−34, − 1
2 , 1, 69

2 ) 23 (−193, 1, 0, 193)

14 (− 87
2 , 3

4 , 1
2 , 173

4 ) 24 (−219, 0, 1, 219)

Proof. First we note from (1.2) that there are u1, u
′
1, u2, u

′
2 ∈ A such that

126 = u1 − u′
1 and 3402 = u2 − u′

2.

Let
E1 := g(u1)− g(u′

1) and E2 := g(u2)− g(u′
2).

For numbers a, b, c, d ∈ N, we define I1, I2 as follows:

I1 := {(a, b, c, d)| a3 + b3 − c3 − d3 = 126 = u1 − u′
1}

and
I2 := {(a, b, c, d)| a3 + b3 − c3 − d3 = 3402 = u2 − u′

2}.

It is obvious from (1.1) that

(2.2) Sa + Sb − Sc − Sd = Ei if (a, b, c, d) ∈ Ii (i = 1, 2).

By applying Maple program, we computed that the following elements (a, b, c, d)
are

in I1: (4, 4, 1, 1), (1,6,3, 4), (5, 9, 6, 8), (9, 9, 1, 11), (9, 12, 10, 11),
(10, 11, 2, 13), (11, 13, 3, 15), (11, 19, 4, 20), (12, 15, 4,17), (13, 17, 5, 19),
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(14, 19, 6, 21), (15, 21, 7, 23), (16, 23, 8, 25), (20, 22, 21, 21), (18, 22, 9, 25),
(6,27,13, 26), (17, 25, 9, 27), (12, 29, 23, 24), (18, 27, 10, 29)
and the following elements (a, b, c, d) are

in I2: (12, 12, 3, 3), (1, 17, 8, 10), (2, 25, 4, 23), (3, 18, 9, 12),
(5, 22, 8, 19), (7, 20, 13, 14), (15, 27, 18, 24).

Since (4, 4, 1, 1) ∈ I1 and (12, 12, 3, 3) ∈ I2, then from (2.2) we have
E1 = 2(S4−S1), E2 = 2(S12−S3). It is clear from (2.2) that for all (a, b, c, d) ∈
Ii (i = 1, 2), we have

Sa + Sb − Sc − Sd = Ei (i = 1, 2).

Thus we obtain the system of 24 equations with 28 unknowns, namely S1, S2, · · · ,
· · · , S27 and S29 are unknowns. We solve this linear system and we get solutions
as follows:

S5 = −2S1 + 1
2S2 + S3 + 3

2S4, S6 = −3S1 + S3 + 3S4,

S7 = − 9
2S1 − 1

4S2 + 1
2S3 + 21

4 S4, S8 = −8S1 + S2 + 8S4,

S9 = −11S1 + 1
2S2 + 23

2 S4, S10 = −15S1 − 1
2S2 + S3 + 31

2 S4

S11 = −21S1 + S2 + 21S4, S12 = −27S1 + S3 + 27S4,

S13 = −34S1 − 1
2S2 + S3 + 69

2 S4, S14 = − 87
2 S1 + 3

4S2 + 1
2S3 + 173

4 S4,

S15 = −53S1 + 1
2S2 + 107

2 S4, S16 = −64S1 + 65S4,

S17 = −78S1 + 1
2S2 + S3 + 155

2 S4, S18 = −92S1 + 1
2S2 + 185

2 S4,

S19 = −108S1 − 1
2S2 + S3 + 217

2 S4 S20 = −127S1 + 1
2S2 + S3 + 253

2 S4,

S21 = − 293
2 S1 + 1

4S2 + 1
2S3 + 587

4 S4, S22 = −168S1 + 169S4,

S23 = −193S1 + S2 + 193S4, S24 = −219S1 + S3 + 219S4

S25 = −247S1 + 248S4, S26 = −279S1 + 1
2S2 + S3 + 557

2 S4,

S27 = −312S1 + S3 + 312S4, S29 = −387S1 + S2 + 387S4.

Thus, we proved that (2.1) holds with the c1(n), c2(n), c3(n), c4(n) that are
given in Table 1. We note from these values that

E1 = 2(S4 − S1) and E2 = 2(S12 − S3) = 54(S4 − S1).

Lemma 1 is proved. �
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Lemma 2. We have

(2.3) Sn+24 = Sn+17 + Sn+16 + Sn+15 − Sn+9 − Sn+8 − Sn+7 + Sn + E,

for all n ∈ N, where E := 48(S4 − S1).

Proof. It is easy to check that

(2.4) (2n + 7t)3 + (n + 8t)3 − (2n + 9t)3 − n3 = 126t3

holds for all n, t ∈ N. Thus, by applying (2.4) with t = 1 and t = 3, we have

(2n + 7)3 + (n + 8)3 − (2n + 9)3 − n3 = 126 = u1 − u′
1

and
(2n + 21)3 + (n + 24)3 − (2n + 27)3 − n3 = 3402 = u2 − u′

2.

Thus, we infer from (2.2) that

(2.5)

{
S2n+9 − S2n+7 − Sn+8 + Sn = −E1 = −2(S4 − S1)
S2n+27 − S2n+21 − Sn+24 + Sn = −E2 = −54(S4 − S1)

for all n ∈ N. Since

S2n+27−S2n+21 =
(
S2n+27−S2n+25

)
+
(
S2n+25−S2n+23

)
+
(
S2n+23−S2n+21

)
,

it follows directly from (2.5) that

Sn+24 = Sn+17 + Sn+16 + Sn+15 − Sn+9 − Sn+8 − Sn+7 + Sn + E,

for all n ∈ N, where

E = E2 − 3E1 = [54(S4 − S1)]− 3[2(S4 − S1)] = 48(S4 − S1).

Lemma 2 is proved. �

Lemma 3. We have

(2.6) Sn = An3 + Bχ7(n) + Cχ3(n) + D for every n ∈ N,

where ⎧⎪⎪⎨⎪⎪⎩
A =

S4 − S1

63
, B =

2S1 + 7S2 − 14S3 + 5S4

28
,

C =
8S1 − 9S2 + S4

18
, D =

2S1 + S2 + 2S3 − S4

4
and χ3(n) (mod 3), χ7(n) (mod 7) are non-principal Dirichlet characters, i.e.

χ3(0) = 0, χ3(1) = 1, χ3(2) = −1,

χ7(0) = 0, χ7(1) = χ7(2) = χ7(4) = 1, χ7(3) = χ7(5) = χ7(6) = −1.
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Proof. With the help of computer, using the definition of A, B,C, D and
Lemma 1, one can check that (2.6) is true for positive integers 1 ≤ n ≤ 24.

Assume that (2.6) holds for n = k, · · · , k + 23, where k ≥ 1. We prove that
(2.6) holds for n = k + 24.

From (2.3), and using the assumption of induction, we obtain that

Sk+24 = Sk+17 + Sk+16 + Sk+15 − Sk+9 − Sk+8 − Sk+7 + Sk + E =

= A
[
(k +17)3 +(k +16)3 +(k +15)3− (k +9)3− (k +8)3− (k +7)3 +k3

]
+

= B
[
χ7(k + 17) + χ7(k + 16) + χ7(k + 15)− χ7(k + 9)− χ7(k + 8)−

−χ7(k + 7) + χ7(k)
]

+ C
[
χ3(k + 17) + χ3(k + 16) + χ3(k + 15)−

−χ3(k + 9)− χ3(k + 8)− χ3(k + 7) + χ3(k)
]

+ D + E =

= A
[
(k + 24)3 − 3024

]
+ Bχ7(k + 17) + Cχ3(k) + D + E =

= A(k + 24)3 + Bχ7(k + 24) + Cχ3(k + 24) + (3024A− E) + D =

= A(k + 24)3 + Bχ7(k + 24) + Cχ3(k + 24) + D,

which proves that (2.6) holds for n = k + 24, and so it is true for every n ∈ N.
The proof of (2.6) is finished.

Lemma 3 is proved. �

Lemma 4. Let M ∈ N, M ≡ 0 (mod 6). Then the equation

(2.7) x3 + y3 − z3 − t3 = M

is solvable in N.

Proof. Let M = 6.2αm, α ≥ 0, (m, 2) = 1. One can check easily that

(x, y, z, t) =

⎧⎪⎨⎪⎩
(
2α + m+1

2 , 2α − m+1
2 , 2α + m−1

2 , 2α − m−1
2

)
if 2α+1 > m(

2α + m+1
2 , m−1

2 − 2α, 2α + m−1
2 , m+1

2 − 2α
)

if 2α+1 < m

is a solution of (2.7) except if m = 2α+1 ± 1.
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Assume that M = 6.2αm = 3.2α+1(2α+1 ± 1). If α ≤ 3, then the solutions
of (2.7) are:

(x, y, z, t,M) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(11, 20, 4, 21, 6), (2, 4, 3, 3, 18) if α = 0,

(1, 14, 8, 13, 36), (9, 11, 10, 10, 60) if α = 1,

(3, 20, 10, 19, 168), (1, 7, 4, 4, 216) if α = 2,

as one can see easily.
Thus, we assume that M = 3.2α+1(2α+1 ± 1) and α ≥ 3. In this case, if

n = 2α−3(2α+1 ± 1), then

(n + 3)3 + (n− 3)3 − (n + 1)3 − (n− 1)3 = 48n = 3.2α+1(2α+1 ± 1) = M.

Lemma 4 is proved. �

3. Proof of Theorem 1

Let
H(n) := Bχ7(n) + Cχ3(n) + D for every n ∈ N.

Then, from Lemma 3, we have h(n3) = Sn = An3 + H(n) and so H(n) is
bounded.

Now we prove that

g(α) = Aα + G(α) and G(α) = O(1) for every α ∈ A.

For each α ∈ A we denote by α the smallest element of A, for which
α − α ≡ 0 (mod 6). It is shown in Lemma 4 that there are a, b, c, d ∈ N such
that

α− α = a3 + b3 − c3 − d3.

Then from (1.1) we have

g(α) + Sa + Sb = g(α) + Sc + Sd,

which implies that

g(α) = A
[
a3 + b3 − c3 − d3

]
+ B

(
χ7(a) + χ7(b)− χ7(c)− χ7(d)

)
+

+ C
(
χ3(a) + χ3(b)− χ3(c)− χ3(d)

)
+ g(α) = Aα + G(α),
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where

G(α) = g(α)−Aα + B
(
χ7(a) + χ7(b)− χ7(c)− χ7(d)

)
+

+C
(
χ3(a) + χ3(b)− χ3(c)− χ3(d)

)
.

It is obvious that G(α) = O(1) for all α ∈ A.
Finally, if we define F (β) := f(β)−Aβ, then we have

F (α + n3 + m3) = f(α + n3 + m3)−A(α + n3 + m3) =

= g(α) + h(n3) + h(m3)−A(α + n3 + m3) = G(α) + H(n) + H(m)

for all α ∈ A, n,m ∈ N.

Theorem 1 is proved. �

4. Proof of Theorem 2

We shall use an argument which is similar but more complicated than that
was used in the proof of Theorem 1.

First we note from (1.3) that there are v1, v
′
1, v2, v

′
2 ∈ A such that

1008 = v1 − v′1 and 8064 = v2 − v′2.

Let
e1 := g(v1)− g(v′1) and e2 := g(v2)− g(v′2).

We denote by J1 and J2 the following sets:

J1 := {(a, b, c, d)| a3 + b3 − c3 − d3 = 1008}

and
J2 := {(a, b, c, d)| a3 + b3 − c3 − d3 = 8064}.

It is obvious from (1.1) that

(4.1) Sa + Sb − Sc − Sd = ei if (a, b, c, d) ∈ Ji (i = 1, 2).

By applying Maple program, we computed that the following 33 elements
(a, b, c, d) are

in J1: (8, 8, 2, 2), (1, 18, 9, 16), (1, 23, 8, 22), (2, 12, 6,8), (2, 19, 3, 18),
(3, 13, 6, 10), (3, 29, 18, 26), (5, 30, 12, 29), (6, 11, 3, 8), (6, 23, 15, 20),



Characterization of arithmetical functions with functional equation 233

(8, 26, 17, 23), (8, 39, 23, 36), (10, 18, 12, 16), (11, 34, 19, 32), (16, 17, 1, 20),
(17, 22, 9, 24), (18, 18, 2, 22), (20, 22, 4, 26), (20, 28, 21, 27), (21, 24, 5, 28),
(22, 26, 6, 30), (22, 38, 8, 40), (23, 28, 7, 32), (24, 30, 8, 34), (25, 32, 9, 36),
(26, 34, 10, 38), (28, 38, 12, 42), (29, 40, 13, 44), (30, 42, 14, 46),
(31, 44, 15, 48), (32, 46, 16, 50) (33, 41, 3, 47), (38, 38, 17, 47)
and the following 14 elements belong

to J2: (16, 16, 4, 4), (1, 23, 9, 15), (1, 23, 2, 16), (2, 46, 16, 44),
(3, 25, 9, 19), (9, 39, 11, 37), (11, 19, 1, 5), (11, 31, 15, 27), (13, 29, 21, 21),
(15, 33, 19, 29), (15, 41, 17, 39), (21, 35, 27, 29), (27, 43, 1, 45),
(29, 43, 22, 44).

Since (8, 8, 2, 2) ∈ J1 and (16, 16, 4, 4) ∈ J2, then from (4.1) we have
e1 = 2(S8 − S2), e2 = 2(S16 − S4). Thus, from above values of J1, J2 and
from (4.1), we obtain the system of 45 equations with 49 unknowns, namely
S1, S2, · · · , S48 and S50 are unknowns. We solve this linear system and with
computer one can check that

(4.2) Sn = An3 + Bχ7(n) + Cχ3(n) + D

holds for all n ≤ 48, where A, B,C, D are given in Lemma 3. We also have
e1 = 16(S4 − S1) and e2 = 128(S4 − S1).

Finally, by applying (2.4) with t = 23 and t = 43, we get by a similar
argument as in the proof of Lemma 2 that

(4.3) Sn+32 = Sn+25 + Sn+23 − Sn+9 − Sn+7 + Sn + e for every n ∈ N,

where e = e2 − 2e1 = 96(S4 − S1). From (4.3) we obtain that (4.2) holds for
every n ∈ N.

The remaining assertions of Theorem 2 are obtained on the same way as in
the proof of Theorem 1, we omit it.

Theorem 2 is proved. �

5. Proofs of corollaries

Corollary 1 and Corollary 3 are direct consequences of Theorem 1 and
Theorem 2, respectively.

Proof of Corollary 2. It is true that 126 = 131 − 5 ∈ P − P and 3402 =
= 3407−5 ∈ P−P, therefore the condition (1.2) and all assertions of Theorem 1
hold.
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For numbers a, b, c, d ∈ N and p, q ∈ P, we define T as follows:

T := {(p, a, b, q, c, d)| p + a3 + b3 = q + c3 + d3}.

It is obvious from (1.1) that

(5.1) g(p) + Sa + Sb = g(q) + Sc + Sd if (p, a, b, q, c, d) ∈ T.

We computed that the following elements (p, a, b, q, c, d) are in T : (17, 1, 1, 3, 2, 2),
(5, 1, 3, 17, 2, 2), (19, 1, 1, 5, 2, 2), (7, 1, 3, 19, 2, 2), (59, 1, 1, 7, 3, 3), (59, 1, 2, 3, 1, 4).

Repeated use of (5.1) gives

g(17) = g(3) + 2S2 − 2S1,

g(5) = g(17) + 2S2 − (S1 + S3) = g(3) + 4S2 − 3S1 − S3,

g(19) = g(5) + 2S2 − 2S1 = g(3) + 6S2 − 5S1 − S3,

g(7) = g(19) + 2S2 − (S1 + S3) = g(3) + 8S2 − 6S1 − 2S3,

g(59) = g(7) + 2S3 − 2S1 = g(3) + 8S2 − 8S1.

Thus we have
S4 = g(59) + S2 − g(3) = 9S2 − 8S1.

Since (29, 1, 1, 3, 1, 3), (37, 2, 3, 7, 1, 4), (11, 1, 3, 37, 1, 1) and (29, 3, 3, 11, 2, 4)
are in T , we obtain from (5.1) that

g(29) = g(3) + S3 − S1 = g(3)− S1 + S3,

g(37) = g(7) + S1 + S4 − S2 − S3 = g(3) + 16S2 − 13S1 − 3S3,

g(11) = g(37) + 2S1 − (S1 + S3) = g(3) + 16S2 − 12S1 − 4S3,

19S1 + 7S3 − 26S2 = g(29) + 2S3 − (g(11) + S2 + S4) = 0.

This gives

S3 =
26
7

S2 −
19
7

S1.

Consequently

A =
S4 − S1

63
=

9S2 − 8S1 − S1

63
=

S2 − S1

7
,

B =
2S1 + 7S2 − 14( 26

7 S2 − 19
7 S1) + 5(9S2 − 8S1)

28
= 0,

C =
8S1 − 9S2 + S4

18
=

8S1 − 9S2 + (9S2 − 8S1)
18

= 0

and
D =

2S1 + S2 + 2S3 − S4

4
= −S2 − 8S1

7
.
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Now we prove that

(5.2) g(p) = Ap + Q for every p ∈ P,

where

Q := g(2)− 2A.

It is obvious that (5.2) holds for p = 2. Now we prove that (5.2) holds for
p = 3.

Since (47, 1, 2, 2, 3, 3) ∈ T , (61, 1, 1, 47, 2, 2) ∈ T , (61, 1, 2, 5, 1, 4) ∈ T and
(13, 3, 3, 2, 1, 4) ∈ T , therefore

g(47) = g(2) + 2S3 − S2 − S1 = g(2)− 45
7

S1 +
45
7

S2 = 47A + Q,

g(61) = g(47) + 2S2 − 2S1 = g(2)− 59
7

S1 +
59
7

S2 = 61A + Q,

g(2)− g(3) + A = g(61) + S2 − g(5)− S4 = 0

g(13) = g(2) + S2 + S4 − 2S3 = g(2)− 11
7

S1 +
11
7

S2 = 13A + Q.

These relations with the above computations show that

g(3) = g(2) + A = 3A + Q.

Therefore the above computations show that (5.2) holds for p ≤ 19.

We shall complete the proof of (5.2). For each p ∈ P, p > 19 let p ∈ {5, 7}
be that integer for which p−p ≡ 0 (mod 6). In Lemma 4 we proved that there
are a, b, c, d ∈ N such that

p− p = c3 + d3 − a3 − b3.

Then from (5.1) we have

g(p) + Sa + Sb = g(p) + Sc + Sd,

which implies

g(p) = A
[
c3 + d3 − a3 − b3

]
+ Ap + Q = A(p− p) + Ap + Q = Ap + Q.

The proof of Corollary 2 is completes. �
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Proof of Corollary 4. Let now

A := {n2 ∈ N}.

Since 1008 = 322 − 42 ∈ A − A and 8064 = 902 − 62 ∈ A − A, therefore the
condition (1.3) and so all assertions of Theorem 2 hold, i. e.

h(n3) = An3 + Bχ7(n) + Cχ3(n) + D for every n ∈ N,

where A, B,C, D and χ7(n), χ3(n) are defined in Lemma 3.
For numbers a, b, c, d ∈ N and u, v ∈ N, we define H as follows:

H := {(u, a, b, v, c, d)| u2 + a3 + b3 = v2 + c3 + d3}.

It is obvious from (1.1) that

(5.3) g(u2) + Sa + Sb = g(v2) + Sc + Sd if (u, a, b, v, c, d) ∈ R.

The following elements (u, a, b, v, c, d) are in H: (1, 1, 7, 2, 5, 6), (2, 1, 3, 4, 2, 2),
(1, 3, 10, 2, 8, 8), (1, 3, 11, 4, 7, 10). Thus, an application of (5.3) gives

g(22) = g(12) + S1 + S7 − S5 − S6, g(42) = g(22) + S1 + S3 − 2S2

and

g(22) = g(12) + S3 + S10 − 2S8, g(42) = g(12) + S3 + S11 − S7 − S10.

These imply with (2.6) that

(5.4) S1 + S7 − S5 − S6 − (S3 + S10 − 2S8) = 0

and
g(12) + S3 + S11 − S7 − S10 − [g(22) + S1 + S3 − 2S2] = 0,

consequently

(5.5) 2S1 − 2S2 − S5 − S6 + 2S7 + S10 − S11 = 0.

From (5.4) and (5.5) we infer that

S3 = −19
7

S1 +
26
7

S2 and S4 = −8S1 + 9S2,

which give

A =
S2 − S1

7
, B = C = 0 and D = −S2 − 8S1

7
.

Finally, without any important change in the proof Corollary 2, we could
prove that g(n2) = An2+(g(1)−A) holds for all n ∈ N, which with R = g(1)−A
proves Corollary 4.

Corollary 4 is proved. �
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