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Abstract. The functional equation of type
Fla+n® +m®) = g(a) + h(n®) + h(m?)

is investigated, where n,m € N, o € A and A C N satisfies some conditions.
It follows from our results that if A = P (the set of all prime numbers), then
there exist numbers A, D, Q such that h(n®) = An®>+ D and g(p) = Ap+Q
for every p € P, n € N. Similarly, if A = {n?|n € N}, then h(n®) = An®*+D
and g(m?) = Am? 4+ R for every n,m € N, where A, D, R are suitable
numbers.

1. Introduction

Let P,N and C be the set of primes, positive integers and complex numbers,
respectively. For the sets A, B C N we define A+ B, A+ 25, A — B as follows:

A+B:={a+blac AbeB}, A+2B:={a+b+V |ac Abl B}

and
A-B:={a—b |a€ A be B,a> b}.

Let
M :={p1 +p2+p3| p1,p2,p3 € P}
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Recently, by using the result of H. A. Helfgott [1] concerning the ternary Gold-
bach conjecture, I. Kdtai and B. M. Phong [2] proved that if the functions
f:9M —C, g: P — C satisfy the condition

f(p1+p2+p3) = 9(p1) + 9(p2) + 9(p3)
for every p1,p2,p3 € P, then there exist suitable constants A, B € C such that
fn)=An+3B and g(p)=Ap+ B forall neMpeP.
It is proved in [3] that if the sets
A={a; <ay<---}CN, B:={m?|meN}

and the arithmetical functions f : A+8B — C, g: A — Cand h : B — C satisfy
the equation

fla+n?) =g(a) + h(n?) forall ac Amn€EN,

then the assumption 8N C A — A implies that there is a complex number A
such that

g(a) = Aa+g(a), h(n?) = An’+h(n) and f(a+n?) = A(a+n?)+§(a)+h(n)
hold for all a € A,n € N, furthermore
g(a)=¢g(b) if a=b (mod 120), (a,be A)

and
h(n) =h(m) if n=m (mod60), (n,m € N).

By assuming the unknown hypothesis that every positive number of the
form 8n is the difference of two primes, it follows from [3] that

F(p+n?)=G(p)+ H(n?) forall peP,necN.
then there are complex numbers A, Ao, D such that

G(p) =Ap+G() —Ap, G(2)=A+G(1)+ Ao,

H(n?) = An® + Ayxo(n) + D

and

F(p+n?) = Alp +n®) + G(p) — Ap + Az2x2(n) + D
for all p € P\ {2},n € N, where x2(n) is the Dirichlet character (mod 2), that
is x2(0) = 0, x2(1) = 1.

The equation f(p+ n*+m?*) = g(p) + h(n*) + h(m?) is investigated in [5].

Some similar result was proved for this equation.

In this paper we shall prove the following
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Theorem 1. Assume that the sets
A={a;<ay<---}CN, B:={m® | meN}

and the arithmetical functions f : A+2B - C,g: A— Cand h: B— C
satisfy the equation

(1.1)  fla+n>+m3) = g(a) + h(n>) + h(m3) forall oc An,mecN.
If
(1.2) 1266 A— A and 3402 € A— A,

then there are complex numbers A, B,C, D and functions F' : A+ 2B — C,
G : P — C such that

h(n®) = An® + Bxz(n) + Cx3(n) + D for all n €N,
g(a) = Aa+G(a), G(a)=0(1)

and
f(B) =AB+ F(B), F(a+n® +m?3) = G(a) + H(n) + H(m)

holds for o € A, n,m € N and 8 € A+ 2B, where x3(n) (mod 3), x7(n)
(mod 7) are non-principal Dirichlet characters, i.e.

x3(0) =0, x3(1) = 1,x3(2) = —1,
x7(0) = 0, x7(1) = x7(2) = x7(4) = 1, x7(3) = x7(5) = x7(6) = —1.

Corollary 1. Let A:={M,M + 126, M + 3402} C N. If
fla+n3+m?) = g(a) + h(n®) + h(m®) for every a € A,n,méeN,

then all assertions of Theorem 1 are satisfied.

Corollary 2. Assume that the arithmetical functions f, g, h satisfy the condi-
tion

flp+n®+m?) = g(p) + h(n®) +h(m>) foral pecP,nmecN.
Then there are complex numbers A, D, Q such that
h(n®) = An* + D, g(p) = Ap+Q, f(B)=AB+Q+2D
hold forpe P, neN and 8 € P+ 2B.

By using a similar argument as in the proof of Theorem 1, we could prove
the following
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Theorem 2. Assume that the sets
A={a;<ay<---}CN, B:={m®|meN}

and the arithmetical functions f : A+2B - C,g: A — Cand h: B — C
satisfy the equation (1.1). If

(1.3) 1008€ A— A and 8064 € A— A,

then all assertions of Theorem 1 are satisfied.

Corollary 3. Let A:={M,M + 1008, M + 8064} C N. If
fla+n®+m?) =g(a) + h(n®) + h(m?®) for every a € An,méeN,

then all assertions of Theorem 1 are satisfied.

Corollary 4. Assume that the arithmetical functions f, g, h satisfy the condi-
tion

f(E? +n® +m?) = g(k*) + h(n®) + h(m®)  for every k,n,m € N.
Then there are complex numbers A, D, R such that
h(n®) = An® + D, g(k*)=Ak* + R, f(B) = A(B) + R+2D
hold for k,n € N and 5 € P + 2B.

Remark 1. It was proved in [4] that if f : N — C is multiplicative, and

fp+m®) = f(p) + f(m?), f(7*) = f(x)?
for all p, 7 € P and m € N, then f(n) =n for n € N.

Remark 2. Theorem 1 and Theorem 2 remain valid if f, g, h maps into an
arbitrary Abelian group.

Remark 3. We hope that Theorem 1 and Theorem 2 remain valid if f, g, h
satisfy (1.1) without (1.2) and (1.3).

2. Lemmas

In this section, we assume that the arithmetical functions f, g, h satisfy (1.1)
and (1.2). Let
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Lemma 1. For everyn € {5,6,---,24}, we have
(2.1) Sp = c1(n)S1 + c2(n)Se + c3(n)Ss + c4(n)Sy,

where c¢1(n), ca(n), c3(n), cy(n) are given in the following table:

Table 1
n | (ci(n), ca(n), cs(n), ca(n)) || n | (c1(n),ca(n), cs(n), ca(n))
5 ( 27 % 1 %) 15 (7537 %a Oa %)
6 | (=3,0,1,3) 16 | (=64, 0, 0, 65)
7 ( %a 7% %, 24%) 17 ( 787 %a 13 135)
8 [ (=8 1,0, 8) 18 [ (=92, 3, 0, 9)
9 | (-11, 3, 0, &) 19 [ (-108, — 1,1, 2T)
10 | (— 15, -3 1,3 20 | (—127, %, 1, E2)
11 ( 2 0 ) 21 (_%7 %7 %a 527)
12 (27, 0, 1, 27) 22 | (—168, 0, 0, 169)
13] (=34, —3, 1, &) 23 | (—193, 1, 0, 193)
4] (%, 3, 4 59 24 | (=219, 0, 1, 219)

Proof. First we note from (1.2) that there are uy, u}, us, vy € A such that

126 = u; —u) and 3402 = up — uj.

Let
Ey = g(u1) —g(uy) and By := g(uz) — g(us).
For numbers a, b, c,d € N, we define I, I5 as follows:

I = {(a,b,c,d)| a®+b®—c* —d® =126 =u; —u}}

and
Iy = {(a,b,c,d)| a®>+b>—c* —d® = 3402 = uy — uh}.

It is obvious from (1.1) that

(22) Se+Sp—8S.—Sg=F; if (a,b,c,d)eli (221,2)

By applying Maple program, we computed that the following elements (a, b, ¢, d)

are

in I;: (4,4, 1, 1), (1,6,3, 4), (5,9, 6, 8), (9,9, 1, 11), (9, 12, 10, 11),

(10, 11, 2, 13), (11, 13, 3, 15), (11, 19, 4, 20), (12, 15, 4,17), (13, 17, 5, 19),
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(14, 19, 6, 21), (15, 21, 7, 23), (16, 23, 8, 25), (20, 22, 21, 21), (18, 22, 9, 25),
(6,27,13, 26), (17, 25, 9, 27), (12, 29, 23, 24), (18, 27, 10, 29)

and the following elements (a, b, ¢, d) are

in I: (12, 12, 3, 3), (1, 17, 8, 10), (2, 25, 4, 23), (3, 18, 9, 12),
(5, 22, 8, 19), (7, 20, 13, 14), (15, 27, 18, 24).

Since (4,4,1,1) € I; and (12,12,3,3) € Iz, then from (2.2) we have
Ey =2(S4—51), B2 = 2(S12—S3). It is clear from (2.2) that for all (a,b, ¢, d) €
I; (i=1,2), we have

S, +S,—S.—Sq=E; (i=1,2).

Thus we obtain the system of 24 equations with 28 unknowns, namely S7, Sa, - - -,
-+, 897 and S99 are unknowns. We solve this linear system and we get solutions
as follows:

Sy = —257 +%SQ+S3+%S4, Se = —351 + S3 + 3954,

Sr=—28 — 18, 4155 4 2Lg, Sy = -85 + Sy + 8S4,

So = —1151 + 185 + 25,4, Si0= 1581 — 185 + 85 + 45,
S11 = —2157 + S5 + 2184, S12 = —2751 + S3 + 2754,
Siz=—345 — 1S + S5+ 28,  Suu=-85+389 +18;+ 183,
Si5 = —5351 + 555 + 13754, Si6 = —64S; + 6554,

Siz = —T851 + 18+ 83+ 135, Sig=-9251 + 15, + 185,

S1g = —1085; — 352 + S5 + %754 Sa0 = —1278) + 352 + S5 + 2325y,

Sop = —238 4+ 125, + 1895 + 381G, Spp = —168S5; + 1695,

Sz = —1935 + S5 + 19385y, Spq = —2195 + S5 + 2195,
S5 = —2475) + 24884, Sa6 = —27951 + 3592 + S5 + 2515y,
Sor = —31251 + S5 + 31285,, Sog = —387S51 + 5o + 3879,.

Thus, we proved that (2.1) holds with the ¢;(n), ca(n), cs(n), c4(n) that are
given in Table 1. We note from these values that

E1 = 2(54 - Sl) and EQ = 2(512 - 53) = 54(54 - Sl)

Lemma 1 is proved. |
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Lemma 2. We have

(2.3)  Spt24a = Sn+17 + Snt16 + Snt15 — Snt9 — Snts — Spar + S, + E,

for all n € N, where E := 48(S4 — S1).

Proof. It is easy to check that

(2.4) (2n + 7t)3 + (n + 8t)* — (2n + 9t)® — n3 = 12643

holds for all n,t € N. Thus, by applying (2.4) with ¢t = 1 and ¢ = 3, we have
Cn+7)2+(n+8)7>—2n+9)> —n =126 =u; — u}

and
(2n 4+ 21)% 4 (n 4 24)% — (2n + 27)% — n® = 3402 = uy — ub.

Thus, we infer from (2.2) that

(2.5) Sont9 — So2ny7 — Snys + Sn =—FE = —2(S4 - 51)
Son+t2r — Sonyo1 — Snyoa + S, = —FEo = —54(S4 — S1)

for all n € N. Since
Son+27—Son+21 = (52n+27 _S2n+25) + (S2n+25 _S2n+23) + (S2n+23 _S2n+21) ;
it follows directly from (2.5) that
Snt24 = Snt17 + Snt16 + Snt15 — Snt9 — Snts — Snt7 + S0 + E,
for all n € N, where
E = By — 3By = [54(S4 — S1)] — 3[2(S4 — S1)] = 48(S4 — S1).
Lemma 2 is proved. |

Lemma 3. We have

(2.6) Sn = An® + Bxz(n) + Cxs(n) + D for every n €N,
where L _Si—5 1 251+ 7S, — 1485 + 55,
63 B 28 ’

c :831_?§2+S4, D:251+321—253_S4

and x3(n) (mod 3), x7(n) (mod 7) are non-principal Dirichlet characters, i.e.
x3(0) = 0,x3(1) = 1,x3(2) = —1,
x7(0) = 0,x7(1) = x7(2) = x7(4) = 1, x7(3) = x7(5) = x7(6) = —1.
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Proof. With the help of computer, using the definition of A, B,C, D and
Lemma 1, one can check that (2.6) is true for positive integers 1 < n < 24.

Assume that (2.6) holds for n = k,--- , k+ 23, where k > 1. We prove that
(2.6) holds for n = k + 24.

From (2.3), and using the assumption of induction, we obtain that

Sky24 = Sky17 + Sk+16 + Sk+15 — Sk9 — Skys — Skr7 + Sk + E =

= A[(k+17)+ (b +16)° + (5 +15)° — (k+9)° = (k+8)° — (k+7) + 1] +
- B[X7(k +17) + x7(k + 16) + x7(k + 15) — y7(k +9) — x7(k + 8)—
—xr(k+7) + X7(k)} + C[Xg(k +17) + xa(k + 16) + x3(k + 15)—
~Xa(k+9) = xa(k +8) = xa(k +7) + xa (k)] + D+ E =

= Al(k 424 — 3024} + Byr(k +17) + Oxs(k) + D + E =

= A(k +24)3 + Bxz(k +24) + Cx3(k + 24) + (3024A — E)+ D =

= A(k 4 24)3 + Bxr(k +24) + Cxs(k +24) + D,

which proves that (2.6) holds for n = k 4 24, and so it is true for every n € N.
The proof of (2.6) is finished.

Lemma 3 is proved. n

Lemma 4. Let M € N;M =0 (mod 6). Then the equation
(2.7) Byt -B =M
s solvable in N.

Proof. Let M =6.2%m,a > 0, (m,2) = 1. One can check easily that

(20 + gt 2o - g0 g gl g0 ) if 204 >
(J;, y7 Z’ t) =

(2a + mg-17 m2—1 _ Qa,Qa 4 m2—17 m;—l _ 2a> if 2a+1 <m

is a solution of (2.7) except if m = 29+1 4 1.
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Assume that M = 6.2%m = 3.2071(22F1 £ 1). If a < 3, then the solutions
of (2.7) are:

(11,20,4,21,6), (2,4,3,3,18) if a =0,
(g2t M) = 4 (L14,8,13,36),  (9,11,10,10,60) if a =1,

(3,20,10,19,168), (1,7,4,4,216) if o =2,

as one can see easily.

Thus, we assume that M = 3.2071(22T1 £ 1) and a > 3. In this case, if
n =2273(22T1 £ 1), then

(n+3°%+n—-3)3—m+1)°%—(n—1)3 =48 =3.20T1(2>T + 1) = M.

Lemma 4 is proved. |
3. Proof of Theorem 1

Let
H(n) :== Bx7(n) + Cxs(n)+ D for every n & N.

Then, from Lemma 3, we have h(n3) = S, = An3 + H(n) and so H(n) is
bounded.

Now we prove that
g(a) = Aa+ G(a) and G(a) =O0(1) for every « € A.

For each a € A we denote by @ the smallest element of A, for which
a—a =0 (mod 6). It is shown in Lemma 4 that there are a,b,¢,d € N such
that

a-a=a+b - —d.

Then from (1.1) we have
9(@) + Sa + Sy = g(@) + Se + Sa,
which implies that
gla) = Ala® + 5 = = &*] + B x1(a) + x1(6) = x7(c) — xa(d) ) +

+C(xs(a) + x3(0) = x3(0) = x3()) + (@) = Ao+ G(a),
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where
Gla) = g(@) — A + B(xz(a) + x7(6) = x7(0) = x7(d) ) +
+C(X3(a) +x3(b) — x3(e) — Xs(d))~

It is obvious that G(a) = O(1) for all a € A.
Finally, if we define F'(3) := f(8) — AS, then we have

Fla+n®>+m?) = fla+n®+m?) — Ala +n® +m?) =
= g(a) + h(n®) + h(m?®) — A(a +n® + m?) = G(a) + H(n) + H(m)

for all « € A,n,m € N.
Theorem 1 is proved. |

4. Proof of Theorem 2

We shall use an argument which is similar but more complicated than that
was used in the proof of Theorem 1.

First we note from (1.3) that there are vy, v}, v2,v5 € A such that
1008 = v —v; and 8064 = vy — v).

Let
er:=g(vi) —g(vy) and es:=g(v2) — g(v3).
We denote by J; and Jo the following sets:

Ji = {(a,b,c,d)| a®+b*—c* —d® =1008}

and
Jo :={(a,b,c,d)| a®+b* —c* —d® =8064}.

It is obvious from (1.1) that
(4.1) Sa+Sy—S.—Sa=¢e; if (a,bye,d)eJ; (i=1,2).

By applying Maple program, we computed that the following 33 elements
(a,b,c,d) are

in Ji: (8,8, 2, 2), (1, 18, 9, 16), (1, 23, 8, 22), (2, 12, 6,8), (2, 19, 3, 18),
(3, 13, 6, 10), (3, 29, 18, 26), (5, 30, 12, 29), (6, 11, 3, 8), (6, 23, 15, 20),
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(8, 26, 17, 23), (8, 39, 23, 36), (10, 18, 12, 16), (11, 34, 19, 32), (16, 17, 1, 20),
(17, 22, 9, 24), (18, 18, 2, 22), (20, 22, 4, 26), (20, 28, 21, 27), (21, 24, 5, 28),
(22, 26, 6, 30), (22, 38, 8, 40), (23, 28, 7, 32), (24, 30, 8, 34), (25, 32, 9, 36),
(26, 34, 10, 38), (28, 38, 12, 42), (29, 40, 13, 44), (30, 42, 14, 46),

(31, 44, 15, 48), (32, 46, 16, 50) (33, 41, 3, 47), (38, 38, 17, 47)

and the following 14 elements belong

to Jo: (16, 16, 4, 4), (1, 23, 9, 15), (1, 23, 2, 16), (2, 46, 16, 44),

(3, 25, 9, 19), (9, 39, 11, 37), (11, 19, 1, 5), (11, 31, 15, 27), (13, 29, 21, 21),
(15, 33, 19, 29), (15, 41, 17, 39), (21, 35, 27, 29), (27, 43, 1, 45),
(29, 43, 22, 44).

Since (8,8,2,2) € J; and (16,16,4,4) € Jo, then from (4.1) we have
e1 = 2(Ss — S2),ea = 2(S16 — S4). Thus, from above values of Jy, J; and
from (4.1), we obtain the system of 45 equations with 49 unknowns, namely
51,859, -+ ,S48 and Ss¢ are unknowns. We solve this linear system and with
computer one can check that

(4.2) Sn = An® + Bxz(n) + Cx3(n) + D

holds for all n < 48, where A, B,C, D are given in Lemma 3. We also have
€1 = 16(54 — Sl) and €y = 128(54 — Sl)

Finally, by applying (2.4) with ¢t = 23 and t = 43, we get by a similar
argument as in the proof of Lemma 2 that

(4.3)  Snys2 = Sny2s + Sng23 — Sngo — Snyr + S +e forevery neN,

where e = ey — 2e; = 96(S4 — S1). From (4.3) we obtain that (4.2) holds for
every n € N.

The remaining assertions of Theorem 2 are obtained on the same way as in
the proof of Theorem 1, we omit it.

Theorem 2 is proved. |
5. Proofs of corollaries

Corollary 1 and Corollary 3 are direct consequences of Theorem 1 and
Theorem 2, respectively.

Proof of Corollary 2. It is true that 126 = 131 — 5 € P — P and 3402 =
= 3407—5 € P—P, therefore the condition (1.2) and all assertions of Theorem 1
hold.
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For numbers a,b,c,d € N and p,q € P, we define T as follows:
T:={(p,a,b,q,¢,d)| p+a®+b>=q+c +d°}.
It is obvious from (1.1) that
(5.1) g(p) +Sa+Se=9g(q) +S.+Sqs if (p,a,b,qrcd) eT.

We computed that the following elements (p, a, b, g, ¢, d) arein T (1 1
(5,1,3,17,2,2), (19,1,1,5,2,2),(7,1,3,19,2,2), (59,1,1,7,3,3), (59,1,2,3,1,4).
Repeated use of (5.1) gives

g9(17) = g(3) + 252 — 254,

g(5) = g(17) + 285 — (51 + 53) = g(3) + 455 — 351 — S,
9(19) = g(5) + 255 — 251 = g(3) + 65 — 5S, — S,
9(7) = g(19) + 285 — (51 + S3) = g(3) + 852 — 651 — 283,
g(59) = ¢(7) + 253 — 251 = ¢(3) + 852 — 89;.

Thus we have

Sy = g(59) + Sz — g(3) =952 — 85;.

Since (29,1,1,3,1,3), (37,2,3,7,1,4), (11,1,3,37,1,1) and (29,3, 3, 11, 2, 4)
are in T', we obtain from (5.1) that

9(29) = g(3) + S3 — S1 =g(3) — S1 + 53,

9(37) = g(7) + S1 + Sy — So — S5 = g(3) + 1653 — 1351 — 353,
g(11) = g(37) + 251 — (S1 + S3) = ¢(3) + 1653 — 1257 — 453,
1951 + 7S5 — 2655 = g(29) 4+ 2S5 — (g(11) + Sz + S4) = 0.

This gives
26 19
S3 = 752 - 751.
Consequently
e Sg—51 95 -851-5 S5 -5
63 63 7
_ 251+ 7S5 — 14(%52 — %Sl) + 5(932 — 851) —0
h 28 -
C— 851 — 9S> + Sy 851 — 95 4 (952 — 85) _ 0
N 18 B 18 N
and
D= 251 + So + 253 — Sy . _52—851

4 n 7
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Now we prove that

(5.2) g(p) = Ap+Q forevery peP,

where
Q :=g(2) — 2A.

It is obvious that (5.2) holds for p = 2. Now we prove that (5.2) holds for
p=3.

Since (47,1,2,2,3,3) € T, (61,1,1,47,2,2) € T, (61,1,2,5,1,4) € T and
(13,3,3,2,1,4) € T, therefore

45 45
9(47) = 9(2) +255 — 2 = S1 = g(2) = — 51 + — 5 = 4TA+ Q,

59 59
9(61) = g(47) + 252 — 251 = g(2) — 751 + 752 = 61A + Q,

9(2) —g(3) + A=g(61) + S2 — g(5) =S4 =0
11 11
g(13) = g(2) + Sy + 54 — 253 =g(2) — 751 + 752 =134+ Q.

These relations with the above computations show that
9(3) =9g(2)+ A=34A+Q.

Therefore the above computations show that (5.2) holds for p < 19.

We shall complete the proof of (5.2). For each p € P,p > 19 let p € {5,7}
be that integer for which p—p =0 (mod 6). In Lemma 4 we proved that there
are a, b, c¢,d € N such that

p—p=c+d>—a> -0
Then from (5.1) we have
9(p) + Sa + Sy = g(p) + Sc + Sq,
which implies
9(p) = A|e* +d* —a® — V| + AP+ Q = Alp—P) + AP+ Q = Ap+ Q.

The proof of Corollary 2 is completes. |
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Proof of Corollary 4. Let now
A= {n? e N}.

Since 1008 = 322 — 42 € A — A and 8064 = 902 — 62 € A — A, therefore the
condition (1.3) and so all assertions of Theorem 2 hold, i. e.

h(n®) = An® + Bxz(n) + Cxs(n) + D for every n €N,

where A, B,C, D and x7(n), x3(n) are defined in Lemma 3.

For numbers a,b,c,d € N and u,v € N, we define H as follows:
H = {(u,a,b,v,c,d)| u?+a®+b>=0>++d%).
It is obvious from (1.1) that
(5.3) g(u?) + Sy + Sp = g(v?) + S. + Sq if (u,a,b,v,c,d) € R.

The following elements (u,a,b,v,c,d) are in H: (1,1,7,2,5,6), (2,1,3,4,2,2),
(1,3,10,2,8,8), (1,3,11,4,7,10). Thus, an application of (5.3) gives

9(2%) = g(1?) + Sy + 87 — 55 — S, g(4%) = g(2%) + S1 + S5 — 25,
and

9(2%) = g(1%) 4+ S35 + S19 — 258, g(4%) = g(1%?) 4+ S3 + S11 — S7 — Sio.
These imply with (2.6) that
(5.4) Si+ Sy — S5 — S — (S5 + Sio — 255) = 0

and
9(1%) + S5 + S11 — Sz — S10 — [9(2%) + S1 + S5 — 255] = 0,

consequently
(55) 251 — 2855, — S5 — Sg + 257 + S10 — S11 = 0.
From (5.4) and (5.5) we infer that
19 26
S3 = —751 + 752 and Sy = —851 + 95,
which give

_2 =5 b0 and D= 278

A
7T 7

Finally, without any important change in the proof Corollary 2, we could
prove that g(n?) = An?+(g(1)—A) holds for all n € N, which with R = g(1)—A
proves Corollary 4.

Corollary 4 is proved. |
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