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Abstract. We give all solutions of those multiplicative functions f,g
which satisfy

f(n2+m2+a+b) =g(n®+a)+g(m*>+0b) forall n,meN,
where a, b are non-negative integers with a + b > 0. It is proved that if
g(a+36)+4g(a+25) —g(a+9) —g(a+4) —3g(a+1) #0,
then
fn)=n and g(m’>+a)=m’+a, gm’>+b)=m’>+b

for all n,m € N, (n,2(a+0b)) =1.

1. Introduction

Let P, N, C be the set of primes, positive integers and complex numbers,
respectively. An arithmetic function f : N — C is said to be multiplicative
if (n,m) = 1 implies that f(nm) = f(n)f(m). Let M denote the class of all
multiplicative functions f with f(1) = 1. For each non-negative integer a let

E,={n?+a|neN}
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C. Spiro said that £ C N is an additive uniqueness set for M if there is
exactly one element f € M which satisfies

fn+m)=f(n)+ f(m) forall n,meE.

In 1992, C. Spiro [7] showed that E = P is an additive uniqueness set for
M. In 1997, J.-M. De Koninck, I. Kdtai and B. M. Phong [1] proved that if
f e M and

f(n?+p)=f(n*) +f(p) forall neN, peP

holds, then f(n) = n for all n € N. Recently, in [6] we improve this result for
two multiplicative functions, namely it is proved that if f,g € M satisfy

flp+m?) =g(p) +g(m®) and g(p°) = g(p)?
for all p € P and m € N, then either
flp+m?) =0, g(p)=-1 and g(m*)=1

for all primes p and m € N or

f(n)=n and g(p) =p, g(m®)=m’

forall p € P, n,m € N.

In the following we say that A, B C N is a pair of additive uniqueness sets
(AU-sets) for M if f € M satisfying

fla+b)= f(a)+ f(b) forall a€ A and b€ B,

implies f(n) = n for all n € N. We are interested in characterizing all non-
negative integers a and b such that A = E, and B = E, are AU-sets. It is
proved in [4] that if a function f € M with f(4)f(9) # 0 and k € N satisfy the
condition

f*+m? +k)=f(n*) + f(m* +k) forall n,meN,

then f(n) = n for all positive integers n, (n,2k) = 1. K.-H. Indlekofer and
B.M. Phong [2] proved that if £ € N and f € M satisty f(2)f(5) # 0 and

fP+m®+k+1)=f(n®+1)+ f(m*+k) forall n,méeN,

then f(n) =n for alln € N, (n,2) = 1.

Our main purpose in this paper is to give the answer for the general case.
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Theorem. Assume that non-negative integers a, b with a + b > 0 and

f, g € M satisfy the condition

(1)  f(r®+m*+a+b)=g(n*+a)+gm®>+b) forall n,méeN.

Let
S, —gn?+a) and A= %(Sﬁ 4S5 — S5 — Sy — 35)).

Then the following assertions are true:

I. Ae{0,1}.

II. If A=1, then
(2) gm?*+a)=m?+a, gm* +b) =m?*+b forallmeN
and
(3) f(n)=n foral neN, (n,2(a+0b)) =1

III. If A =0, then there is a K € {1,2,3} such that Spy+x = Sy, for all

n € N.

IL1. IfK =1, then

(f,9) € {(fo.90), (f1,91): (f2, 92)},
where (f;, g;) are given in Table 1:

gi(n? + a) gi(n? +b) filn? +m? +a+b) for

go(n*+a)=01] g(n?>+b)=0| fo(r>+m?>+a+b)=0 | Vn,meN

g(n®+a)=0]gm®+b)=1] i’ +m?+a+b)=1|Vn,mecN

o | of .

ga(n*+a)=1] g(n?>+b)=0| fa(r>+m?+a+b)=1|Vn,meN

Table 1
M2, IfK =2, then
(f,9) € {(f3,93), (f1,94), (f5,95). (fs. 96)},
where (f;,95) are defined as
9i(n* + a) = aixa(n) + Bi, gi(n® +b) = aixa(n) + 7,
fi(n® +m® + a+b) = aixa(n) + aixa(m) + 6;

and x2(n) is the principal Dirichlet character (modulo 2). The values

o, Bi, Vi, 0; are given in Table 2:
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i | (firgi) | i | Bi | v | b in the case

31 (fsyg93)| ¢ |1—=c| O |1—c¢c ceC (a,b) = (0,0) (mod 2)

4| (fa,04) | ¢ 0 —c| —c | ceC,c#0| (a,b)=(0,1) (mod 2)

51 (fsugs) | ¢ | —c | 0O —¢ | c€C,c#0 | (a,b) =(1,0) (mod 2)

6 | (f6,96) | ¢ 1 —c|1—c|ceC,c#0 | (a,b)=(1,1) (mod 2)
Table 2

Here we write (a,b) = (z,y) (mod m) if a =z and b=y (mod m).
L3, IfK =3, then
(f.9) € {(fr,97), (fs:98), -+, (fi1,911)},
where (f;, g;) are defined as
g9i(n* +a) = aixs(n) + Bi, gi(n® +b) = aixs(n) + v,

fi(n2 +m’+a+ b) = a;x3(n) + a;xs(m) + 6;

and xs(n) is the principal Dirichlet character (modulo 3). The values of
g, Bi, i, 0; are given in Table 3:

i (fi,9i) a; | Bi | v | 0 in the case

7 (frgr) | —2] 1 | 1 | 2 (a,b) = (1,1) (mod 3)

8 ( 8798) -2 1 2 3 (aab) = (1a2)7 (27 1) (mOd 3)
9| (forgo) | 1 | =11 0 | -1 (a,b) = (2,3) (mod 3)
10 | (fiosg10) | L | O [ —1]—1 (a,0) = (3,2) (mod 3)
1] (fi,gn) | -2 3]0 | 3 (a,0) = (3,3) (mod 3)

Table 3

2. Lemmas

We shall use the following results:

Lemma 1. Let a and b be non-negative integers and F,G be arithmetical
functions, for which the condition

(4) F(n*+m?+a+b) =Gn*+a) +G(m* +b)
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is satisfied for all n,m € N. For each j € N let Sj := G(j% +a). Then
(5) Sn+12 - Sn+9 + Sn+8 + Sn—i—? - Sn+5 - Sn+4 - Sn+3 + Sn
holds for all n € N and

S, = 255 — 51,
Sg = 255+ 54— 251,
©) Sg = Sg+255 — S — 51,
S10 =S¢ + 355 — 53 — 257,
S11 =86 +4S55 — S3 — 52 — 251,
S12 = S+ 4S5+ Sy — S — 451.
Proof. This is Lemma 1 in [5]. [

Lemma 2. Let a and b be non-negative integers and F,G be arithmetical
functions satisfying the condition (4). Let

1
A ::m(56 + 4S5 — S3 — Sy — 351),

—1

FQ ::?(56 — 455 + 454 —_ S3 + 352 - 351)7
-1

I's :Z?(Sb — 255 + 253 — 52)7
1

F4 ':Z(Sﬁ —_ 2S4 - S3 + SQ + Sl),

1
F5 ::g(Sﬁ — 55 - Sg - SQ + 251),

1
F ::Z(Sﬁ — 4S5 + 2S4 + 333 + 52 + Sl)?

By, :=Tox2(k) + Tsx3(k) + Taxa(k — 1) + Dsxs5(k) + T,

where x2(k) (mod 2), x3(k) (mod 3) are the principal Dirichlet characters and
x4(k) (mod 4), x5(k) (mod 5) are the real, non-principal Dirichlet characters,
i.€.

x2(0) = 0,x2(1) = 1, x3(0) =0, x3(1) = x3(2) =1, x4(0) = x4(2) =0,
xa(1) =1, xa(3) = -1, x5(2) = x5(3) = -1, x5(1) = x5(4) = 1.
Then we have

(7) Sy = Ak®>+ By, for all keN.
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Proof. From the definition of By, we shall compute the values of By for
k=1,2,---,12. We have

1 1 1 1 41
By = —— 8¢ — — — — =
! 1206 " 30 T 10 02 T
1 2 1 31 1
By = ——85 — — — 2 —
2 3076 T 5t 3 T g2t o
3 3 43 3 9
By = —— 85— = e = =
3 3076 " 10 T Tt

2 8 2 2 2
B,—_“~g. _°% il il el
4 1556 15S5+S4+ 1553+ 1552+ 551,

5 1 5 5 5
By = _ﬁsﬁ + 655 + ﬂSB + ﬂSQ + gsl,

7 6 3 3 9
B6 = ES@ — 355 + TOSS + TOSQ + 170517
49 11 49 49 9
B; = ——12056 + —3055 + —12053 + —12052 + —40517

8 2 8 8 2
Bg = _BSG - BSE) + 84+ BSS + BSQ - 551,
13 7 27 13 41

By = —285 — — 2, — =2 =
9= 20 " 10 T 0% " 072 T 0%

1 1 1 5 1
Bio= -Sg— =S5 — = 2 -
10 656 35'5 653+652+251’
1 1 1 1 41
By =——Sg — — — — -
1 12076 " 30> Y0 T 02 T o

1 4 6 1 2
Bio= -8 — - 28, 428, — 28,
12 556 5S5+S4+553+55'2 551

Consequently, we obtain from (6) and A = 35 (S + 4S5 — S3 — S2 — 351) that

A-k*+B,=8), foral 1<Fk<6,

7?4+ By =28 — 81 = 57,

-8% 4 Bg = 255 + Sy — 251 = S,

9% + By = Sg + 2S5 — Sy — S1 = S,

-10? + B1p = Se + 355 — S5 — 251 = S0,
112 4+ Byy = Sg + 455 — S3 — Sy — 251 = Si1,
A-12%2 4+ Bys = Sg+ 4S5 + 54 — S5 — 45, = Sy5.

SN N N NN

Therefore, we proved that (7) holds for 1 < k < 12.

Assume that Ak? + Bj, = S, holds for n < k < n + 11, where n > 1. Then
we deduce from (5) that



Additive uniqueness sets for a pair of multiplicative functions 205

Sn+12 - Sn+9 + Sn+8 + Sn+7 - Sn+5 - Sn+4 - Sn+3 + Sn -

= A+ 92+ (4 8)* + (n+T)2 = (n+5)2 = (n+4)° = (n+3)2 +n?|+
+ |:Bn+9 + Bn+8 + Bn+7 - Bn+5 - Bn+4 - Bn+3 + Bn:| =

= A(n +12)> + Boy19,

which proves that (7) holds for n 4+ 12 and so it is true for all n. In the last
relation we have used

Bn+9 + Bn+8 + Bn—i—? - Bn+5 - Bn+4 - Bn+3 + B, =

n+9 n+6
=T 3 we® - 3 xalk) +xa)]+
k=n-+6 k=n+3
n+9 n+5
5[ 3 xs) = D xa(k) + xa(m)]+
k=n+7 k=n+3
n+9 n+6
+Ta[ D xalk=1) = D xalk = 1)+ xaln - 1]+
k=n+6 k=n+3
n+10 n+6
+T5[ 3 x5 = 3 xs(k) — xs(n+10) + x5 +2) + xa(n)| +T =
k=n-+6 k=n+2

=Tax2(n) + Taxs(n) + Laxa(n — 1) + Tsxs(n+2) + T =
= FQXQ(TL + 12) + F3X3(n + 12) + F4X4(1’L + 11) + F5X5(TL + 12) +TI = B,t10.

Lemma 2 is proved. |
3. Proof of the parts (I) and (II) of Theorem

Proof of (I). Assume that non-negative integers a, b with a +b > 0 and
f, g € M satisfy the condition (1). For each ¢ € N, let

Iiy'={neN | 2n+1,40+1)=1}.
It is easy to show that
2 2 2
[n —l—aH(n—l—l) —i—a}:[n(n—&—l)—i—a} +a

and
(n*+a,(n+1)2+a)=1 forall nel,.
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Now we apply Lemma 2 with F' = f and G = g. Then for n € I, we have
g(n +a)g((n+1)? +a) = g|(n* + @) (n+ 1)? + )| = g (n(n+1) +a)2 +a,
which proves
(8) SnSni1 = Spnt1)+a forall n €I,
therefore we get from (7) that
9)  (An®+ Bo)(A(n +1)* + Bysr) = An(n + 1) + a* + Buni1)ta
holds for all n € I,. By the definition of By we have
Biieo = B forall keN,

consequently
|By| < L := max (|Bl\7 cee |BGO|).

Thus, (9) implies

(a+ ) (2 (fffy) =Aft+ T 1)]2 " 52((:11);)2

which with n — oo gives

A*=Ajie. Ae{0,1}.
Proof of (IT). A =1. We obtain from (9) that

(By, + By — 2a)n® +2(By, — a)n + By, 4+ ByBny1 — Buni1)+a — a° =0,
holds for all n € I,. For each n € I; and m € N let
N(n,m) :=60(4a + 1)m + n.

Since N(n,m) € I, and By(n,m) = Bp, we infer from the above relation that
(Bn+Bpi1—2a)N(n,m)?+2(B,—a)N(n,m)+Bn+ByBny1—Bumni1)1a—a’ =0
is satisfied for all n € I, m € N, which implies that

B,=a forall nel,.

Let

J:={jeN|(2j+1,60) =1} ={3,5,6,8,9,11,14,--- }.
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For each j € J let
n; =60z, +j (x; €N)

such that
2n; +1=120x;+ (2j+1) € P and 2n;+1>4a+1.

Thus, n; € I,, and so B, = a for all j € J. Since the sequence {By}3Z, is a
periodic (modulo 60), therefore

Bj = Bﬁoxj+j = an =a for all jed

Consequently
(Bs=) —259%— 2S5+ 28+ 2%+ 28 =a,
(Bs =) —3% + 3% + 315 + 3152 + 351 =a,
(Be =) 1556— 9S85+ 253+ 55+ 551 =a,
(Bs=) —£8— &9+ S:i+L555+ L8, — 25 =q,
(Bi1 =) —1355 — 555 + 15553 + 12552 + 281 =a
(A=) 5596 + 5595 — 13553 — 15552 — 3551 = 1.

The solutions of this system are:
S1=1+a,8 =2*+a,53 = 3> =a,5 =4’+a,5; =5’+a and S =6+a.
These relations with the next lemma prove (II) of our theorem. [

Lemma 3. (Theorem 1, [5]) Assume that non-negative integers a, b with
a+b>0 and f, g € M satisfy the condition (1). If either

g(i*+a)=i*+a or g(iZ+b)=5*+b for i,j=1,2,...,6

then
gm?*+a)=m*+a, gm* +b) =m?* +b forallmeN

and

fn)y=mn forall neN, (n,2(a+0d))=1.

The proof of (II) is completed. [
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4. Proof of the part (III): A =0.

From (7) we have
S, =g(n*+a)=DB, forall neN.

Since

1
A= m(56+455 —53—52—381) =0,
we have
S¢ = —4S55 + S3 + S2 + 3571,
consequently
1
S, = 5(255 — Sy — SQ)XQ(TL) + (255 — S35 — Sl)Xg(’n)+
1
(10) + 5(—255 -S4+ Sy + 251))(4(71 — 1) + (=S5 + S1)X5(n)+
1

+ 5(—455 + 54+ 255+ Sz + 251).

It is obvious that S, e0 = S, for all n € N.

Lemma 4. Let a and b be non-negative integers and f,qg € M satisfying the
condition (1). Assume that K € N such that

Sn+k =Sp  forall neN.

Let
J(K)={jeN|(2j+1,K,4+1)=1},
LK) :={(u,v) | u,v €N, u+1,K,4v* +a+b)+1) =1}
and
D:=gb+1)—gla+1).
Then
(11) SiSj+1 = Sj(j+1)+a for all j € Jo(K),

(12) (Sj + D)(Sj+1+ D) = Sjj+1y4o + D forall j € Jp(K),
and

(13) (Su +8, + D) (su+1 + S, + D) = Su(ust)torrash +So+ D

for all (u,v) € L(K).
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Proof of Lemma 4. First we prove (11). For each j € J,(K) we have
(25 +1,K,4a + 1) = 1, consequently there is a ; € N such that

(2Kz; + (25 +1),4a+ 1) = 1.

Let n; := Kz; + j. Then (2n; + 1,4a+ 1) = 1 and so n; € I,. From (8) we
have
Sannj+1 = Snj(anrl)Jrav

which with n; = j (mod K) proves (11).
Now we prove (12) and (13). First we deduce from (1) that
f(n?+m?+a+0b) =g(n®+a)+g(m® +b) = g(n® +b) + g(m* + a),
consequently

g(n?>+b) —gn®+a)=gm*>+b) —gm?>+a)=gb+1)—gla+1):=D

for all n,m € N. Then

14) g(n?+b)=S,+D forall neN,
1
fn?+m?*+a+b)=95,+S5,+D foral n,meN.

For each j € Jp(K) we have
(2 +1,K,4b+1)=1 and (2Kz; + (2j+1),4b+1) =1

for some z; € N. As we seen above, for n; := Kz ;+j, we have (2n;+1,4b+1) =
=1 and
(n;" + b, (nj +1)? +b) =(2n; +1,4b+1) = 1.

Since g € M, we obtain

g(n?+b)g((nj+l)2+b) = g{(n?—i—b) ((nj+1)2+b)} = g{(nj(nj—kl)—kb)z—i—b],

which with (14) and the fact n; = j (mod K) proves (12).

Now we prove (13). For each pair (u,v) € L(K), there is a x, € N such
that (2Kz, +2u+1,4(v? +a+b) +1) = 1. Let n, = K2, + u. Then

(2 +vi+a+b (n,+1)?+0v>+a+b) =
=2+ +a+b2n,+1)=2n,+1,400* +a+b)+1) =
= 2Kz, +2u+1,4(0* +a+b) +1)=1
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and so f € M implies
f(ni+v2+a+b)f((nu+1)2+v2+a+b) =

:f((n3+v2+a+b)((nu+1)2+v2+a+b)>

= f[(nu(nu+1)+v2+a+b)2+v2+a+b].
This with (14) shows that
(Snu + S+ D) (Snus1 + S+ D) = Suymusyrorsats + Su+ D,
and so (13) is proved because the condition n, = v (mod K') implies
Sn, =Su and Sy (4 1) 402 atd = Su(ut1) v rath

Lemma 4 is proved. [

Lemma 5. Let a and b be non-negative integers and f,g € M satisfying the
condition (1). Let S, = g(n*> +a). If Spy1 = Sy for alln € N, then

(15) (f,9) € {(fo,90), (f1,91), (f2,92)},
where (fo, 90), (f1,91), (f2, 92) are given in Table 1.
Proof. By our assumption, we have S,, = s for all n € N.
Let n € N such that
@2n+1,4a+1)=(2n+1,4b+1)=(2n+1,4(a+b+1)+1) =1.
Then we have

(n*+a,(n+1)2+a)=1,(n*>+b,(n+1)?>+b) =1

and
(n*+a+b+1,(n+1)>+a+b+1)=1,
consequently
SnSn+1 = Sn(n+1)+a7
(Sn + D)(Sn+1 + D) = Sn(n+1)+a +D
and

(Sn + 81+ D)(Snt1+ 51+ D) = Spntt)ratrver + 51+ D.
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Since
g(n*+a)=s, gtm*+ D) =s+D

and
fn®+m?+a+b)=2s+D forall n,mcN,

we get from the above relations that
s?=5 (s+D)?=s+D and (2s+D)*=2s+D.
It is clear to see that all solutions of this system are:
(s, D) € {(0,0),(0,1), (1, =1)}.

Thus, (15) is true and Lemma 5 is proved. [

In the following we say that the sequence {S,}22 is trivial, if there is a
number s such that S,, = s for all n € N.

Lemma 6. Let a and b be non-negative integers and f,g € M satisfying the
condition (1). Let S, = g(n® +a). If Spia = S, and {S,}5°, is not trivial,
then Sp4o = Sy, s satisfied for alln € N and

(f,9) € {(f3,93); (fa,94), (f5,95), (f6,96)},
where (f3,93), (fa,94), (f5,95), (fe,96) are given in Table 2.

Proof. From our assumption and Lemma 4, we have K = 4 and (11)—(13)
hold for all j,u,v € N. Thus, we obtain from (11) and (12) that

S2(S3 —S1) = 5283 — 5152 = Say2 — Say2 =0,
Su(S5 — S1) = S354 — SuSs = Su — Sa = 0
and
(S2 + D)(S3 = S1) = [(S2 + D)(S3 + D) — D] = [(51 + D)(S2 + D) — D] =
= Spy2 — Sp42 =0.
We shall prove that

(16) S3 = Sl and S4 = SQ.

Assume that S3 # S;. Then the above relations imply that Sy = S, = 0 and
D = 0. By applying (13) with (u,v) = (3,1),(3,3),(4,1) and (u,v) = (4,3),

we have

Sator2 = (S3+ 51+ D)(S4+ 51+ D) — (51 + D) := a1,
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Satbre = (S3+ S35+ D)(Ss+ S35+ D) — (S5 + D) := xo,
Satbto = (S4 + 51+ D)(251 + D) — (Sl + D) = T3

and
Satbre = (Sa+ S35+ D)(S1+ S35+ D) —(S5+ D) := 4.

Consequently
(53 751)(51 + 2853+ 854+ 2D — 1) =x1 —x9 =0,

(S5 —51)(S1+S4+D)=21 —23=0,

and
(83—51)(Sl+83+D—1) =x4—21=0.

Since S3 # S1, So =S4, =D =0, we have 255 —1=0,5,=0,53—-1=0,
which are impossible. Thus, the first assertion of (16) is proved.

Assume that S35 = S;. Now we apply (13) with (u,v) = (1,2), (1,4),(3,2)
and (u,v) = (3,4) to get

Savby2 = (S1+ 82+ D)(2S; + D) — (S2 + D),
Satbte = (S1+ S84+ D)(Sa+ S4+ D) — (S4+ D),
Sat+b = (Sg + S + D)(S4 + S5 + D) - (Sz + D)

and
Sa+b = (SS + 54+ D)(2S4 + D) - (54 + D)

The first two relations imply that
(S2 —84)(S4+25+51+2D—-1)=0
and the last two equations give
(So —54)(254+Sa+ 51 +2D—1)=0.
Since
(So—84)(284+S2+814+2D—1)—(Sy—S4)(S4+2S2+S514+2D—1) = (S2—S4)?,
we have Sy = S3. Thus, (16) is proved.

In the following we may assume that (16) is true. Then the sequence
{Sn}52, satisfies the condition S,42 = S, for all n € N and we infer from
(10) that

S, = (—52 + S1)X2(n) + 85 € {Sl, Sg},
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where S1 # Sa, because the sequence {S,}22; is not trivial. We obtain from
(11)-(13) that
Sy = 515,85, = (Sl + D)(SQ + D) —D

and
Satp = (S1+52+D)(2524+D)—So—D, Sqipr1 = (S1+S2+D)(251+D)—S1—D.
The solutions of S, are given in the parities of a and b.

(Ia) If (a,b) = (0,0) (mod 2), then (f.g) = (fs,gs)-

In this case, (Sq, Sb, Satb, Satb+1) = (S2, 52,52, 51) and so

Sa = 5152 =Sy
SbZ(Sl—l-D)(SQ-i-D)—D =Sy
Satp = (S1+S2+D)(25:+D)—- S, —D =5,

Sa+b+l = (51 + Sy + D)(QSl + D) -S1—-D =5;.
This is equivalent to

S(S1 — 1) ~0
(Se+D)(S1+D—-1) =0
(252 +D)(S1+S2+D—-1) =0
(251+D)(51+SQ+D—1> =0,

and the last two equations with the condition S; # Sy imply that S; + S5 +
D—-1=0. If S =0, then D(D—1) =0 and S; + D — 1 = 0, which imply
that DS; = 0. But S; # S2 =0, we have D = 0 and S; = =D +1 = 1.
Thus we proved that S = 0 implies (S1,S2,D) = (1,0,0). If Sy # 0, then
Sy =1and Sy + D = 0. Thus, g(n?+a) = S, = cx2(n) + (1 —¢) = g3(n? + a),
g(n?+b) =S, + D = cxa2(n) = g3(n? +b). The case (Ia) is proved.

(Ib) If (a7b) = (07 1) (mOd 2)7 then (f> g) = (f4ag4)'

Assume that (a,b) = (0,1) (mod 2).

Then (S, Sp, Satbs Sa+p+1) = (S2,51,51,52) and we have the system of
equations

So(S1 — 1) =0
(S1+D)(S2+D—1) =0
(285 +D —1)(S1 + 82+ D) =0
(281 +D —1)(S1 + Sa + D) =0.
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Similarly as above, the last two equations imply S; + So + D = 0. If Sy #£ 0,
then S; =1, (1+D)(S2+D—1) =0, 14+ S2+ D = 0, and from this we obtain

—2(D+1)=1+D)(S2+D+1)—-2(D+1)=(14+D)(Se+D—-1)=0.
This implies D = —1 and S; = 1+S55,—1 = S1+S52+D = 0, which is impossible.
Thus we proved that S = 0, consequently S; + D = 0 and (S1,52,D) =

(¢,0,—c), where ¢ # 0. Thus, (S,, D) = (cx2(n), —c¢) and the assertion (Ib) is
proved.

(Ze) If (a,b) = (1,0) (mod 2), then (f,9) = (fs,95)-

In this case we have (Sq, Sp, Satb, Satv+1) = (S1,52,51,52), and similarly
we get

(S5 — 1) ~0
(Sl-‘rD—l)(Sg-‘rD) =0
S1+ Sy +D =0.

It is obvious that if S; = 0, then Sy + D = 0. Thus (f,9) = (f5,95) and (Ic)
is true. If S; # 0, then So =1, and (S1+D —-1)(1+D)=0,51+1+D =0
imply D = —1, S; = 0. This is impossible.

(Id) If (avb) = (171) (mOd 2)? then (fa g) = (f67g6)'

Assume that (a,b) = (1,1) (mod 2).

Then (Sa, Sp, Satbs Satvt+1) = (S1,51,52,51) and the system of equations
is the following;:

S1(SQ—1) =0
(S1+D)(S2+D—1) =0
S1+S+D—-1 =0.

Similarly as in the case (Ia), if S; = 0, then D =0 and Sy = 1. If S; # 0, then
Sy =1 and S; + D = 0. Consequently S,, = (S; — 1)x2(n) + 1, g(n? +b) =
= (S1 — 1)x2(n) +1 — 5] and so (Id) holds for ¢ = S; — 1 # 0.

The proof of Lemma 6 is completed. |

Lemma 7. Let a and b be non-negative integers and f,g € M satisfying the
condition (1). Let S, = g(n® + a). If Spys = Sn and {S,}5°, is not trivial,
then

(f,9) € {(fry97),- - (fi1,911)},
where (f7,97), -+, (f11,911) are given in Table 3.
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Proof. Assume that S,;3 = S5,. Then K = 3 and it is obvious that 2,3 €
€ Ju(3), 2,3 € Jp(3). We prove that

(17) Sy = S1.
Assume that Sy # S1. Then we infer from (11) that
S3(S2 — 51) = 5253 — 535, =85, -5, =0
and
(S34+D)(S2—51) = [(S2+D)(Ss+D)—D]|—[(S3+D)(Ss+D)—D] = Sp—S, = 0,

which imply S3 =0, D = 0.
On the other hand, we have (2,1),(3,1),(2,2),(3,2) € £(3) and so we get
from (13) that

Satb+1 = (S2 + 81+ D)(S3+S5S1+D)— 51— D,

Savby1 = (S3+ 51+ D)(S1+S1+ D) - 51— D,
Satbt1 = (252 + D)(Sg + Ss + D) - Sy —D

and
Sotvt1 = (S3+ 52+ D)(S1+S2+D)— S, — D

The first and second relations imply that
S1(S2 —S1) = (S3+ 51+ D)(S2 — S1) = Satvt1 — Satv+1 =0
and so
S1=0,54p41=(S3+S1+D)(S1+S1+D)—-S;1—D=0.
This with the third relation gives Sy = %, because
0= Sotb+1 = (252 4+ D)(S3+ Sz + D) — Sy — D = 55(255 — 1).

Then the last relation implies
Satv+1 = (S3+S2+D)(S1+ S22+ D) — Sy — D =

which is contradicted by the fact that S,ip+1 = 0. Therefore, (17) is proved.

Since {S,}52, is not trivial sequence, we assume that S # S;. Then we
have
S, = (Sl — S3)X3(n) +S3 forall neN,
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where x3(n) is the principal Dirichlet character (mod 3).
One can check by using (11)-(12) that

(18) S, =S5153, S, = (S, +D)(Ss+D)—D,

furthermore by applying (14) with (u,v) = (2,3), (2,1), we have

(19) Satb =(S1+S3+D)(253+D)—S3—D
and
(20) Sa+b+1 = (251 + D)(53 + Sl + D) - Sl - D

o First we consider the case when a +b = 0 (mod 3). It is obvious that
(1,2) € L(3), and so

(21) Sup = (28, + D)* - S, — D.
This with (19) leads to (S1 — S3)(255 +4S1 +3D — 1) =0, and so
(22) 255 + 45, +3D —1=0.
On other hand, a +b =0 (mod 3) gives
So+b— 93 =(2S3+D)(S1+S5+D—-1)=0

and
Sa+b+1 -5 = (251 + D)(Sl +S3+ D — ].) =0.

These imply that
(23) S1+8S3+D—-1=0.
One can check from (22) and (23) that
S3=54+2 and D=-25 -1

Since a +b =0 (mod 3), there are three possibilities:
(i) (a,b) =(1,2) (mod 3),
(ii) (a,b) =(2,1) (mod 3),
(iii) (a,d) = (3,3) (mod 3).
In the case (i), we have 1 € J,(3), S, = S1 and S, = S1, consequently

51(53—1)251(514—1):0 and 55—51—225152—5325,”_2—33ZO.

These imply that Sy = —1, and so S3=514+2=1, D =-25; —1=1. Thus
(51,83,d) = (—=1,1,1)} and (f,g) € {(fs, 98)}.
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In the case (ii), we also have 1 € J,(3), S, = S1, Sy, = S1, and so it follows
that (fa g) € {(f8798)}

In the case (iii), we have 1 € J,, consequently S, = 5153 = S3 and
S? = Suio = S1. It is obvious from S3 # S; and S153 = S3 that S; #
0. Therefore, S? = S; implies that S; = 1, and so S3 = S; + 2 = 3,
D = —-28; — 1 = —3. This shows that g(n®? + a) = S, = —2x3(n) +3 =
= g11(n* + a), g(n® +b) = —2x3(n) = g11(n* +b).

o Now we consider the case when a+b =1 (mod 3). We have (1,v) € L(3)
for all v € N, therefore (21) and (22) are true, furthermore (1,3) € £(3) with
(13) gives

(24) Sa+b+2 = (Sl + S35 + D)2 —S3—D.
Thus, we have
Sa+b_Sl = (SQ+S1+D)(253+D)—S3—51—D e (283+D—1)(Sl—|—53+D) =0,

Sa+b -5 = (251 + D)2 —-251—-D= (251 —|—D)(251 + D — 1) =0,
Sa+b+1 - S = (251 +D)(Sl +S3+ D — 1) =0

and
Sa+b+2 — S5 = (Sl + S3 + D)2 — 253 — D =0.

and so we

It is clear to see from the second and third relation that S; = —%,

have
(255+D —1)(2S5+D)=0 and (2S5+ D)(2S5+ D —4)=0.
Since S3 # S1 = f%, we have 2S5 + D # 0. Consequently
283+D—-1=0 and 255+D—4=0,
which are impossible.

o Finally we consider the case when ¢ +b =2 (mod 3). Then we have
Satb—S1 = (S1+55+D)(255+D)—S3—D—S; = (255+D—1)(S1+S535+D) =0
and
Satbr1—53 = (251+D)(S3+S1+D)—S3—5S1—D = (25:+D—-1)(S1+S3+D) = 0,

which show that S; + S3 + D = 0.
Since a + b = 2 (mod 3), there are three possibilities:
(iv) (a,b) = (1,1) (mod 3),
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(v) (a,b) =(2,3) (mod 3),

(vi) (a,b) =(3,2) (mod 3).

In the case (iv), we have S, = S1, Sy = S1. It is clear to see that if S; =0,
then S3 + D = 0 and D = 0, consequently S3 = 0, which is impossible. If
Sy # 0, then S3 = 1, which implies that S; + 1+ D = 0 and (S; + D)D = 0.
Thus, -D =(S1+1+D)D—-D=(S1+D)D=0and Sy = -D—-1=—1.
Hence we have (f,g9) = (f7,97)-

In the case (v), we have S, = 5153 = 51, S, = S3 and if S; # 0, then
5153 = 57 implies S3 =1 and S; + D + 1 = 0. We infer from the fact

0=28y,— S5 =(S1 + D)(S3+ D) — D — S5 = (S + D — 1)(S3 + D) =
(S + D +1)(Ss + D) — 2(S5 + D) = —2(S3 + D)

that D = —S3 = —1, which is contradicted by the fact that S; = —(S3+D) = 0.

Thus, S; = 0 and S3 = —D, D # 0. Since 1 € Jp(3), we infer from (12)
that

(51 +D)2 —D=S5y2=251, (S1+D)(S1+D—-1)=0,

which with D # 0 implies that D = 1. Then (51,53,D) = (0,—1,1) and
(f?g) = (f97g9)'

In the case (vi), we have 1 € J,,S, = 5153 = S3, S = S1 and S? = Sy40 =
= Sl. Then 5153 = S3 and Sl 75 S3 imply Sl 75 0. Then 512 = Sl implies
S1 =1, and so S3+ D = —57 = —1. Finally, we infer from

0=5,—51 = (51+D)(S3+D)—D—Sl = (53+D—1)(S1+D) = —2(51—|—D)

that D = —S; = —1 and S3 = —S; — D = 0. Thus, we have (S1,S5,D) =
= (1707_1) and (f?g) = (fl()aglo)-
Lemma 7 is proved. |

Proof of (III).

Assume that the non-negative integers a and b and f,g € M satisfy the
condition (1), furthermore A = 0 and (10) hold. Let S, = g(n® + a),D =
gb+1)—gla+1).

First we note from (10) that K = 60 and S1; = 51,512 = S4 + S3 — 51
Since 3,11 € J,(60), we infer from (11) that

(S4 - Sl)(s?) - Sl) = S3S4 - 511512 = Sa+12 - Su+12 =0.

There are two possibilities: (I) Sy # 51,53 =51 and (II) Sy = 5;.
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Case I: Sy # 51,53 = 51.
We shall prove that S5 = S;.
One can check from (10) that

Sg =285 + 84 — 251,59 = =255 + 351, S23 = 255 — 51

and
Soq = =285 + S4 + 254,

which with (11) imply
4(S4 — S1)(S5 — S1) = 523524 — 5859 = Sat12 — Sat12 =0,
because

S23824 — S8S9 = (285 — S1)(—2S5 + Sy +251)—
— (255 + Sy — 251)(—255 + 351) = 4(54 - 51)(55 - 51)

Thus, we proved that S = 5.

Since S5 = S3 = 51, the sequence {5, }22 ; has the form {57, S2, 51, 54, - -

and so K = 4. Consequently, all solutions are given in Lemma 6.

Case II: S, = 5;.
We deduce from (10) that K = 60, furthermore

Sg =255 — 51, So=—-255+S53+251, Sio=—-55+ 52+ 51

and
514:—255+52+251; 515:_S5+S3_Sl'

Since 3,8,9,14 € J,(60), we infer from (11) that
2(S5 — 51)(285 — S3 — S1) = 5354 — S35 = Sat12 — Sat12 =0

and
(S5 — 51)(S3 — S2) = S9S10 — S14515 = Sat30 — Sats0 = 0.
Case (IL.a): Sy =51, S5 # S51.
In this case the above relations imply

S3 + 51

SgZSQ and S5: B

and so we get from (10) that

51 — 52>X5(TL) + (Sl +SZ

(25) S”:( 2 2

) for all n e N.
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If S = 51 then S,, = 57 for all n € N. Hence by Lemma 5 we get all solutions

of (f,9).
Assume now that Sy # Sp. Since (u,v) € L(5) for (u,v) € {(1,2),(4,1),(2,5)},
an application of (13) for these pairs, we have

Satb+1 = (S1+ 82+ D)(2S2+ D) — (S2+ D) ==y,

Sa+b+1 = (54 + 51 + D)(S5 + 51 + D) — (Sl + D) =
= (251 + D)(Sl + S5 JrD) — (Sl Jr])) = Yo,

and
Sa+b+1 = (52+S5+D)(53+S5+D)—(S5+D) = (52+S5+D)2—(S5+D) =13,

which imply

1
Y1 — Yo = 5(52 —51)(4S5 +6S1 +5D —2) =0

and )

Y1 —ys = T(SQ —51)(S2 =81 +2)=0.
These imply S; = 1 — % and Sy = —1 — %, consequently we get from (25)
that

D
Sp = x5(n) — 5 forall neN.
Tt is obvious that (5,5) € £(5), we get from (13) that

Satb = (S5 + 95 + D)(S6 + S5 + D) — (S5 + D) =

D

= (2S5 +D)(S1+S5+D)—(Ss+D) = 5

consequently 5|a + b. Thus,we have (5,4(a +b+2-3+2%)+1) = (5,41) =1
and (2,2) € £(5). An application of (13) with (u,v) = (2,2) implies

Satb = (S2+S2+D)(S3+S2+D)—(S2+D) = (—2)(_2)_(—1+§) = 5-%

This is impossible.
Case (ILb): S5 =5,=25;

The sequence {S,}52; has the form {51, S2, 53,51, -}, and so K = 12.
We have

(S2 — 51)(S3 — S1) = 89510 — 9556 = Sat6 — Sate =0,
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and so there are two possibilities:
@) (1) SQ = S1 and o (11) 53 = Sl.

In the case (i), we have
Sy = (81— S3)x3(n)+ S5 forall neN,

where y3(n) is the principal Dirichlet character (mod 3). Thus, S,+3 = S,
for all n € N, consequently Lemma 7 gives all solutions of (f, g).

Now assume that (ii) is true. Then the sequence {S,}>2; has the form
{51, S2,51,51, -+ }, and so K =4. Lemma 6 gives all solutions of (f,g).

The proof of (III) is completed and the theorem is proved. |
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