ADDITIVE UNIQUENESS SETS FOR A PAIR OF MULTIPLICATIVE FUNCTIONS

Bui Minh Phong (Budapest, Hungary)

Dedicated to Professor Ha Huy Khoai on the occasion of his 70-th birthday

Communicated by Jean-Marie De Koninck

(Received Jun 25, 2016; accepted August 2, 2016)

Abstract. We give all solutions of those multiplicative functions f, g which satisfy

$$f\left(n^2+m^2+a+b\right) = g(n^2+a) + g(m^2+b)$$
 for all $n,m\in\mathbb{N}$

where a, b are non-negative integers with a + b > 0. It is proved that if

$$g(a+36) + 4g(a+25) - g(a+9) - g(a+4) - 3g(a+1) \neq 0,$$

then

$$f(n) = n$$
 and $g(m^2 + a) = m^2 + a$, $g(m^2 + b) = m^2 + b$

for all $n, m \in \mathbb{N}$, (n, 2(a+b)) = 1.

1. Introduction

Let \mathcal{P} , \mathbb{N} , \mathbb{C} be the set of primes, positive integers and complex numbers, respectively. An arithmetic function $f : \mathbb{N} \to \mathbb{C}$ is said to be multiplicative if (n,m) = 1 implies that f(nm) = f(n)f(m). Let \mathcal{M} denote the class of all multiplicative functions f with f(1) = 1. For each non-negative integer a let

$$E_a = \{ n^2 + a \mid n \in \mathbb{N} \}.$$

Key words and phrases: Multiplicative functions, the identity function, functional equation. 2010 Mathematics Subject Classification: 11A07, 11A25, 11N25, 11N64. https://doi.org/10.71352/ac.45.199 C. Spiro said that $E \subseteq \mathbb{N}$ is an additive uniqueness set for \mathcal{M} if there is exactly one element $f \in \mathcal{M}$ which satisfies

$$f(n+m) = f(n) + f(m)$$
 for all $n, m \in E$.

In 1992, C. Spiro [7] showed that $E = \mathcal{P}$ is an additive uniqueness set for \mathcal{M} . In 1997, J.-M. De Koninck, I. Kátai and B. M. Phong [1] proved that if $f \in \mathcal{M}$ and

$$f(n^2 + p) = f(n^2) + f(p)$$
 for all $n \in \mathbb{N}, p \in \mathcal{P}$

holds, then f(n) = n for all $n \in \mathbb{N}$. Recently, in [6] we improve this result for two multiplicative functions, namely it is proved that if $f, g \in \mathcal{M}$ satisfy

$$f(p+m^2) = g(p) + g(m^2)$$
 and $g(p^2) = g(p)^2$

for all $p \in \mathcal{P}$ and $m \in \mathbb{N}$, then either

$$f(p+m^2) = 0$$
, $g(p) = -1$ and $g(m^2) = 1$

for all primes p and $m \in \mathbb{N}$ or

$$f(n) = n$$
 and $g(p) = p$, $g(m^2) = m^2$

for all $p \in \mathcal{P}$, $n, m \in \mathbb{N}$.

In the following we say that $A, B \subseteq \mathbb{N}$ is a pair of additive uniqueness sets (AU-sets) for \mathcal{M} if $f \in \mathcal{M}$ satisfying

$$f(a+b) = f(a) + f(b)$$
 for all $a \in A$ and $b \in B$,

implies f(n) = n for all $n \in \mathbb{N}$. We are interested in characterizing all nonnegative integers a and b such that $A = E_a$ and $B = E_b$ are AU-sets. It is proved in [4] that if a function $f \in \mathcal{M}$ with $f(4)f(9) \neq 0$ and $k \in \mathbb{N}$ satisfy the condition

$$f(n^2 + m^2 + k) = f(n^2) + f(m^2 + k)$$
 for all $n, m \in \mathbb{N}$,

then f(n) = n for all positive integers n, (n, 2k) = 1. K.-H. Indlekofer and B.M. Phong [2] proved that if $k \in \mathbb{N}$ and $f \in \mathcal{M}$ satisfy $f(2)f(5) \neq 0$ and

$$f(n^2 + m^2 + k + 1) = f(n^2 + 1) + f(m^2 + k)$$
 for all $n, m \in \mathbb{N}$,

then f(n) = n for all $n \in \mathbb{N}$, (n, 2) = 1.

Our main purpose in this paper is to give the answer for the general case.

Theorem. Assume that non-negative integers a, b with a + b > 0 and $f, g \in \mathcal{M}$ satisfy the condition

(1)
$$f(n^2 + m^2 + a + b) = g(n^2 + a) + g(m^2 + b)$$
 for all $n, m \in \mathbb{N}$.

Let

$$S_n = g(n^2 + a)$$
 and $A = \frac{1}{120}(S_6 + 4S_5 - S_3 - S_2 - 3S_1).$

Then the following assertions are true:

- I. $A \in \{0, 1\}$.
- II. If A = 1, then

(2)
$$g(m^2 + a) = m^2 + a, \ g(m^2 + b) = m^2 + b \text{ for all } m \in \mathbb{N}$$

and

(3)
$$f(n) = n \text{ for all } n \in \mathbb{N}, \ (n, 2(a+b)) = 1.$$

III. If A = 0, then there is a $K \in \{1, 2, 3\}$ such that $S_{n+K} = S_n$ for all $n \in \mathbb{N}$.

III.1. If K = 1, then

$$(f,g) \in \{(f_0,g_0), (f_1,g_1), (f_2,g_2)\},\$$

where (f_i, g_i) are given in Table 1:

i	$g_i(n^2 + a)$	$g_i(n^2+b)$	$f_i(n^2 + m^2 + a + b)$	for
0	$g_0(n^2 + a) = 0$	$g_0(n^2+b) = 0$	$f_0(n^2 + m^2 + a + b) = 0$	$\forall n,m\in\mathbb{N}$
1	$g_1(n^2+a) = 0$	$g_1(n^2+b) = 1$	$f_1(n^2 + m^2 + a + b) = 1$	$\forall n,m\in\mathbb{N}$
2	$g_2(n^2+a) = 1$	$g_2(n^2+b) = 0$	$f_2(n^2 + m^2 + a + b) = 1$	$\forall n,m\in\mathbb{N}$

Table 1

III.2. If K = 2, then

$$(f,g) \in \{(f_3,g_3), (f_4,g_4), (f_5,g_5), (f_6,g_6)\},\$$

where (f_i, g_i) are defined as

$$g_i(n^2 + a) = \alpha_i \chi_2(n) + \beta_i, \ g_i(n^2 + b) = \alpha_i \chi_2(n) + \gamma_i,$$
$$f_i(n^2 + m^2 + a + b) = \alpha_i \chi_2(n) + \alpha_i \chi_2(m) + \delta_i$$

and $\chi_2(n)$ is the principal Dirichlet character (modulo 2). The values of $\alpha_i, \beta_i, \gamma_i, \delta_i$ are given in Table 2:

i	(f_i, g_i)	α_i	β_i	γ_i	δ_i		in the case
3	(f_3, g_3)	c	1 - c	0	1 - c	$c \in \mathbb{C}$	$(a,b) \equiv (0,0) \pmod{2}$
4	(f_4, g_4)	c	0	-c	-c	$c\in\mathbb{C}, c\neq 0$	$(a,b) \equiv (0,1) \pmod{2}$
5	(f_5, g_5)	c	-c	0	-c	$c\in\mathbb{C}, c\neq 0$	$(a,b) \equiv (1,0) \pmod{2}$
6	(f_6, g_6)	c	1	-c	1 - c	$c\in\mathbb{C}, c\neq 0$	$(a,b) \equiv (1,1) \pmod{2}$

$Table \ 2$

Here we write $(a, b) \equiv (x, y) \pmod{m}$ if $a \equiv x$ and $b \equiv y \pmod{m}$.

III.3. If K = 3, then

 $(f,g) \in \{(f_7,g_7), (f_8,g_8), \cdots, (f_{11},g_{11})\},\$

where (f_i, g_i) are defined as

$$g_i(n^2 + a) = \alpha_i \chi_3(n) + \beta_i, \ g_i(n^2 + b) = \alpha_i \chi_3(n) + \gamma_i,$$
$$f_i(n^2 + m^2 + a + b) = \alpha_i \chi_3(n) + \alpha_i \chi_3(m) + \delta_i$$

and $\chi_3(n)$ is the principal Dirichlet character (modulo 3). The values of $\alpha_i, \beta_i, \gamma_i, \delta_i$ are given in Table 3:

i	(f_i, g_i)	α_i	β_i	γ_i	δ_i	in the case
7	(f_7, g_7)	-2	1	1	2	$(a,b) \equiv (1,1) \pmod{3}$
8	(f_8, g_8)	-2	1	2	3	$(a,b) \equiv (1,2), (2,1) \pmod{3}$
9	(f_9, g_9)	1	-1	0	-1	$(a,b) \equiv (2,3) \pmod{3}$
10	(f_{10}, g_{10})	1	0	-1	-1	$(a,b) \equiv (3,2) \pmod{3}$
11	(f_{11}, g_{11})	-2	3	0	3	$(a,b) \equiv (3,3) \pmod{3}$

Table 3

2. Lemmas

We shall use the following results:

Lemma 1. Let a and b be non-negative integers and F, G be arithmetical functions, for which the condition

(4)
$$F(n^2 + m^2 + a + b) = G(n^2 + a) + G(m^2 + b)$$

is satisfied for all $n, m \in \mathbb{N}$. For each $j \in \mathbb{N}$ let $S_j := G(j^2 + a)$. Then

(5)
$$S_{n+12} = S_{n+9} + S_{n+8} + S_{n+7} - S_{n+5} - S_{n+4} - S_{n+3} + S_n$$

holds for all $n \in \mathbb{N}$ and

(6)
$$\begin{cases} S_7 = 2S_5 - S_1, \\ S_8 = 2S_5 + S_4 - 2S_1, \\ S_9 = S_6 + 2S_5 - S_2 - S_1, \\ S_{10} = S_6 + 3S_5 - S_3 - 2S_1, \\ S_{11} = S_6 + 4S_5 - S_3 - S_2 - 2S_1, \\ S_{12} = S_6 + 4S_5 + S_4 - S_2 - 4S_1. \end{cases}$$

Proof. This is Lemma 1 in [5].

Lemma 2. Let a and b be non-negative integers and F, G be arithmetical functions satisfying the condition (4). Let

$$\begin{split} A &:= \frac{1}{120} (S_6 + 4S_5 - S_3 - S_2 - 3S_1), \\ \Gamma_2 &:= \frac{-1}{8} (S_6 - 4S_5 + 4S_4 - S_3 + 3S_2 - 3S_1), \\ \Gamma_3 &:= \frac{-1}{3} (S_6 - 2S_5 + 2S_3 - S_2), \\ \Gamma_4 &:= \frac{1}{4} (S_6 - 2S_4 - S_3 + S_2 + S_1), \\ \Gamma_5 &:= \frac{1}{5} (S_6 - S_5 - S_3 - S_2 + 2S_1), \\ \Gamma &:= \frac{1}{4} (S_6 - 4S_5 + 2S_4 + 3S_3 + S_2 + S_1), \\ B_k &:= \Gamma_2 \chi_2(k) + \Gamma_3 \chi_3(k) + \Gamma_4 \chi_4(k - 1) + \Gamma_5 \chi_5(k) + \Gamma_4 \chi_4(k - 1)) \\ - \Gamma_5 &:= \frac{1}{2} (S_6 - S_5 - S_3 - S_2 + S_3), \\ R_4 &:= \Gamma_2 \chi_2(k) + \Gamma_3 \chi_3(k) + \Gamma_4 \chi_4(k - 1) + \Gamma_5 \chi_5(k) + \Gamma_4 \chi_4(k - 1)) \\ - \Gamma_5 &:= \frac{1}{2} (S_6 - S_5 - S_3 - S_2 + S_3), \\ R_5 &:= \Gamma_2 \chi_2(k) + \Gamma_3 \chi_3(k) + \Gamma_4 \chi_4(k - 1) + \Gamma_5 \chi_5(k) + \Gamma_4 \chi_4(k - 1)) \\ - \Gamma_5 &:= \frac{1}{2} (S_6 - S_5 - S_3 - S_2 + S_3), \\ R_5 &:= \Gamma_2 \chi_2(k) + \Gamma_3 \chi_3(k) + \Gamma_4 \chi_4(k - 1) + \Gamma_5 \chi_5(k) + \Gamma_4 \chi_4(k - 1)) \\ - \Gamma_5 &:= \frac{1}{2} (S_6 - S_5 - S_3 - S_2 + S_3), \\ R_5 &:= \Gamma_2 \chi_2(k) + \Gamma_3 \chi_3(k) + \Gamma_4 \chi_4(k - 1) + \Gamma_5 \chi_5(k) + \Gamma_4 \chi_4(k - 1)) \\ - \Gamma_5 &:= \frac{1}{2} (S_6 - S_5 - S_3 - S_2 + S_3), \\ R_5 &:= \Gamma_2 \chi_2(k) + \Gamma_3 \chi_3(k) + \Gamma_4 \chi_4(k - 1) + \Gamma_5 \chi_5(k) + \Gamma_4 \chi_4(k - 1) + \Gamma_4 \chi_4(k - 1) + \Gamma_5 \chi_5(k) +$$

where $\chi_2(k) \pmod{2}$, $\chi_3(k) \pmod{3}$ are the principal Dirichlet characters and $\chi_4(k) \pmod{4}$, $\chi_5(k) \pmod{5}$ are the real, non-principal Dirichlet characters, *i.e.*

$$\chi_2(0) = 0, \chi_2(1) = 1, \ \chi_3(0) = 0, \ \chi_3(1) = \chi_3(2) = 1, \ \chi_4(0) = \chi_4(2) = 0,$$

 $\chi_4(1) = 1, \ \chi_4(3) = -1, \ \chi_5(2) = \chi_5(3) = -1, \ \chi_5(1) = \chi_5(4) = 1.$

Then we have

(7)
$$S_k = Ak^2 + B_k \quad \text{for all} \quad k \in \mathbb{N}.$$

Proof. From the definition of B_k , we shall compute the values of B_k for $k = 1, 2, \dots, 12$. We have

$$\begin{split} B_1 &= -\frac{1}{120}S_6 - \frac{1}{30}S_5 + \frac{1}{120}S_3 + \frac{1}{120}S_2 + \frac{41}{40}S_1, \\ B_2 &= -\frac{1}{30}S_6 - \frac{2}{15}S_5 + \frac{1}{30}S_3 + \frac{31}{30}S_2 + \frac{1}{10}S_1, \\ B_3 &= -\frac{3}{30}S_6 - \frac{3}{10}S_5 + \frac{43}{40}S_3 + \frac{3}{40}S_2 + \frac{9}{40}S_1, \\ B_4 &= -\frac{2}{15}S_6 - \frac{8}{15}S_5 + S_4 + \frac{2}{15}S_3 + \frac{2}{15}S_2 + \frac{2}{5}S_1, \\ B_5 &= -\frac{5}{24}S_6 + \frac{1}{6}S_5 + \frac{5}{24}S_3 + \frac{5}{24}S_2 + \frac{5}{8}S_1, \\ B_6 &= \frac{7}{10}S_6 - \frac{6}{5}S_5 + \frac{3}{10}S_3 + \frac{3}{10}S_2 + \frac{9}{10}S_1, \\ B_7 &= -\frac{49}{120}S_6 + \frac{11}{30}S_5 + \frac{49}{120}S_3 + \frac{49}{120}S_2 + \frac{9}{40}S_1, \\ B_8 &= -\frac{8}{15}S_6 - \frac{2}{15}S_5 + S_4 + \frac{8}{15}S_3 + \frac{8}{15}S_2 - \frac{2}{5}S_1, \\ B_9 &= \frac{13}{40}S_6 - \frac{7}{10}S_5 + \frac{27}{40}S_3 - \frac{13}{40}S_2 + \frac{41}{40}S_1, \\ B_{10} &= \frac{1}{6}S_6 - \frac{1}{3}S_5 - \frac{1}{6}S_3 + \frac{5}{6}S_2 + \frac{1}{2}S_1, \\ B_{11} &= -\frac{1}{120}S_6 - \frac{1}{30}S_5 + \frac{1}{120}S_3 + \frac{1}{120}S_2 + \frac{41}{40}S_1, \\ B_{12} &= -\frac{1}{5}S_6 - \frac{4}{5}S_5 + S_4 + \frac{6}{5}S_3 + \frac{1}{5}S_2 - \frac{2}{5}S_1. \end{split}$$

Consequently, we obtain from (6) and $A = \frac{1}{120}(S_6 + 4S_5 - S_3 - S_2 - 3S_1)$ that

$$\begin{aligned} A \cdot k^2 + B_k &= S_k \quad \text{for all} \quad 1 \le k \le 6, \\ A \cdot 7^2 + B_7 &= 2S_5 - S_1 = S_7, \\ A \cdot 8^2 + B_8 &= 2S_5 + S_4 - 2S_1 = S_8, \\ A \cdot 9^2 + B_9 &= S_6 + 2S_5 - S_2 - S_1 = S_9, \\ A \cdot 10^2 + B_{10} &= S_6 + 3S_5 - S_3 - 2S_1 = S_{10}, \\ A \cdot 11^2 + B_{11} &= S_6 + 4S_5 - S_3 - S_2 - 2S_1 = S_{11}, \\ A \cdot 12^2 + B_{12} &= S_6 + 4S_5 + S_4 - S_2 - 4S_1 = S_{12}. \end{aligned}$$

Therefore, we proved that (7) holds for $1 \le k \le 12$.

Assume that $Ak^2 + B_k = S_k$ holds for $n \le k \le n + 11$, where $n \ge 1$. Then we deduce from (5) that

$$S_{n+12} = S_{n+9} + S_{n+8} + S_{n+7} - S_{n+5} - S_{n+4} - S_{n+3} + S_n =$$

= $A \Big[(n+9)^2 + (n+8)^2 + (n+7)^2 - (n+5)^2 - (n+4)^2 - (n+3)^2 + n^2 \Big] +$
+ $\Big[B_{n+9} + B_{n+8} + B_{n+7} - B_{n+5} - B_{n+4} - B_{n+3} + B_n \Big] =$
= $A (n+12)^2 + B_{n+12},$

which proves that (7) holds for n + 12 and so it is true for all n. In the last relation we have used

$$\begin{split} B_{n+9} + B_{n+8} + B_{n+7} - B_{n+5} - B_{n+4} - B_{n+3} + B_n &= \\ &= \Gamma_2 \Big[\sum_{k=n+6}^{n+9} \chi_2(k) - \sum_{k=n+3}^{n+6} \chi_2(k) + \chi_2(n) \Big] + \\ &+ \Gamma_3 \Big[\sum_{k=n+7}^{n+9} \chi_3(k) - \sum_{k=n+3}^{n+5} \chi_3(k) + \chi_3(n) \Big] + \\ &+ \Gamma_4 \Big[\sum_{k=n+6}^{n+9} \chi_4(k-1) - \sum_{k=n+3}^{n+6} \chi_4(k-1) + \chi_4(n-1) \Big] + \\ &+ \Gamma_5 \Big[\sum_{k=n+6}^{n+10} \chi_5(k) - \sum_{k=n+2}^{n+6} \chi_5(k) - \chi_5(n+10) + \chi_5(n+2) + \chi_5(n) \Big] + \Gamma = \\ &= \Gamma_2 \chi_2(n) + \Gamma_3 \chi_3(n) + \Gamma_4 \chi_4(n-1) + \Gamma_5 \chi_5(n+2) + \Gamma = \\ &= \Gamma_2 \chi_2(n+12) + \Gamma_3 \chi_3(n+12) + \Gamma_4 \chi_4(n+11) + \Gamma_5 \chi_5(n+12) + \Gamma = B_{n+12}. \end{split}$$

Lemma 2 is proved.

3. Proof of the parts (I) and (II) of Theorem

Proof of (I). Assume that non-negative integers a, b with a + b > 0 and $f, g \in \mathcal{M}$ satisfy the condition (1). For each $\ell \in \mathbb{N}$, let

$$I_{\ell} := \{ n \in \mathbb{N} \mid (2n+1, 4\ell+1) = 1 \}.$$

It is easy to show that

$$[n^{2} + a][(n+1)^{2} + a] = [n(n+1) + a]^{2} + a$$

and

$$(n^2 + a, (n+1)^2 + a) = 1$$
 for all $n \in I_a$.

Now we apply Lemma 2 with F = f and G = g. Then for $n \in I_a$, we have

$$g(n^{2}+a)g((n+1)^{2}+a) = g\Big[(n^{2}+a)((n+1)^{2}+a)\Big] = g\Big[\Big(n(n+1)+a\Big)^{2}+a\Big],$$

which proves

(8)
$$S_n S_{n+1} = S_{n(n+1)+a} \quad \text{for all} \quad n \in I_a,$$

therefore we get from (7) that

(9)
$$(An^2 + B_n)(A(n+1)^2 + B_{n+1}) = A[n(n+1) + a]^2 + B_{n(n+1)+a}$$

holds for all $n \in I_a$. By the definition of B_k we have

$$B_{k+60} = B_k$$
 for all $k \in \mathbb{N}$,

consequently

$$|B_k| \le L := \max(|B_1|, \cdots, |B_{60}|)$$

Thus, (9) implies

$$\left(A + \frac{B_n}{n^2}\right)\left(A + \frac{B_{n+1}}{(n+1)^2}\right) = A\left[1 + \frac{a}{n(n+1)}\right]^2 + \frac{B_{n(n+1)+a}}{n^2(n+1)^2}$$

which with $n \to \infty$ gives

$$A^2 = A$$
, i.e. $A \in \{0, 1\}$.

Proof of (II). A = 1. We obtain from (9) that

$$(B_n + B_{n+1} - 2a)n^2 + 2(B_n - a)n + B_n + B_n B_{n+1} - B_{n(n+1)+a} - a^2 = 0.$$

holds for all $n \in I_a$. For each $n \in I_1$ and $m \in \mathbb{N}$ let

$$N(n,m) := 60(4a+1)m + n.$$

Since $N(n,m) \in I_a$ and $B_{N(n,m)} = B_n$, we infer from the above relation that $(B_n + B_{n+1} - 2a)N(n,m)^2 + 2(B_n - a)N(n,m) + B_n + B_n B_{n+1} - B_{n(n+1)+a} - a^2 = 0$ is satisfied for all $n \in I_a$, $m \in \mathbb{N}$, which implies that

$$B_n = a$$
 for all $n \in I_a$.

Let

$$J := \{j \in \mathbb{N} \mid (2j+1, 60) = 1\} = \{3, 5, 6, 8, 9, 11, 14, \cdots\}.$$

For each $j \in J$ let

$$n_j := 60x_j + j \ (x_j \in \mathbb{N})$$

such that

$$2n_j + 1 = 120x_j + (2j+1) \in \mathcal{P}$$
 and $2n_j + 1 > 4a + 1$.

Thus, $n_j \in I_a$, and so $B_{n_j} = a$ for all $j \in J$. Since the sequence $\{B_k\}_{k=1}^{\infty}$ is a periodic (modulo 60), therefore

$$B_j = B_{60x_j+j} = B_{n_j} = a \quad \text{for all} \quad j \in J.$$

Consequently

$$\begin{cases} (B_3 =) & -\frac{3}{30}S_6 - \frac{3}{10}S_5 + \frac{43}{40}S_3 + \frac{3}{40}S_2 + \frac{9}{40}S_1 = a, \\ (B_5 =) & -\frac{5}{24}S_6 + \frac{1}{6}S_5 + \frac{5}{24}S_3 + \frac{5}{24}S_2 + \frac{5}{8}S_1 = a, \\ (B_6 =) & \frac{7}{10}S_6 - \frac{6}{5}S_5 + \frac{3}{10}S_3 + \frac{3}{10}S_2 + \frac{9}{10}S_1 = a, \\ (B_8 =) & -\frac{8}{15}S_6 - \frac{2}{15}S_5 + S_4 + \frac{8}{15}S_3 + \frac{8}{15}S_2 - \frac{2}{5}S_1 = a, \\ (B_{11} =) & -\frac{1}{120}S_6 - \frac{1}{30}S_5 + \frac{1}{120}S_3 + \frac{1}{120}S_2 + \frac{41}{40}S_1 = a \\ (A =) & \frac{1}{120}S_6 + \frac{1}{30}S_5 - \frac{1}{120}S_3 - \frac{1}{120}S_2 - \frac{1}{40}S_1 = 1. \end{cases}$$

The solutions of this system are:

$$S_1 = 1 + a, S_2 = 2^2 + a, S_3 = 3^2 = a, S_4 = 4^2 + a, S_5 = 5^2 + a$$
 and $S_6 = 6^2 + a$.

These relations with the next lemma prove (II) of our theorem.

Lemma 3. (Theorem 1, [5]) Assume that non-negative integers a, b with a + b > 0 and f, $g \in \mathcal{M}$ satisfy the condition (1). If either

$$g(i^{2} + a) = i^{2} + a$$
 or $g(j^{2} + b) = j^{2} + b$ for $i, j = 1, 2, \dots, 6$

then

$$g(m^2 + a) = m^2 + a, \ g(m^2 + b) = m^2 + b \ \text{ for all } m \in \mathbb{N}$$

and

$$f(n) = n$$
 for all $n \in \mathbb{N}$, $(n, 2(a+b)) = 1$.

The proof of (II) is completed.

4. Proof of the part (III): A = 0.

From (7) we have

 $S_n = g(n^2 + a) = B_n$ for all $n \in \mathbb{N}$.

Since

$$A = \frac{1}{120}(S_6 + 4S_5 - S_3 - S_2 - 3S_1) = 0,$$

we have

$$S_6 = -4S_5 + S_3 + S_2 + 3S_1,$$

consequently

(10)
$$S_{n} = \frac{1}{2}(2S_{5} - S_{4} - S_{2})\chi_{2}(n) + (2S_{5} - S_{3} - S_{1})\chi_{3}(n) + \frac{1}{2}(-2S_{5} - S_{4} + S_{2} + 2S_{1})\chi_{4}(n-1) + (-S_{5} + S_{1})\chi_{5}(n) + \frac{1}{2}(-4S_{5} + S_{4} + 2S_{3} + S_{2} + 2S_{1}).$$

It is obvious that $S_{n+60} = S_n$ for all $n \in \mathbb{N}$.

Lemma 4. Let a and b be non-negative integers and $f, g \in \mathcal{M}$ satisfying the condition (1). Assume that $K \in \mathbb{N}$ such that

$$S_{n+K} = S_n \quad for \ all \quad n \in \mathbb{N}.$$

Let

$$J_{\ell}(K) := \{ j \in \mathbb{N} \mid (2j+1, K, 4\ell+1) = 1 \},$$

$$\mathcal{L}(K) := \{ (u,v) \mid u, v \in \mathbb{N}, \ (2u+1, K, 4(v^2+a+b)+1) = 1 \}$$

and

$$D := g(b+1) - g(a+1).$$

Then

(11)
$$S_j S_{j+1} = S_{j(j+1)+a} \quad for \ all \quad j \in J_a(K),$$

(12)
$$(S_j + D)(S_{j+1} + D) = S_{j(j+1)+b} + D$$
 for all $j \in J_b(K)$,

and

(13)
$$(S_u + S_v + D)(S_{u+1} + S_v + D) = S_{u(u+1)+v^2+a+b} + S_v + D$$

for all $(u, v) \in \mathcal{L}(K)$.

Proof of Lemma 4. First we prove (11). For each $j \in J_a(K)$ we have (2j+1, K, 4a+1) = 1, consequently there is a $x_j \in \mathbb{N}$ such that

$$(2Kx_j + (2j+1), 4a+1) = 1.$$

Let $n_j := Kx_j + j$. Then $(2n_j + 1, 4a + 1) = 1$ and so $n_j \in I_a$. From (8) we have

$$S_{n_j}S_{n_j+1} = S_{n_j(n_j+1)+a},$$

which with $n_j \equiv j \pmod{K}$ proves (11).

Now we prove (12) and (13). First we deduce from (1) that

$$f(n^{2} + m^{2} + a + b) = g(n^{2} + a) + g(m^{2} + b) = g(n^{2} + b) + g(m^{2} + a),$$

consequently

$$g(n^{2}+b) - g(n^{2}+a) = g(m^{2}+b) - g(m^{2}+a) = g(b+1) - g(a+1) := D$$

for all $n, m \in \mathbb{N}$. Then

(14)
$$\begin{cases} g(n^2+b) = S_n + D \quad \text{for all} \quad n \in \mathbb{N}, \\ f(n^2+m^2+a+b) = S_n + S_m + D \quad \text{for all} \quad n,m \in \mathbb{N}. \end{cases}$$

For each $j \in J_b(K)$ we have

$$(2j+1, K, 4b+1) = 1$$
 and $(2Kx_j + (2j+1), 4b+1) = 1$

for some $x_j \in \mathbb{N}$. As we seen above, for $n_j := Kx_j + j$, we have $(2n_j + 1, 4b + 1) = 1$ and

$$(n_j^2 + b, (n_j + 1)^2 + b) = (2n_j + 1, 4b + 1) = 1.$$

Since $g \in \mathcal{M}$, we obtain

$$g(n_j^2+b)g((n_j+1)^2+b) = g\left[\left(n_j^2+b\right)\left((n_j+1)^2+b\right)\right] = g\left[\left(n_j(n_j+1)+b\right)^2+b\right]$$

which with (14) and the fact $n_j \equiv j \pmod{K}$ proves (12).

Now we prove (13). For each pair $(u, v) \in \mathcal{L}(K)$, there is a $x_u \in \mathbb{N}$ such that $(2Kx_u + 2u + 1, 4(v^2 + a + b) + 1) = 1$. Let $n_u = Kx_u + u$. Then

$$(n_u^2 + v^2 + a + b, (n_u + 1)^2 + v^2 + a + b) =$$

= $(n_u^2 + v^2 + a + b, 2n_u + 1) = (2n_u + 1, 4(v^2 + a + b) + 1) =$
= $(2Kx_u + 2u + 1, 4(v^2 + a + b) + 1) = 1$

and so $f \in \mathcal{M}$ implies

$$f\left(n_u^2 + v^2 + a + b\right) f\left((n_u + 1)^2 + v^2 + a + b\right) =$$

= $f\left((n_u^2 + v^2 + a + b)((n_u + 1)^2 + v^2 + a + b)\right) =$
= $f\left[\left(n_u(n_u + 1) + v^2 + a + b\right)^2 + v^2 + a + b\right].$

This with (14) shows that

$$\left(S_{n_u} + S_v + D\right)\left(S_{n_u+1} + S_v + D\right) = S_{n_u(n_u+1)+v^2+a+b} + S_v + D,$$

and so (13) is proved because the condition $n_u \equiv u \pmod{K}$ implies

$$S_{n_u} = S_u$$
 and $S_{n_u(n_u+1)+v^2+a+b} = S_{u(u+1)+v^2+a+b}$

Lemma 4 is proved.

Lemma 5. Let a and b be non-negative integers and $f, g \in \mathcal{M}$ satisfying the condition (1). Let $S_n = g(n^2 + a)$. If $S_{n+1} = S_n$ for all $n \in \mathbb{N}$, then

(15) $(f,g) \in \{(f_0,g_0), (f_1,g_1), (f_2,g_2)\},\$

where $(f_0, g_0), (f_1, g_1), (f_2, g_2)$ are given in Table 1.

Proof. By our assumption, we have $S_n = s$ for all $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$ such that

$$(2n+1, 4a+1) = (2n+1, 4b+1) = (2n+1, 4(a+b+1)+1) = 1.$$

Then we have

$$(n^{2} + a, (n + 1)^{2} + a) = 1, (n^{2} + b, (n + 1)^{2} + b) = 1$$

and

$$(n^{2} + a + b + 1, (n + 1)^{2} + a + b + 1) = 1,$$

consequently

$$S_n S_{n+1} = S_{n(n+1)+a},$$

(S_n + D)(S_{n+1} + D) = S_{n(n+1)+a} + D

and

$$(S_n + S_1 + D)(S_{n+1} + S_1 + D) = S_{n(n+1)+a+b+1} + S_1 + D.$$

Since

$$g(n^2 + a) = s, \ g(m^2 + D) = s + D$$

and

$$f(n^2 + m^2 + a + b) = 2s + D \quad \text{for all} \quad n, m \in \mathbb{N},$$

we get from the above relations that

$$s^{2} = s$$
, $(s + D)^{2} = s + D$ and $(2s + D)^{2} = 2s + D$.

It is clear to see that all solutions of this system are:

$$(s, D) \in \{(0, 0), (0, 1), (1, -1)\}.$$

Thus, (15) is true and Lemma 5 is proved.

In the following we say that the sequence $\{S_n\}_{n=1}^{\infty}$ is trivial, if there is a number s such that $S_n = s$ for all $n \in \mathbb{N}$.

Lemma 6. Let a and b be non-negative integers and $f, g \in \mathcal{M}$ satisfying the condition (1). Let $S_n = g(n^2 + a)$. If $S_{n+4} = S_n$ and $\{S_n\}_{n=1}^{\infty}$ is not trivial, then $S_{n+2} = S_n$ is satisfied for all $n \in \mathbb{N}$ and

$$(f,g) \in \{(f_3,g_3), (f_4,g_4), (f_5,g_5), (f_6,g_6)\},\$$

where $(f_3, g_3), (f_4, g_4), (f_5, g_5), (f_6, g_6)$ are given in Table 2.

Proof. From our assumption and Lemma 4, we have K = 4 and (11)–(13) hold for all $j, u, v \in \mathbb{N}$. Thus, we obtain from (11) and (12) that

$$S_2(S_3 - S_1) = S_2S_3 - S_1S_2 = S_{a+2} - S_{a+2} = 0$$
$$S_4(S_3 - S_1) = S_3S_4 - S_4S_5 = S_a - S_a = 0$$

and

$$(S_2 + D)(S_3 - S_1) = [(S_2 + D)(S_3 + D) - D] - [(S_1 + D)(S_2 + D) - D] =$$

= S_{b+2} - S_{b+2} = 0.

We shall prove that

(16)
$$S_3 = S_1$$
 and $S_4 = S_2$.

Assume that $S_3 \neq S_1$. Then the above relations imply that $S_2 = S_4 = 0$ and D = 0. By applying (13) with (u, v) = (3, 1), (3, 3), (4, 1) and (u, v) = (4, 3), we have

$$S_{a+b+2} = (S_3 + S_1 + D)(S_4 + S_1 + D) - (S_1 + D) := x_1,$$

$$S_{a+b+2} = (S_3 + S_3 + D)(S_4 + S_3 + D) - (S_3 + D) := x_2,$$

$$S_{a+b+2} = (S_4 + S_1 + D)(2S_1 + D) - (S_1 + D) := x_3$$

and

$$S_{a+b+2} = (S_4 + S_3 + D)(S_1 + S_3 + D) - (S_3 + D) := x_4$$

Consequently

$$(S_3 - S_1)(S_1 + 2S_3 + S_4 + 2D - 1) = x_1 - x_2 = 0,$$

 $(S_3 - S_1)(S_1 + S_4 + D) = x_1 - x_3 = 0,$

and

$$(S_3 - S_1)(S_1 + S_3 + D - 1) = x_4 - x_1 = 0.$$

Since $S_3 \neq S_1$, $S_2 = S_4 = D = 0$, we have $2S_3 - 1 = 0$, $S_1 = 0$, $S_3 - 1 = 0$, which are impossible. Thus, the first assertion of (16) is proved.

Assume that $S_3 = S_1$. Now we apply (13) with (u, v) = (1, 2), (1, 4), (3, 2)and (u, v) = (3, 4) to get

$$S_{a+b+2} = (S_1 + S_2 + D)(2S_2 + D) - (S_2 + D),$$

$$S_{a+b+2} = (S_1 + S_4 + D)(S_2 + S_4 + D) - (S_4 + D),$$

$$S_{a+b} = (S_3 + S_2 + D)(S_4 + S_2 + D) - (S_2 + D)$$

and

$$S_{a+b} = (S_3 + S_4 + D)(2S_4 + D) - (S_4 + D).$$

The first two relations imply that

$$(S_2 - S_4)(S_4 + 2S_2 + S_1 + 2D - 1) = 0$$

and the last two equations give

$$(S_2 - S_4)(2S_4 + S_2 + S_1 + 2D - 1) = 0.$$

Since

$$(S_2 - S_4)(2S_4 + S_2 + S_1 + 2D - 1) - (S_2 - S_4)(S_4 + 2S_2 + S_1 + 2D - 1) = (S_2 - S_4)^2$$

we have $S_4 = S_2$. Thus, (16) is proved.

In the following we may assume that (16) is true. Then the sequence $\{S_n\}_{n=1}^{\infty}$ satisfies the condition $S_{n+2} = S_n$ for all $n \in \mathbb{N}$ and we infer from (10) that

$$S_n = (-S_2 + S_1)\chi_2(n) + S_2 \in \{S_1, S_2\},\$$

where $S_1 \neq S_2$, because the sequence $\{S_n\}_{n=1}^{\infty}$ is not trivial. We obtain from (11)-(13) that

$$S_a = S_1 S_2, S_b = (S_1 + D)(S_2 + D) - D$$

and

$$S_{a+b} = (S_1 + S_2 + D)(2S_2 + D) - S_2 - D, S_{a+b+1} = (S_1 + S_2 + D)(2S_1 + D) - S_1 - D.$$

The solutions of S_n are given in the parities of a and b.

(Ia) If $(a,b) \equiv (0,0) \pmod{2}$, then $(f,g) = (f_3,g_3)$.

In this case, $(S_a, S_b, S_{a+b}, S_{a+b+1}) = (S_2, S_2, S_2, S_1)$ and so

$$\begin{cases} S_a = S_1 S_2 &= S_2 \\ S_b = (S_1 + D)(S_2 + D) - D &= S_2 \\ S_{a+b} = (S_1 + S_2 + D)(2S_2 + D) - S_2 - D &= S_2 \\ S_{a+b+1} = (S_1 + S_2 + D)(2S_1 + D) - S_1 - D &= S_1 \end{cases}$$

This is equivalent to

$$\begin{cases} S_2(S_1 - 1) &= 0\\ (S_2 + D)(S_1 + D - 1) &= 0\\ (2S_2 + D)(S_1 + S_2 + D - 1) &= 0\\ (2S_1 + D)(S_1 + S_2 + D - 1) &= 0, \end{cases}$$

and the last two equations with the condition $S_1 \neq S_2$ imply that $S_1 + S_2 + D - 1 = 0$. If $S_2 = 0$, then D(D - 1) = 0 and $S_1 + D - 1 = 0$, which imply that $DS_1 = 0$. But $S_1 \neq S_2 = 0$, we have D = 0 and $S_1 = -D + 1 = 1$. Thus we proved that $S_2 = 0$ implies $(S_1, S_2, D) = (1, 0, 0)$. If $S_2 \neq 0$, then $S_1 = 1$ and $S_2 + D = 0$. Thus, $g(n^2 + a) = S_n = c\chi_2(n) + (1 - c) = g_3(n^2 + a)$, $g(n^2 + b) = S_n + D = c\chi_2(n) = g_3(n^2 + b)$. The case (Ia) is proved.

(*Ib*) If $(a, b) \equiv (0, 1) \pmod{2}$, then $(f, g) = (f_4, g_4)$.

Assume that $(a, b) \equiv (0, 1) \pmod{2}$.

Then $(S_a, S_b, S_{a+b}, S_{a+b+1}) = (S_2, S_1, S_1, S_2)$ and we have the system of equations

$$\begin{cases} S_2(S_1 - 1) &= 0\\ (S_1 + D)(S_2 + D - 1) &= 0\\ (2S_2 + D - 1)(S_1 + S_2 + D) &= 0\\ (2S_1 + D - 1)(S_1 + S_2 + D) &= 0. \end{cases}$$

Similarly as above, the last two equations imply $S_1 + S_2 + D = 0$. If $S_2 \neq 0$, then $S_1 = 1$, $(1+D)(S_2+D-1) = 0$, $1+S_2+D=0$, and from this we obtain

$$-2(D+1) = (1+D)(S_2 + D + 1) - 2(D+1) = (1+D)(S_2 + D - 1) = 0.$$

This implies D = -1 and $S_2 = 1+S_2-1 = S_1+S_2+D = 0$, which is impossible. Thus we proved that $S_2 = 0$, consequently $S_1 + D = 0$ and $(S_1, S_2, D) = (c, 0, -c)$, where $c \neq 0$. Thus, $(S_n, D) = (c\chi_2(n), -c)$ and the assertion (Ib) is proved.

(*Ic*) If $(a, b) \equiv (1, 0) \pmod{2}$, then $(f, g) = (f_5, g_5)$.

In this case we have $(S_a, S_b, S_{a+b}, S_{a+b+1}) = (S_1, S_2, S_1, S_2)$, and similarly we get

$$\begin{cases} S_1(S_2 - 1) &= 0\\ (S_1 + D - 1)(S_2 + D) &= 0\\ S_1 + S_2 + D &= 0. \end{cases}$$

It is obvious that if $S_1 = 0$, then $S_2 + D = 0$. Thus $(f, g) = (f_5, g_5)$ and (Ic) is true. If $S_1 \neq 0$, then $S_2 = 1$, and $(S_1 + D - 1)(1 + D) = 0, S_1 + 1 + D = 0$ imply $D = -1, S_1 = 0$. This is impossible.

(Id) If
$$(a, b) \equiv (1, 1) \pmod{2}$$
, then $(f, g) = (f_6, g_6)$.

Assume that $(a, b) \equiv (1, 1) \pmod{2}$.

Then $(S_a, S_b, S_{a+b}, S_{a+b+1}) = (S_1, S_1, S_2, S_1)$ and the system of equations is the following:

$$\begin{cases} S_1(S_2 - 1) &= 0\\ (S_1 + D)(S_2 + D - 1) &= 0\\ S_1 + S_2 + D - 1 &= 0. \end{cases}$$

Similarly as in the case (Ia), if $S_1 = 0$, then D = 0 and $S_2 = 1$. If $S_1 \neq 0$, then $S_2 = 1$ and $S_1 + D = 0$. Consequently $S_n = (S_1 - 1)\chi_2(n) + 1$, $g(n^2 + b) = (S_1 - 1)\chi_2(n) + 1 - S_1$ and so (Id) holds for $c = S_1 - 1 \neq 0$.

The proof of Lemma 6 is completed.

Lemma 7. Let a and b be non-negative integers and $f, g \in \mathcal{M}$ satisfying the condition (1). Let $S_n = g(n^2 + a)$. If $S_{n+3} = S_n$ and $\{S_n\}_{n=1}^{\infty}$ is not trivial, then

$$(f,g) \in \{(f_7,g_7),\cdots,(f_{11},g_{11})\},\$$

where $(f_7, g_7), \cdots, (f_{11}, g_{11})$ are given in Table 3.

Proof. Assume that $S_{n+3} = S_n$. Then K = 3 and it is obvious that $2, 3 \in J_a(3), 2, 3 \in J_b(3)$. We prove that

(17)
$$S_2 = S_1$$

Assume that $S_2 \neq S_1$. Then we infer from (11) that

$$S_3(S_2 - S_1) = S_2S_3 - S_3S_4 = S_a - S_a = 0$$

and

$$(S_3+D)(S_2-S_1) = [(S_2+D)(S_3+D)-D] - [(S_3+D)(S_4+D)-D] = S_b - S_b = 0,$$

which imply $S_3 = 0, D = 0.$

On the other hand, we have $(2,1), (3,1), (2,2), (3,2) \in \mathcal{L}(3)$ and so we get from (13) that

$$S_{a+b+1} = (S_2 + S_1 + D)(S_3 + S_1 + D) - S_1 - D,$$

$$S_{a+b+1} = (S_3 + S_1 + D)(S_1 + S_1 + D) - S_1 - D,$$

$$S_{a+b+1} = (2S_2 + D)(S_3 + S_2 + D) - S_2 - D$$

and

$$S_{a+b+1} = (S_3 + S_2 + D)(S_1 + S_2 + D) - S_2 - D$$

The first and second relations imply that

$$S_1(S_2 - S_1) = (S_3 + S_1 + D)(S_2 - S_1) = S_{a+b+1} - S_{a+b+1} = 0$$

and so

$$S_1 = 0, S_{a+b+1} = (S_3 + S_1 + D)(S_1 + S_1 + D) - S_1 - D = 0.$$

This with the third relation gives $S_2 = \frac{1}{2}$, because

$$0 = S_{a+b+1} = (2S_2 + D)(S_3 + S_2 + D) - S_2 - D = S_2(2S_2 - 1).$$

Then the last relation implies

$$S_{a+b+1} = (S_3 + S_2 + D)(S_1 + S_2 + D) - S_2 - D = \frac{1}{4} - \frac{1}{2} = -\frac{1}{4}$$

which is contradicted by the fact that $S_{a+b+1} = 0$. Therefore, (17) is proved.

Since $\{S_n\}_{n=1}^{\infty}$ is not trivial sequence, we assume that $S_3 \neq S_1$. Then we have

$$S_n = (S_1 - S_3)\chi_3(n) + S_3 \quad \text{for all} \quad n \in \mathbb{N},$$

where $\chi_3(n)$ is the principal Dirichlet character (mod 3).

One can check by using (11)-(12) that

(18)
$$S_a = S_1 S_3, \ S_b = (S_1 + D)(S_3 + D) - D,$$

furthermore by applying (14) with (u, v) = (2, 3), (2, 1), we have

(19)
$$S_{a+b} = (S_1 + S_3 + D)(2S_3 + D) - S_3 - D$$

and

(20)
$$S_{a+b+1} = (2S_1 + D)(S_3 + S_1 + D) - S_1 - D$$

• First we consider the case when $a + b \equiv 0 \pmod{3}$. It is obvious that $(1,2) \in \mathcal{L}(3)$, and so

(21)
$$S_{a+b} = (2S_1 + D)^2 - S_1 - D.$$

This with (19) leads to $(S_1 - S_3)(2S_3 + 4S_1 + 3D - 1) = 0$, and so

(22)
$$2S_3 + 4S_1 + 3D - 1 = 0.$$

On other hand, $a + b \equiv 0 \pmod{3}$ gives

$$S_{a+b} - S_3 = (2S_3 + D)(S_1 + S_3 + D - 1) = 0$$

and

$$S_{a+b+1} - S_1 = (2S_1 + D)(S_1 + S_3 + D - 1) = 0.$$

These imply that

(23)
$$S_1 + S_3 + D - 1 = 0.$$

One can check from (22) and (23) that

$$S_3 = S_1 + 2$$
 and $D = -2S_1 - 1$.

Since $a + b \equiv 0 \pmod{3}$, there are three possibilities:

- (i) $(a,b) \equiv (1,2) \pmod{3}$,
- (ii) $(a,b) \equiv (2,1) \pmod{3}$,
- (iii) $(a, b) \equiv (3, 3) \pmod{3}$.

In the case (i), we have $1 \in J_a(3)$, $S_a = S_1$ and $S_b = S_1$, consequently

$$S_1(S_3 - 1) = S_1(S_1 + 1) = 0$$
 and $S_1^2 - S_1 - 2 = S_1S_2 - S_3 = S_{a+2} - S_3 = 0.$

These imply that $S_1 = -1$, and so $S_3 = S_1 + 2 = 1$, $D = -2S_1 - 1 = 1$. Thus $(S_1, S_3, d) = (-1, 1, 1)$ and $(f, g) \in \{(f_8, g_8)\}$.

In the case (ii), we also have $1 \in J_b(3)$, $S_a = S_1$, $S_b = S_1$, and so it follows that $(f,g) \in \{(f_8,g_8)\}$.

In the case (iii), we have $1 \in J_a$, consequently $S_a = S_1S_3 = S_3$ and $S_1^2 = S_{a+2} = S_1$. It is obvious from $S_3 \neq S_1$ and $S_1S_3 = S_3$ that $S_1 \neq 0$. Therefore, $S_1^2 = S_1$ implies that $S_1 = 1$, and so $S_3 = S_1 + 2 = 3$, $D = -2S_1 - 1 = -3$. This shows that $g(n^2 + a) = S_n = -2\chi_3(n) + 3 = g_{11}(n^2 + a)$, $g(n^2 + b) = -2\chi_3(n) = g_{11}(n^2 + b)$.

• Now we consider the case when $a+b \equiv 1 \pmod{3}$. We have $(1, v) \in \mathcal{L}(3)$ for all $v \in \mathbb{N}$, therefore (21) and (22) are true, furthermore $(1,3) \in \mathcal{L}(3)$ with (13) gives

(24)
$$S_{a+b+2} = (S_1 + S_3 + D)^2 - S_3 - D.$$

Thus, we have

$$S_{a+b} - S_1 = (S_2 + S_1 + D)(2S_3 + D) - S_3 - S_1 - D = (2S_3 + D - 1)(S_1 + S_3 + D) = 0,$$

$$S_{a+b} - S_1 = (2S_1 + D)^2 - 2S_1 - D = (2S_1 + D)(2S_1 + D - 1) = 0,$$

$$S_{a+b+1} - S_1 = (2S_1 + D)(S_1 + S_3 + D - 1) = 0$$

and

$$S_{a+b+2} - S_3 = (S_1 + S_3 + D)^2 - 2S_3 - D = 0$$

It is clear to see from the second and third relation that $S_1 = -\frac{D}{2}$, and so we have

$$(2S_3 + D - 1)(2S_3 + D) = 0$$
 and $(2S_3 + D)(2S_3 + D - 4) = 0$

Since $S_3 \neq S_1 = -\frac{D}{2}$, we have $2S_3 + D \neq 0$. Consequently

$$2S_3 + D - 1 = 0$$
 and $2S_3 + D - 4 = 0$,

which are impossible.

• Finally we consider the case when $a + b \equiv 2 \pmod{3}$. Then we have

 $S_{a+b} - S_1 = (S_1 + S_3 + D)(2S_3 + D) - S_3 - D - S_1 = (2S_3 + D - 1)(S_1 + S_3 + D) = 0$ and

$$S_{a+b+1} - S_3 = (2S_1 + D)(S_3 + S_1 + D) - S_3 - S_1 - D = (2S_1 + D - 1)(S_1 + S_3 + D) = 0$$

which show that $S_1 + S_3 + D = 0$.

Since $a + b \equiv 2 \pmod{3}$, there are three possibilities: (iv) $(a, b) \equiv (1, 1) \pmod{3}$,

(v) $(a,b) \equiv (2,3) \pmod{3}$,

(vi) $(a,b) \equiv (3,2) \pmod{3}$.

In the case (iv), we have $S_a = S_1$, $S_b = S_1$. It is clear to see that if $S_1 = 0$, then $S_3 + D = 0$ and D = 0, consequently $S_3 = 0$, which is impossible. If $S_1 \neq 0$, then $S_3 = 1$, which implies that $S_1 + 1 + D = 0$ and $(S_1 + D)D = 0$. Thus, $-D = (S_1 + 1 + D)D - D = (S_1 + D)D = 0$ and $S_1 = -D - 1 = -1$. Hence we have $(f, g) = (f_7, g_7)$.

In the case (v), we have $S_a = S_1S_3 = S_1$, $S_b = S_3$ and if $S_1 \neq 0$, then $S_1S_3 = S_1$ implies $S_3 = 1$ and $S_1 + D + 1 = 0$. We infer from the fact

$$0 = S_b - S_3 = (S_1 + D)(S_3 + D) - D - S_3 = (S_1 + D - 1)(S_3 + D) = (S_1 + D + 1)(S_3 + D) - 2(S_3 + D) = -2(S_3 + D)$$

that $D = -S_3 = -1$, which is contradicted by the fact that $S_1 = -(S_3 + D) = 0$.

Thus, $S_1 = 0$ and $S_3 = -D, D \neq 0$. Since $1 \in J_b(3)$, we infer from (12) that

$$(S_1 + D)^2 - D = S_{b+2} = S_1, \ (S_1 + D)(S_1 + D - 1) = 0,$$

which with $D \neq 0$ implies that D = 1. Then $(S_1, S_3, D) = (0, -1, 1)$ and $(f, g) = (f_9, g_9)$.

In the case (vi), we have $1 \in J_a, S_a = S_1S_3 = S_3, S_b = S_1$ and $S_1^2 = S_{a+2} = S_1$. Then $S_1S_3 = S_3$ and $S_1 \neq S_3$ imply $S_1 \neq 0$. Then $S_1^2 = S_1$ implies $S_1 = 1$, and so $S_3 + D = -S_1 = -1$. Finally, we infer from

$$0 = S_b - S_1 = (S_1 + D)(S_3 + D) - D - S_1 = (S_3 + D - 1)(S_1 + D) = -2(S_1 + D)$$

that $D = -S_1 = -1$ and $S_3 = -S_1 - D = 0$. Thus, we have $(S_1, S_3, D) = (1, 0, -1)$ and $(f, g) = (f_{10}, g_{10})$.

Lemma 7 is proved.

Proof of (III).

Assume that the non-negative integers a and b and $f, g \in \mathcal{M}$ satisfy the condition (1), furthermore A = 0 and (10) hold. Let $S_n = g(n^2 + a), D = g(b+1) - g(a+1)$.

First we note from (10) that K = 60 and $S_{11} = S_1, S_{12} = S_4 + S_3 - S_1$. Since $3, 11 \in J_a(60)$, we infer from (11) that

$$(S_4 - S_1)(S_3 - S_1) = S_3S_4 - S_{11}S_{12} = S_{a+12} - S_{a+12} = 0.$$

There are two possibilities: (I) $S_4 \neq S_1, S_3 = S_1$ and (II) $S_4 = S_1$.

Case I: $S_4 \neq S_1, S_3 = S_1$.

We shall prove that $S_5 = S_1$.

One can check from (10) that

$$S_8 = 2S_5 + S_4 - 2S_1, S_9 = -2S_5 + 3S_1, S_{23} = 2S_5 - S_1$$

and

$$S_{24} = -2S_5 + S_4 + 2S_1,$$

which with (11) imply

$$4(S_4 - S_1)(S_5 - S_1) = S_{23}S_{24} - S_8S_9 = S_{a+12} - S_{a+12} = 0,$$

because

$$S_{23}S_{24} - S_8S_9 = (2S_5 - S_1)(-2S_5 + S_4 + 2S_1) - (2S_5 + S_4 - 2S_1)(-2S_5 + 3S_1) = 4(S_4 - S_1)(S_5 - S_1)$$

Thus, we proved that $S_5 = S_1$.

Since $S_5 = S_3 = S_1$, the sequence $\{S_n\}_{n=1}^{\infty}$ has the form $\{S_1, S_2, S_1, S_4, \cdots\}$, and so K = 4. Consequently, all solutions are given in Lemma 6.

Case II: $S_4 = S_1$.

We deduce from (10) that K = 60, furthermore

$$S_8 = 2S_5 - S_1, \quad S_9 = -2S_5 + S_3 + 2S_1, \quad S_{10} = -S_5 + S_2 + S_1$$

and

$$S_{14} = -2S_5 + S_2 + 2S_1, \quad S_{15} = -S_5 + S_3 - S_1.$$

Since $3, 8, 9, 14 \in J_a(60)$, we infer from (11) that

$$2(S_5 - S_1)(2S_5 - S_3 - S_1) = S_3S_4 - S_8S_9 = S_{a+12} - S_{a+12} = 0$$

and

$$(S_5 - S_1)(S_3 - S_2) = S_9 S_{10} - S_{14} S_{15} = S_{a+30} - S_{a+30} = 0.$$

Case (II.a): $S_4 = S_1, S_5 \neq S_1$.

In this case the above relations imply

$$S_3 = S_2$$
 and $S_5 = \frac{S_3 + S_1}{2}$

and so we get from (10) that

(25)
$$S_n = \left(\frac{S_1 - S_2}{2}\right)\chi_5(n) + \left(\frac{S_1 + S_2}{2}\right) \text{ for all } n \in \mathbb{N}$$

If $S_2 = S_1$ then $S_n = S_1$ for all $n \in \mathbb{N}$. Hence by Lemma 5 we get all solutions of (f, g).

Assume now that $S_2 \neq S_1$. Since $(u, v) \in \mathcal{L}(5)$ for $(u, v) \in \{(1, 2), (4, 1), (2, 5)\}$, an application of (13) for these pairs, we have

$$S_{a+b+1} = (S_1 + S_2 + D)(2S_2 + D) - (S_2 + D) := y_1,$$

$$S_{a+b+1} = (S_4 + S_1 + D)(S_5 + S_1 + D) - (S_1 + D) =$$

$$= (2S_1 + D)(S_1 + S_5 + D) - (S_1 + D) := y_2,$$

and

$$S_{a+b+1} = (S_2 + S_5 + D)(S_3 + S_5 + D) - (S_5 + D) = (S_2 + S_5 + D)^2 - (S_5 + D) := y_3,$$

which imply

$$y_1 - y_2 = \frac{1}{2}(S_2 - S_1)(4S_2 + 6S_1 + 5D - 2) = 0$$

and

$$y_1 - y_3 = \frac{-1}{4}(S_2 - S_1)(S_2 - S_1 + 2) = 0.$$

These imply $S_1 = 1 - \frac{D}{2}$ and $S_2 := -1 - \frac{D}{2}$, consequently we get from (25) that

$$S_n = \chi_5(n) - \frac{D}{2}$$
 for all $n \in \mathbb{N}$.

It is obvious that $(5,5) \in \mathcal{L}(5)$, we get from (13) that

$$S_{a+b} = (S_5 + S_5 + D)(S_6 + S_5 + D) - (S_5 + D) =$$
$$= (2S_5 + D)(S_1 + S_5 + D) - (S_5 + D) = -\frac{D}{2},$$

consequently 5|a + b. Thus, we have $(5, 4(a + b + 2 \cdot 3 + 2^2) + 1) = (5, 41) = 1$ and $(2, 2) \in \mathcal{L}(5)$. An application of (13) with (u, v) = (2, 2) implies

$$S_{a+b} = (S_2 + S_2 + D)(S_3 + S_2 + D) - (S_2 + D) = (-2)(-2) - (-1 + \frac{D}{2}) = 5 - \frac{D}{2}$$

This is impossible.

Case (II.b): $S_5 = S_4 = S_1$

The sequence $\{S_n\}_{n=1}^{\infty}$ has the form $\{S_1, S_2, S_3, S_1, \cdots\}$, and so K = 12. We have

$$(S_2 - S_1)(S_3 - S_1) = S_9 S_{10} - S_5 S_6 = S_{a+6} - S_{a+6} = 0,$$

and so there are two possibilities:

 \circ (i) $S_2 = S_1$ and \circ (ii) $S_3 = S_1$.

In the case (i), we have

$$S_n = (S_1 - S_3)\chi_3(n) + S_3 \quad \text{for all} \quad n \in \mathbb{N},$$

where $\chi_3(n)$ is the principal Dirichlet character (mod 3). Thus, $S_{n+3} = S_n$ for all $n \in \mathbb{N}$, consequently Lemma 7 gives all solutions of (f, g).

Now assume that (ii) is true. Then the sequence $\{S_n\}_{n=1}^{\infty}$ has the form $\{S_1, S_2, S_1, S_1, \cdots\}$, and so K = 4. Lemma 6 gives all solutions of (f, g).

The proof of (III) is completed and the theorem is proved.

References

- De Koninck, J.-M., I. Kátai and B. M. Phong, A new characteristic of the identity function, *Journal of Number Theory*, 63 (1997), 325–338.
- [2] Indlekofer, K.-H. and B.M. Phong, Additive uniqueness set for multiplicative functions, Annales Univ. Sci. Budapest., Sect. Comp., 26 (2006), 65–77.
- [3] Phong, B.M., A characterization of the identity function, Acta Acad. Paedag. Agriensis (Eger), Sec. Matematicae, (1997), 1–9.
- [4] Phong, B.M., On sets characterizing the identity function, Ann. Univ. Sci. Budapest., Sect. Comput. 24 (2004), 295-306.
- [5] Phong, B.M., Note on the identity function Annales Univ. Sci. Budapest., Sect. Comp., 41 (2013), 235-242.
- [6] Phong, B.M., A characterization of the identity with functional equations II., J. Number Theory, 2013.
- [7] Spiro, C., Additive uniqueness set for arithmetic functions, J. Number Theory, 42 (1992), 232–246.

B. M. Phong

Department of Computer Algebra Faculty of Informatics Eötvös Loránd University H-1117 Budapest, Pázmány Péter sétány 1/C Hungary bui@compalg.inf.elte.hu