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Abstract. We give all solutions of those multiplicative functions f, g
which satisfy

f
(
n2 + m2 + a + b

)
= g(n2 + a) + g(m2 + b) for all n, m ∈ N,

where a, b are non-negative integers with a + b > 0. It is proved that if

g(a + 36) + 4g(a + 25) − g(a + 9) − g(a + 4) − 3g(a + 1) �= 0,

then

f(n) = n and g(m2 + a) = m2 + a, g(m2 + b) = m2 + b

for all n, m ∈ N, (n, 2(a + b)) = 1.

1. Introduction

Let P, N, C be the set of primes, positive integers and complex numbers,
respectively. An arithmetic function f : N → C is said to be multiplicative
if (n, m) = 1 implies that f(nm) = f(n)f(m). Let M denote the class of all
multiplicative functions f with f(1) = 1. For each non-negative integer a let

Ea = {n2 + a | n ∈ N}.
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C. Spiro said that E ⊆ N is an additive uniqueness set for M if there is
exactly one element f ∈M which satisfies

f(n + m) = f(n) + f(m) for all n, m ∈ E.

In 1992, C. Spiro [7] showed that E = P is an additive uniqueness set for
M. In 1997, J.-M. De Koninck, I. Kátai and B. M. Phong [1] proved that if
f ∈M and

f(n2 + p) = f(n2) + f(p) for all n ∈ N, p ∈ P

holds, then f(n) = n for all n ∈ N. Recently, in [6] we improve this result for
two multiplicative functions, namely it is proved that if f, g ∈M satisfy

f(p + m2) = g(p) + g(m2) and g(p2) = g(p)2

for all p ∈ P and m ∈ N, then either

f(p + m2) = 0, g(p) = −1 and g(m2) = 1

for all primes p and m ∈ N or

f(n) = n and g(p) = p, g(m2) = m2

for all p ∈ P, n, m ∈ N.
In the following we say that A, B ⊆ N is a pair of additive uniqueness sets

(AU-sets) for M if f ∈M satisfying

f(a + b) = f(a) + f(b) for all a ∈ A and b ∈ B,

implies f(n) = n for all n ∈ N. We are interested in characterizing all non-
negative integers a and b such that A = Ea and B = Eb are AU-sets. It is
proved in [4] that if a function f ∈M with f(4)f(9) 	= 0 and k ∈ N satisfy the
condition

f(n2 + m2 + k) = f(n2) + f(m2 + k) for all n, m ∈ N,

then f(n) = n for all positive integers n, (n, 2k) = 1. K.-H. Indlekofer and
B.M. Phong [2] proved that if k ∈ N and f ∈M satisfy f(2)f(5) 	= 0 and

f
(
n2 + m2 + k + 1

)
= f(n2 + 1) + f(m2 + k) for all n, m ∈ N,

then f(n) = n for all n ∈ N, (n, 2) = 1.

Our main purpose in this paper is to give the answer for the general case.
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Theorem. Assume that non-negative integers a, b with a + b > 0 and
f, g ∈M satisfy the condition

(1) f
(
n2 + m2 + a + b

)
= g(n2 + a) + g(m2 + b) for all n, m ∈ N.

Let
Sn = g(n2 + a) and A =

1
120

(S6 + 4S5 − S3 − S2 − 3S1).

Then the following assertions are true:

I. A ∈ {0, 1}.

II. If A = 1, then

(2) g(m2 + a) = m2 + a, g(m2 + b) = m2 + b for all m ∈ N

and

(3) f(n) = n for all n ∈ N, (n, 2(a + b)) = 1.

III. If A = 0, then there is a K ∈ {1, 2, 3} such that Sn+K = Sn for all
n ∈ N.

III.1. If K = 1, then

(f, g) ∈ {(f0, g0), (f1, g1), (f2, g2)},

where (fi, gi) are given in Table 1:

i gi(n2 + a) gi(n2 + b) fi(n2 + m2 + a + b) for
0 g0(n2 + a) = 0 g0(n2 + b) = 0 f0(n2 + m2 + a + b) = 0 ∀n, m ∈ N
1 g1(n2 + a) = 0 g1(n2 + b) = 1 f1(n2 + m2 + a + b) = 1 ∀n, m ∈ N
2 g2(n2 + a) = 1 g2(n2 + b) = 0 f2(n2 + m2 + a + b) = 1 ∀n, m ∈ N

Table 1

III.2. If K = 2, then

(f, g) ∈ {(f3, g3), (f4, g4), (f5, g5), (f6, g6)},

where (fi, gi) are defined as

gi(n2 + a) = αiχ2(n) + βi, gi(n2 + b) = αiχ2(n) + γi,

fi(n2 + m2 + a + b) = αiχ2(n) + αiχ2(m) + δi

and χ2(n) is the principal Dirichlet character (modulo 2). The values of
αi, βi, γi, δi are given in Table 2:
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i (fi, gi) αi βi γi δi in the case
3 (f3, g3) c 1− c 0 1− c c ∈ C (a, b) ≡ (0, 0) (mod 2)
4 (f4, g4) c 0 −c −c c ∈ C, c 	= 0 (a, b) ≡ (0, 1) (mod 2)
5 (f5, g5) c −c 0 −c c ∈ C, c 	= 0 (a, b) ≡ (1, 0) (mod 2)
6 (f6, g6) c 1 −c 1− c c ∈ C, c 	= 0 (a, b) ≡ (1, 1) (mod 2)

Table 2

Here we write (a, b) ≡ (x, y) (mod m) if a ≡ x and b ≡ y (mod m).

III.3. If K = 3, then

(f, g) ∈ {(f7, g7), (f8, g8), · · · , (f11, g11)},

where (fi, gi) are defined as

gi(n2 + a) = αiχ3(n) + βi, gi(n2 + b) = αiχ3(n) + γi,

fi(n2 + m2 + a + b) = αiχ3(n) + αiχ3(m) + δi

and χ3(n) is the principal Dirichlet character (modulo 3). The values of
αi, βi, γi, δi are given in Table 3:

i (fi, gi) αi βi γi δi in the case
7 (f7, g7) −2 1 1 2 (a, b) ≡ (1, 1) (mod 3)
8 (f8, g8) −2 1 2 3 (a, b) ≡ (1, 2), (2, 1) (mod 3)
9 (f9, g9) 1 −1 0 −1 (a, b) ≡ (2, 3) (mod 3)
10 (f10, g10) 1 0 −1 −1 (a, b) ≡ (3, 2) (mod 3)
11 (f11, g11) −2 3 0 3 (a, b) ≡ (3, 3) (mod 3)

Table 3

2. Lemmas

We shall use the following results:

Lemma 1. Let a and b be non-negative integers and F,G be arithmetical
functions, for which the condition

(4) F (n2 + m2 + a + b) = G(n2 + a) + G(m2 + b)
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is satisfied for all n, m ∈ N. For each j ∈ N let Sj := G(j2 + a). Then

(5) Sn+12 = Sn+9 + Sn+8 + Sn+7 − Sn+5 − Sn+4 − Sn+3 + Sn

holds for all n ∈ N and

(6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

S7 = 2S5 − S1,

S8 = 2S5 + S4 − 2S1,

S9 = S6 + 2S5 − S2 − S1,

S10 = S6 + 3S5 − S3 − 2S1,

S11 = S6 + 4S5 − S3 − S2 − 2S1,

S12 = S6 + 4S5 + S4 − S2 − 4S1.

Proof. This is Lemma 1 in [5]. �

Lemma 2. Let a and b be non-negative integers and F,G be arithmetical
functions satisfying the condition (4). Let

A :=
1

120
(S6 + 4S5 − S3 − S2 − 3S1),

Γ2 :=
−1
8

(S6 − 4S5 + 4S4 − S3 + 3S2 − 3S1),

Γ3 :=
−1
3

(S6 − 2S5 + 2S3 − S2),

Γ4 :=
1
4
(S6 − 2S4 − S3 + S2 + S1),

Γ5 :=
1
5
(S6 − S5 − S3 − S2 + 2S1),

Γ :=
1
4
(S6 − 4S5 + 2S4 + 3S3 + S2 + S1),

Bk :=Γ2χ2(k) + Γ3χ3(k) + Γ4χ4(k − 1) + Γ5χ5(k) + Γ,

where χ2(k) (mod 2), χ3(k) (mod 3) are the principal Dirichlet characters and
χ4(k) (mod 4), χ5(k) (mod 5) are the real, non-principal Dirichlet characters,
i.e.

χ2(0) = 0, χ2(1) = 1, χ3(0) = 0, χ3(1) = χ3(2) = 1, χ4(0) = χ4(2) = 0,

χ4(1) = 1, χ4(3) = −1, χ5(2) = χ5(3) = −1, χ5(1) = χ5(4) = 1.

Then we have

(7) Sk = Ak2 + Bk for all k ∈ N.
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Proof. From the definition of Bk, we shall compute the values of Bk for
k = 1, 2, · · · , 12. We have

B1 = − 1
120

S6 −
1
30

S5 +
1

120
S3 +

1
120

S2 +
41
40

S1,

B2 = − 1
30

S6 −
2
15

S5 +
1
30

S3 +
31
30

S2 +
1
10

S1,

B3 = − 3
30

S6 −
3
10

S5 +
43
40

S3 +
3
40

S2 +
9
40

S1,

B4 = − 2
15

S6 −
8
15

S5 + S4 +
2
15

S3 +
2
15

S2 +
2
5
S1,

B5 = − 5
24

S6 +
1
6
S5 +

5
24

S3 +
5
24

S2 +
5
8
S1,

B6 =
7
10

S6 −
6
5
S5 +

3
10

S3 +
3
10

S2 +
9
10

S1,

B7 = − 49
120

S6 +
11
30

S5 +
49
120

S3 +
49
120

S2 +
9
40

S1,

B8 = − 8
15

S6 −
2
15

S5 + S4 +
8
15

S3 +
8
15

S2 −
2
5
S1,

B9 =
13
40

S6 −
7
10

S5 +
27
40

S3 −
13
40

S2 +
41
40

S1,

B10 =
1
6
S6 −

1
3
S5 −

1
6
S3 +

5
6
S2 +

1
2
S1,

B11 = − 1
120

S6 −
1
30

S5 +
1

120
S3 +

1
120

S2 +
41
40

S1,

B12 = −1
5
S6 −

4
5
S5 + S4 +

6
5
S3 +

1
5
S2 −

2
5
S1.

Consequently, we obtain from (6) and A = 1
120 (S6 + 4S5 − S3 − S2 − 3S1) that

A · k2 + Bk = Sk for all 1 ≤ k ≤ 6,

A · 72 + B7 = 2S5 − S1 = S7,

A · 82 + B8 = 2S5 + S4 − 2S1 = S8,

A · 92 + B9 = S6 + 2S5 − S2 − S1 = S9,

A · 102 + B10 = S6 + 3S5 − S3 − 2S1 = S10,

A · 112 + B11 = S6 + 4S5 − S3 − S2 − 2S1 = S11,

A · 122 + B12 = S6 + 4S5 + S4 − S2 − 4S1 = S12.

Therefore, we proved that (7) holds for 1 ≤ k ≤ 12.

Assume that Ak2 + Bk = Sk holds for n ≤ k ≤ n + 11, where n ≥ 1. Then
we deduce from (5) that
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Sn+12 = Sn+9 + Sn+8 + Sn+7 − Sn+5 − Sn+4 − Sn+3 + Sn =

= A
[
(n + 9)2 + (n + 8)2 + (n + 7)2 − (n + 5)2 − (n + 4)2 − (n + 3)2 + n2

]
+

+
[
Bn+9 + Bn+8 + Bn+7 −Bn+5 −Bn+4 −Bn+3 + Bn

]
=

= A(n + 12)2 + Bn+12,

which proves that (7) holds for n + 12 and so it is true for all n. In the last
relation we have used

Bn+9 + Bn+8 + Bn+7 −Bn+5 −Bn+4 −Bn+3 + Bn =

= Γ2

[ n+9∑
k=n+6

χ2(k)−
n+6∑

k=n+3

χ2(k) + χ2(n)
]
+

+ Γ3

[ n+9∑
k=n+7

χ3(k)−
n+5∑

k=n+3

χ3(k) + χ3(n)
]
+

+ Γ4

[ n+9∑
k=n+6

χ4(k − 1)−
n+6∑

k=n+3

χ4(k − 1) + χ4(n− 1)
]
+

+ Γ5

[ n+10∑
k=n+6

χ5(k)−
n+6∑

k=n+2

χ5(k)− χ5(n + 10) + χ5(n + 2) + χ5(n)
]

+ Γ =

= Γ2χ2(n) + Γ3χ3(n) + Γ4χ4(n− 1) + Γ5χ5(n + 2) + Γ =
= Γ2χ2(n + 12) + Γ3χ3(n + 12) + Γ4χ4(n + 11) + Γ5χ5(n + 12) + Γ = Bn+12.

Lemma 2 is proved. �

3. Proof of the parts (I) and (II) of Theorem

Proof of (I). Assume that non-negative integers a, b with a + b > 0 and
f, g ∈M satisfy the condition (1). For each � ∈ N, let

I� := {n ∈ N | (2n + 1, 4� + 1) = 1}.

It is easy to show that[
n2 + a

][
(n + 1)2 + a

]
=
[
n(n + 1) + a

]2
+ a

and
(n2 + a, (n + 1)2 + a) = 1 for all n ∈ Ia.
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Now we apply Lemma 2 with F = f and G = g. Then for n ∈ Ia, we have

g(n2 + a)g((n + 1)2 + a) = g
[
(n2 + a)((n + 1)2 + a)

]
= g
[(

n(n + 1) + a
)2

+ a
]
,

which proves

(8) SnSn+1 = Sn(n+1)+a for all n ∈ Ia,

therefore we get from (7) that

(9) (An2 + Bn)(A(n + 1)2 + Bn+1) = A[n(n + 1) + a]2 + Bn(n+1)+a

holds for all n ∈ Ia. By the definition of Bk we have

Bk+60 = Bk for all k ∈ N,

consequently
|Bk| ≤ L := max

(
|B1|, · · · , |B60|

)
.

Thus, (9) implies(
A +

Bn

n2

)(
A +

Bn+1

(n + 1)2
)

= A
[
1 +

a

n(n + 1)

]2
+

Bn(n+1)+a

n2(n + 1)2
,

which with n →∞ gives

A2 = A, i.e. A ∈ {0, 1}.

Proof of (II). A = 1. We obtain from (9) that

(Bn + Bn+1 − 2a)n2 + 2(Bn − a)n + Bn + BnBn+1 −Bn(n+1)+a − a2 = 0,

holds for all n ∈ Ia. For each n ∈ I1 and m ∈ N let

N(n, m) := 60(4a + 1)m + n.

Since N(n, m) ∈ Ia and BN(n,m) = Bn, we infer from the above relation that

(Bn+Bn+1−2a)N(n, m)2+2(Bn−a)N(n, m)+Bn+BnBn+1−Bn(n+1)+a−a2 = 0

is satisfied for all n ∈ Ia, m ∈ N, which implies that

Bn = a for all n ∈ Ia.

Let

J := {j ∈ N | (2j + 1, 60) = 1} = {3, 5, 6, 8, 9, 11, 14, · · · }.
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For each j ∈ J let

nj := 60xj + j (xj ∈ N)

such that

2nj + 1 = 120xj + (2j + 1) ∈ P and 2nj + 1 > 4a + 1.

Thus, nj ∈ Ia, and so Bnj = a for all j ∈ J . Since the sequence {Bk}∞k=1 is a
periodic (modulo 60), therefore

Bj = B60xj+j = Bnj
= a for all j ∈ J.

Consequently⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(B3 =) − 3
30S6 − 3

10S5 + 43
40S3 + 3

40S2 + 9
40S1 = a,

(B5 =) − 5
24S6 + 1

6S5 + 5
24S3 + 5

24S2 + 5
8S1 = a,

(B6 =) 7
10S6 − 6

5S5 + 3
10S3 + 3

10S2 + 9
10S1 = a,

(B8 =) − 8
15S6 − 2

15S5 + S4 + 8
15S3 + 8

15S2 − 2
5S1 = a,

(B11 =) − 1
120S6 − 1

30S5 + 1
120S3 + 1

120S2 + 41
40S1 = a

(A =) 1
120S6 + 1

30S5 − 1
120S3 − 1

120S2 − 1
40S1 = 1.

The solutions of this system are:

S1 = 1+a, S2 = 22+a, S3 = 32 = a, S4 = 42+a, S5 = 52+a and S6 = 62+a.

These relations with the next lemma prove (II) of our theorem. �

Lemma 3. (Theorem 1, [5]) Assume that non-negative integers a, b with
a + b > 0 and f, g ∈M satisfy the condition (1). If either

g(i2 + a) = i2 + a or g(j2 + b) = j2 + b for i, j = 1, 2, . . . , 6

then

g(m2 + a) = m2 + a, g(m2 + b) = m2 + b for all m ∈ N

and

f(n) = n for all n ∈ N, (n, 2(a + b)) = 1.

The proof of (II) is completed. �



208 B.M. Phong

4. Proof of the part (III): A = 0.

From (7) we have

Sn = g(n2 + a) = Bn for all n ∈ N.

Since
A =

1
120

(S6 + 4S5 − S3 − S2 − 3S1) = 0,

we have
S6 = −4S5 + S3 + S2 + 3S1,

consequently

(10)

Sn =
1
2
(2S5 − S4 − S2)χ2(n) + (2S5 − S3 − S1)χ3(n)+

+
1
2
(−2S5 − S4 + S2 + 2S1)χ4(n− 1) + (−S5 + S1)χ5(n)+

+
1
2
(−4S5 + S4 + 2S3 + S2 + 2S1).

It is obvious that Sn+60 = Sn for all n ∈ N.

Lemma 4. Let a and b be non-negative integers and f, g ∈ M satisfying the
condition (1). Assume that K ∈ N such that

Sn+K = Sn for all n ∈ N.

Let
J�(K) := {j ∈ N | (2j + 1, K, 4� + 1) = 1},

L(K) := {(u, v) | u, v ∈ N, (2u + 1, K, 4(v2 + a + b) + 1) = 1}
and

D := g(b + 1)− g(a + 1).

Then

(11) SjSj+1 = Sj(j+1)+a for all j ∈ Ja(K),

(12) (Sj + D)(Sj+1 + D) = Sj(j+1)+b + D for all j ∈ Jb(K),

and

(13)
(
Su + Sv + D

)(
Su+1 + Sv + D

)
= Su(u+1)+v2+a+b + Sv + D

for all (u, v) ∈ L(K).
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Proof of Lemma 4. First we prove (11). For each j ∈ Ja(K) we have
(2j + 1, K, 4a + 1) = 1, consequently there is a xj ∈ N such that

(2Kxj + (2j + 1), 4a + 1) = 1.

Let nj := Kxj + j. Then (2nj + 1, 4a + 1) = 1 and so nj ∈ Ia. From (8) we
have

Snj
Snj+1 = Snj(nj+1)+a,

which with nj ≡ j (mod K) proves (11).

Now we prove (12) and (13). First we deduce from (1) that

f(n2 + m2 + a + b) = g(n2 + a) + g(m2 + b) = g(n2 + b) + g(m2 + a),

consequently

g(n2 + b)− g(n2 + a) = g(m2 + b)− g(m2 + a) = g(b + 1)− g(a + 1) := D

for all n, m ∈ N. Then

(14)

{
g(n2 + b) = Sn + D for all n ∈ N,

f(n2 + m2 + a + b) = Sn + Sm + D for all n, m ∈ N.

For each j ∈ Jb(K) we have

(2j + 1, K, 4b + 1) = 1 and (2Kxj + (2j + 1), 4b + 1) = 1

for some xj ∈ N. As we seen above, for nj := Kxj+j, we have (2nj+1, 4b+1) =
= 1 and (

n2
j + b, (nj + 1)2 + b

)
= (2nj + 1, 4b + 1) = 1.

Since g ∈M, we obtain

g(n2
j +b)g((nj +1)2+b) = g

[(
n2

j +b
)(

(nj +1)2+b
)]

= g
[(

nj(nj +1)+b
)2

+b
]
,

which with (14) and the fact nj ≡ j (mod K) proves (12).
Now we prove (13). For each pair (u, v) ∈ L(K), there is a xu ∈ N such

that (2Kxu + 2u + 1, 4(v2 + a + b) + 1) = 1. Let nu = Kxu + u. Then

(n2
u + v2 + a + b, (nu + 1)2 + v2 + a + b) =

= (n2
u + v2 + a + b, 2nu + 1) = (2nu + 1, 4(v2 + a + b) + 1) =

= (2Kxu + 2u + 1, 4(v2 + a + b) + 1) = 1
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and so f ∈M implies

f
(
n2

u + v2 + a + b
)
f
(
(nu + 1)2 + v2 + a + b

)
=

= f
(
(n2

u + v2 + a + b)((nu + 1)2 + v2 + a + b)
)

=

= f
[(

nu(nu + 1) + v2 + a + b
)2

+ v2 + a + b
]
.

This with (14) shows that(
Snu

+ Sv + D
)(

Snu+1 + Sv + D
)

= Snu(nu+1)+v2+a+b + Sv + D,

and so (13) is proved because the condition nu ≡ u (mod K) implies

Snu = Su and Snu(nu+1)+v2+a+b = Su(u+1)+v2+a+b.

Lemma 4 is proved. �

Lemma 5. Let a and b be non-negative integers and f, g ∈ M satisfying the
condition (1). Let Sn = g(n2 + a). If Sn+1 = Sn for all n ∈ N, then

(15) (f, g) ∈ {(f0, g0), (f1, g1), (f2, g2)},

where (f0, g0), (f1, g1), (f2, g2) are given in Table 1.

Proof. By our assumption, we have Sn = s for all n ∈ N.

Let n ∈ N such that

(2n + 1, 4a + 1) = (2n + 1, 4b + 1) = (2n + 1, 4(a + b + 1) + 1) = 1.

Then we have

(n2 + a, (n + 1)2 + a) = 1, (n2 + b, (n + 1)2 + b) = 1

and
(n2 + a + b + 1, (n + 1)2 + a + b + 1) = 1,

consequently
SnSn+1 = Sn(n+1)+a,

(Sn + D)(Sn+1 + D) = Sn(n+1)+a + D

and
(Sn + S1 + D)(Sn+1 + S1 + D) = Sn(n+1)+a+b+1 + S1 + D.
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Since
g(n2 + a) = s, g(m2 + D) = s + D

and
f(n2 + m2 + a + b) = 2s + D for all n, m ∈ N,

we get from the above relations that

s2 = s, (s + D)2 = s + D and (2s + D)2 = 2s + D.

It is clear to see that all solutions of this system are:

(s, D) ∈ {(0, 0), (0, 1), (1,−1)}.

Thus, (15) is true and Lemma 5 is proved. �

In the following we say that the sequence {Sn}∞n=1 is trivial, if there is a
number s such that Sn = s for all n ∈ N.

Lemma 6. Let a and b be non-negative integers and f, g ∈ M satisfying the
condition (1). Let Sn = g(n2 + a). If Sn+4 = Sn and {Sn}∞n=1 is not trivial,
then Sn+2 = Sn is satisfied for all n ∈ N and

(f, g) ∈ {(f3, g3), (f4, g4), (f5, g5), (f6, g6)},

where (f3, g3), (f4, g4), (f5, g5), (f6, g6) are given in Table 2.

Proof. From our assumption and Lemma 4, we have K = 4 and (11)–(13)
hold for all j, u, v ∈ N. Thus, we obtain from (11) and (12) that

S2(S3 − S1) = S2S3 − S1S2 = Sa+2 − Sa+2 = 0,

S4(S3 − S1) = S3S4 − S4S5 = Sa − Sa = 0

and

(S2 + D)(S3 − S1) = [(S2 + D)(S3 + D)−D]− [(S1 + D)(S2 + D)−D] =
= Sb+2 − Sb+2 = 0.

We shall prove that

(16) S3 = S1 and S4 = S2.

Assume that S3 	= S1. Then the above relations imply that S2 = S4 = 0 and
D = 0. By applying (13) with (u, v) = (3, 1), (3, 3), (4, 1) and (u, v) = (4, 3),
we have

Sa+b+2 = (S3 + S1 + D)(S4 + S1 + D)− (S1 + D) := x1,
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Sa+b+2 = (S3 + S3 + D)(S4 + S3 + D)− (S3 + D) := x2,

Sa+b+2 = (S4 + S1 + D)(2S1 + D)− (S1 + D) := x3

and
Sa+b+2 = (S4 + S3 + D)(S1 + S3 + D)− (S3 + D) := x4.

Consequently

(S3 − S1)(S1 + 2S3 + S4 + 2D − 1) = x1 − x2 = 0,

(S3 − S1)(S1 + S4 + D) = x1 − x3 = 0,

and
(S3 − S1)(S1 + S3 + D − 1) = x4 − x1 = 0.

Since S3 	= S1, S2 = S4 = D = 0, we have 2S3 − 1 = 0, S1 = 0, S3 − 1 = 0 ,
which are impossible. Thus, the first assertion of (16) is proved.

Assume that S3 = S1. Now we apply (13) with (u, v) = (1, 2), (1, 4), (3, 2)
and (u, v) = (3, 4) to get

Sa+b+2 = (S1 + S2 + D)(2S2 + D)− (S2 + D),

Sa+b+2 = (S1 + S4 + D)(S2 + S4 + D)− (S4 + D),

Sa+b = (S3 + S2 + D)(S4 + S2 + D)− (S2 + D)

and
Sa+b = (S3 + S4 + D)(2S4 + D)− (S4 + D).

The first two relations imply that

(S2 − S4)(S4 + 2S2 + S1 + 2D − 1) = 0

and the last two equations give

(S2 − S4)(2S4 + S2 + S1 + 2D − 1) = 0.

Since

(S2−S4)(2S4+S2+S1+2D−1)−(S2−S4)(S4+2S2+S1+2D−1) = (S2−S4)2,

we have S4 = S2. Thus, (16) is proved.

In the following we may assume that (16) is true. Then the sequence
{Sn}∞n=1 satisfies the condition Sn+2 = Sn for all n ∈ N and we infer from
(10) that

Sn = (−S2 + S1)χ2(n) + S2 ∈ {S1, S2},
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where S1 	= S2, because the sequence {Sn}∞n=1 is not trivial. We obtain from
(11)-(13) that

Sa = S1S2, Sb = (S1 + D)(S2 + D)−D

and

Sa+b = (S1+S2+D)(2S2+D)−S2−D,Sa+b+1 = (S1+S2+D)(2S1+D)−S1−D.

The solutions of Sn are given in the parities of a and b.

(Ia) If (a, b) ≡ (0, 0) (mod 2), then (f, g) = (f3, g3).

In this case, (Sa, Sb, Sa+b, Sa+b+1) = (S2, S2, S2, S1) and so⎧⎪⎪⎪⎨⎪⎪⎪⎩
Sa = S1S2 = S2

Sb = (S1 + D)(S2 + D)−D = S2

Sa+b = (S1 + S2 + D)(2S2 + D)− S2 −D = S2

Sa+b+1 = (S1 + S2 + D)(2S1 + D)− S1 −D = S1.

This is equivalent to⎧⎪⎪⎪⎨⎪⎪⎪⎩
S2(S1 − 1) = 0
(S2 + D)(S1 + D − 1) = 0
(2S2 + D)(S1 + S2 + D − 1) = 0
(2S1 + D)(S1 + S2 + D − 1) = 0,

and the last two equations with the condition S1 	= S2 imply that S1 + S2 +
D − 1 = 0. If S2 = 0, then D(D − 1) = 0 and S1 + D − 1 = 0, which imply
that DS1 = 0. But S1 	= S2 = 0, we have D = 0 and S1 = −D + 1 = 1.
Thus we proved that S2 = 0 implies (S1, S2, D) = (1, 0, 0). If S2 	= 0, then
S1 = 1 and S2 + D = 0. Thus, g(n2 + a) = Sn = cχ2(n) + (1− c) = g3(n2 + a),
g(n2 + b) = Sn + D = cχ2(n) = g3(n2 + b). The case (Ia) is proved.

(Ib) If (a, b) ≡ (0, 1) (mod 2), then (f, g) = (f4, g4).

Assume that (a, b) ≡ (0, 1) (mod 2).
Then (Sa, Sb, Sa+b, Sa+b+1) = (S2, S1, S1, S2) and we have the system of

equations ⎧⎪⎪⎪⎨⎪⎪⎪⎩
S2(S1 − 1) = 0
(S1 + D)(S2 + D − 1) = 0
(2S2 + D − 1)(S1 + S2 + D) = 0
(2S1 + D − 1)(S1 + S2 + D) = 0.
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Similarly as above, the last two equations imply S1 + S2 + D = 0. If S2 	= 0,
then S1 = 1, (1+D)(S2 +D− 1) = 0, 1+S2 +D = 0, and from this we obtain

−2(D + 1) = (1 + D)(S2 + D + 1)− 2(D + 1) = (1 + D)(S2 + D − 1) = 0.

This implies D = −1 and S2 = 1+S2−1 = S1+S2+D = 0, which is impossible.
Thus we proved that S2 = 0, consequently S1 + D = 0 and (S1, S2, D) =
(c, 0,−c), where c 	= 0. Thus, (Sn, D) = (cχ2(n),−c) and the assertion (Ib) is
proved.

(Ic) If (a, b) ≡ (1, 0) (mod 2), then (f, g) = (f5, g5).

In this case we have (Sa, Sb, Sa+b, Sa+b+1) = (S1, S2, S1, S2), and similarly
we get ⎧⎪⎨⎪⎩

S1(S2 − 1) = 0
(S1 + D − 1)(S2 + D) = 0
S1 + S2 + D = 0.

It is obvious that if S1 = 0, then S2 + D = 0. Thus (f, g) = (f5, g5) and (Ic)
is true. If S1 	= 0, then S2 = 1, and (S1 + D − 1)(1 + D) = 0,S1 + 1 + D = 0
imply D = −1, S1 = 0. This is impossible.

(Id) If (a, b) ≡ (1, 1) (mod 2), then (f, g) = (f6, g6).

Assume that (a, b) ≡ (1, 1) (mod 2).

Then (Sa, Sb, Sa+b, Sa+b+1) = (S1, S1, S2, S1) and the system of equations
is the following: ⎧⎪⎨⎪⎩

S1(S2 − 1) = 0
(S1 + D)(S2 + D − 1) = 0
S1 + S2 + D − 1 = 0.

Similarly as in the case (Ia), if S1 = 0, then D = 0 and S2 = 1. If S1 	= 0, then
S2 = 1 and S1 + D = 0. Consequently Sn = (S1 − 1)χ2(n) + 1, g(n2 + b) =
= (S1 − 1)χ2(n) + 1− S1 and so (Id) holds for c = S1 − 1 	= 0.

The proof of Lemma 6 is completed. �

Lemma 7. Let a and b be non-negative integers and f, g ∈ M satisfying the
condition (1). Let Sn = g(n2 + a). If Sn+3 = Sn and {Sn}∞n=1 is not trivial,
then

(f, g) ∈ {(f7, g7), · · · , (f11, g11)},

where (f7, g7), · · · , (f11, g11) are given in Table 3.
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Proof. Assume that Sn+3 = Sn. Then K = 3 and it is obvious that 2, 3 ∈
∈ Ja(3), 2, 3 ∈ Jb(3). We prove that

(17) S2 = S1.

Assume that S2 	= S1. Then we infer from (11) that

S3(S2 − S1) = S2S3 − S3S4 = Sa − Sa = 0

and

(S3+D)(S2−S1) = [(S2+D)(S3+D)−D]−[(S3+D)(S4+D)−D] = Sb−Sb = 0,

which imply S3 = 0, D = 0.
On the other hand, we have (2, 1), (3, 1), (2, 2), (3, 2) ∈ L(3) and so we get

from (13) that

Sa+b+1 = (S2 + S1 + D)(S3 + S1 + D)− S1 −D,

Sa+b+1 = (S3 + S1 + D)(S1 + S1 + D)− S1 −D,

Sa+b+1 = (2S2 + D)(S3 + S2 + D)− S2 −D

and
Sa+b+1 = (S3 + S2 + D)(S1 + S2 + D)− S2 −D

The first and second relations imply that

S1(S2 − S1) = (S3 + S1 + D)(S2 − S1) = Sa+b+1 − Sa+b+1 = 0

and so

S1 = 0, Sa+b+1 = (S3 + S1 + D)(S1 + S1 + D)− S1 −D = 0.

This with the third relation gives S2 = 1
2 , because

0 = Sa+b+1 = (2S2 + D)(S3 + S2 + D)− S2 −D = S2(2S2 − 1).

Then the last relation implies

Sa+b+1 = (S3 + S2 + D)(S1 + S2 + D)− S2 −D =
1
4
− 1

2
= −1

4
,

which is contradicted by the fact that Sa+b+1 = 0. Therefore, (17) is proved.
Since {Sn}∞n=1 is not trivial sequence, we assume that S3 	= S1. Then we

have
Sn = (S1 − S3)χ3(n) + S3 for all n ∈ N,
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where χ3(n) is the principal Dirichlet character (mod 3).
One can check by using (11)-(12) that

(18) Sa = S1S3, Sb = (S1 + D)(S3 + D)−D,

furthermore by applying (14) with (u, v) = (2, 3), (2, 1), we have

(19) Sa+b = (S1 + S3 + D)(2S3 + D)− S3 −D

and

(20) Sa+b+1 = (2S1 + D)(S3 + S1 + D)− S1 −D.

◦ First we consider the case when a + b ≡ 0 (mod 3). It is obvious that
(1, 2) ∈ L(3), and so

(21) Sa+b = (2S1 + D)2 − S1 −D.

This with (19) leads to (S1 − S3)(2S3 + 4S1 + 3D − 1) = 0, and so

(22) 2S3 + 4S1 + 3D − 1 = 0.

On other hand, a + b ≡ 0 (mod 3) gives

Sa+b − S3 = (2S3 + D)(S1 + S3 + D − 1) = 0

and
Sa+b+1 − S1 = (2S1 + D)(S1 + S3 + D − 1) = 0.

These imply that

(23) S1 + S3 + D − 1 = 0.

One can check from (22) and (23) that

S3 = S1 + 2 and D = −2S1 − 1.

Since a + b ≡ 0 (mod 3), there are three possibilities:
(i) (a, b) ≡ (1, 2) (mod 3),
(ii) (a, b) ≡ (2, 1) (mod 3),
(iii) (a, b) ≡ (3, 3) (mod 3).
In the case (i), we have 1 ∈ Ja(3), Sa = S1 and Sb = S1, consequently

S1(S3− 1) = S1(S1 + 1) = 0 and S2
1 −S1− 2 = S1S2−S3 = Sa+2−S3 = 0.

These imply that S1 = −1, and so S3 = S1 + 2 = 1, D = −2S1 − 1 = 1. Thus
(S1, S3, d) = (−1, 1, 1)} and (f, g) ∈ {(f8, g8)}.
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In the case (ii), we also have 1 ∈ Jb(3), Sa = S1, Sb = S1, and so it follows
that (f, g) ∈ {(f8, g8)}.

In the case (iii), we have 1 ∈ Ja, consequently Sa = S1S3 = S3 and
S2

1 = Sa+2 = S1. It is obvious from S3 	= S1 and S1S3 = S3 that S1 	=
0. Therefore, S2

1 = S1 implies that S1 = 1, and so S3 = S1 + 2 = 3,
D = −2S1 − 1 = −3. This shows that g(n2 + a) = Sn = −2χ3(n) + 3 =
= g11(n2 + a), g(n2 + b) = −2χ3(n) = g11(n2 + b).

◦ Now we consider the case when a+b ≡ 1 (mod 3). We have (1, v) ∈ L(3)
for all v ∈ N, therefore (21) and (22) are true, furthermore (1, 3) ∈ L(3) with
(13) gives

(24) Sa+b+2 = (S1 + S3 + D)2 − S3 −D.

Thus, we have

Sa+b−S1 = (S2+S1+D)(2S3+D)−S3−S1−D = (2S3+D−1)(S1+S3+D) = 0,

Sa+b − S1 = (2S1 + D)2 − 2S1 −D = (2S1 + D)(2S1 + D − 1) = 0,

Sa+b+1 − S1 = (2S1 + D)(S1 + S3 + D − 1) = 0

and
Sa+b+2 − S3 = (S1 + S3 + D)2 − 2S3 −D = 0.

It is clear to see from the second and third relation that S1 = −D
2 , and so we

have

(2S3 + D − 1)(2S3 + D) = 0 and (2S3 + D)(2S3 + D − 4) = 0.

Since S3 	= S1 = −D
2 , we have 2S3 + D 	= 0. Consequently

2S3 + D − 1 = 0 and 2S3 + D − 4 = 0,

which are impossible.

◦ Finally we consider the case when a + b ≡ 2 (mod 3). Then we have

Sa+b−S1 = (S1+S3+D)(2S3+D)−S3−D−S1 = (2S3+D−1)(S1+S3+D) = 0

and

Sa+b+1−S3 = (2S1+D)(S3+S1+D)−S3−S1−D = (2S1+D−1)(S1+S3+D) = 0,

which show that S1 + S3 + D = 0.
Since a + b ≡ 2 (mod 3), there are three possibilities:
(iv) (a, b) ≡ (1, 1) (mod 3),
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(v) (a, b) ≡ (2, 3) (mod 3),
(vi) (a, b) ≡ (3, 2) (mod 3).
In the case (iv), we have Sa = S1, Sb = S1. It is clear to see that if S1 = 0,

then S3 + D = 0 and D = 0, consequently S3 = 0, which is impossible. If
S1 	= 0, then S3 = 1, which implies that S1 + 1 + D = 0 and (S1 + D)D = 0.
Thus, −D = (S1 + 1 + D)D −D = (S1 + D)D = 0 and S1 = −D − 1 = −1.
Hence we have (f, g) = (f7, g7).

In the case (v), we have Sa = S1S3 = S1, Sb = S3 and if S1 	= 0, then
S1S3 = S1 implies S3 = 1 and S1 + D + 1 = 0. We infer from the fact

0 = Sb − S3 =(S1 + D)(S3 + D)−D − S3 = (S1 + D − 1)(S3 + D) =
(S1 + D + 1)(S3 + D)− 2(S3 + D) = −2(S3 + D)

that D = −S3 = −1, which is contradicted by the fact that S1 = −(S3+D) = 0.
Thus, S1 = 0 and S3 = −D,D 	= 0. Since 1 ∈ Jb(3), we infer from (12)

that
(S1 + D)2 −D = Sb+2 = S1, (S1 + D)(S1 + D − 1) = 0,

which with D 	= 0 implies that D = 1. Then (S1, S3, D) = (0,−1, 1) and
(f, g) = (f9, g9).

In the case (vi), we have 1 ∈ Ja,Sa = S1S3 = S3, Sb = S1 and S2
1 = Sa+2 =

= S1. Then S1S3 = S3 and S1 	= S3 imply S1 	= 0. Then S2
1 = S1 implies

S1 = 1, and so S3 + D = −S1 = −1. Finally, we infer from

0 = Sb−S1 = (S1 +D)(S3 +D)−D−S1 = (S3 +D−1)(S1 +D) = −2(S1 +D)

that D = −S1 = −1 and S3 = −S1 − D = 0. Thus, we have (S1, S3, D) =
= (1, 0,−1) and (f, g) = (f10, g10).

Lemma 7 is proved. �

Proof of (III).

Assume that the non-negative integers a and b and f, g ∈ M satisfy the
condition (1), furthermore A = 0 and (10) hold. Let Sn = g(n2 + a), D =
g(b + 1)− g(a + 1).

First we note from (10) that K = 60 and S11 = S1, S12 = S4 + S3 − S1.
Since 3, 11 ∈ Ja(60), we infer from (11) that

(S4 − S1)(S3 − S1) = S3S4 − S11S12 = Sa+12 − Sa+12 = 0.

There are two possibilities: (I) S4 	= S1, S3 = S1 and (II) S4 = S1.
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Case I: S4 	= S1, S3 = S1.
We shall prove that S5 = S1.
One can check from (10) that

S8 = 2S5 + S4 − 2S1, S9 = −2S5 + 3S1, S23 = 2S5 − S1

and
S24 = −2S5 + S4 + 2S1,

which with (11) imply

4(S4 − S1)(S5 − S1) = S23S24 − S8S9 = Sa+12 − Sa+12 = 0,

because

S23S24 − S8S9 = (2S5 − S1)(−2S5 + S4 + 2S1)−
− (2S5 + S4 − 2S1)(−2S5 + 3S1) = 4(S4 − S1)(S5 − S1).

Thus, we proved that S5 = S1.
Since S5 = S3 = S1, the sequence {Sn}∞n=1 has the form {S1, S2, S1, S4, · · · },

and so K = 4. Consequently, all solutions are given in Lemma 6.

Case II: S4 = S1.
We deduce from (10) that K = 60, furthermore

S8 = 2S5 − S1, S9 = −2S5 + S3 + 2S1, S10 = −S5 + S2 + S1

and
S14 = −2S5 + S2 + 2S1, S15 = −S5 + S3 − S1.

Since 3, 8, 9, 14 ∈ Ja(60), we infer from (11) that

2(S5 − S1)(2S5 − S3 − S1) = S3S4 − S8S9 = Sa+12 − Sa+12 = 0

and
(S5 − S1)(S3 − S2) = S9S10 − S14S15 = Sa+30 − Sa+30 = 0.

Case (II.a): S4 = S1, S5 	= S1.
In this case the above relations imply

S3 = S2 and S5 =
S3 + S1

2

and so we get from (10) that

(25) Sn =
(S1 − S2

2

)
χ5(n) +

(S1 + S2

2

)
for all n ∈ N.
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If S2 = S1 then Sn = S1 for all n ∈ N. Hence by Lemma 5 we get all solutions
of (f, g).

Assume now that S2 	= S1. Since (u, v) ∈ L(5) for (u, v) ∈ {(1, 2), (4, 1), (2, 5)},
an application of (13) for these pairs, we have

Sa+b+1 = (S1 + S2 + D)(2S2 + D)− (S2 + D) := y1,

Sa+b+1 = (S4 + S1 + D)(S5 + S1 + D)− (S1 + D) =

= (2S1 + D)(S1 + S5 + D)− (S1 + D) := y2,

and

Sa+b+1 = (S2+S5+D)(S3+S5+D)−(S5+D) = (S2+S5+D)2−(S5+D) := y3,

which imply

y1 − y2 =
1
2
(S2 − S1)(4S2 + 6S1 + 5D − 2) = 0

and
y1 − y3 =

−1
4

(S2 − S1)(S2 − S1 + 2) = 0.

These imply S1 = 1 − D
2 and S2 := −1 − D

2 , consequently we get from (25)
that

Sn = χ5(n)− D

2
for all n ∈ N.

It is obvious that (5, 5) ∈ L(5), we get from (13) that

Sa+b = (S5 + S5 + D)(S6 + S5 + D)− (S5 + D) =

= (2S5 + D)(S1 + S5 + D)− (S5 + D) = −D

2
,

consequently 5|a + b. Thus,we have (5, 4(a + b + 2 · 3 + 22) + 1) = (5, 41) = 1
and (2, 2) ∈ L(5). An application of (13) with (u, v) = (2, 2) implies

Sa+b = (S2+S2+D)(S3+S2+D)−(S2+D) = (−2)(−2)−(−1+
D

2
) = 5−D

2
.

This is impossible.

Case (II.b): S5 = S4 = S1

The sequence {Sn}∞n=1 has the form {S1, S2, S3, S1, · · · }, and so K = 12.
We have

(S2 − S1)(S3 − S1) = S9S10 − S5S6 = Sa+6 − Sa+6 = 0,
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and so there are two possibilities:
◦ (i) S2 = S1 and ◦ (ii) S3 = S1.

In the case (i), we have

Sn = (S1 − S3)χ3(n) + S3 for all n ∈ N,

where χ3(n) is the principal Dirichlet character (mod 3). Thus, Sn+3 = Sn

for all n ∈ N, consequently Lemma 7 gives all solutions of (f, g).
Now assume that (ii) is true. Then the sequence {Sn}∞n=1 has the form

{S1, S2, S1, S1, · · · }, and so K = 4. Lemma 6 gives all solutions of (f, g).
The proof of (III) is completed and the theorem is proved. �
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