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Abstract. Our paper focuses on a new approach to the construction of
graph sequences driven using iterated function systems (briefly IFSs) and
iterated multifunction systems (briefly IMSs). We build self-similar graphs
sequences generated initally based on an arbitrary graph. We analyze
the graphs sequences gotten within the iterations of IFSs and IMSs. We
specially analyze the density properties between those graphs which are in
the same sequence and we also focus on graph sequences driven by Erdős–
Rényi graphs.
The main aim of our paper is to analyze the limit sets of the graph-driven
IFSs and IMSs. We characterize them using the Sierpinski carpet and the
[0, 1]2 set which we interpret as limits of the constructed graph sequences.

1. Preliminaries and notations

The purpose of this paper is to present a connection between the fixed point
theory and graph sequences. Using results on IMSs ([4], [9]) we construct graph
sequences such that the adjacency matrices of the graphs will be generated by
the iterations.
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Mandelbrot and Vicsek introduced a construction for directed and self-
similar fractal sequences [7]. The aim of paper is to construct and analyze
self-similar graph sequences using Erdős–Rényi graphs.

Let us note a simple graph G(V,E), where V is the set of the nodes and
E ⊆ V × V is the set of the undirected edges such that for all (x, y) ∈ E there
exist the (y, x) edge too, where x 	= y and x, y ∈ V . Moreover, let us denote
with n = |V | the number of the nodes in the given G graph.

The Erdős–Rényi model (see [3], [5]) has two parameters: the n number
of the nodes in the graphs and the p probability of the connections. So, the
construction process fixes the nodes and adds all the edges with independently
probability.

Based on results known of IMSs (see [4], [9]) let us use the following defi-
nitions: we refer to f = (f1, f2, . . . , fm) as an iterated function system (IFS),
where the fi’s are singlevalued continuous self operators on a complete metric
space X. The fractal operator generated by f is the following

Tf (Y ) =
m⋃

i=1

fi(Y ), for each Y ∈ Pcp(X).

A fixed point of Tf is called a self-similar set of f , which is a fractal, if it has
a non-integer Hausdorff dimension.

Moreover, for the contractions f1, f2, . . . fm TF is also a contraction and it
has an A∗ ∈ Pcp(X) fixed set. Moreover, if these contractions are similarity
mappings, then A∗ is a fractal (see [12]) and for any nonempty subset A ⊆ X,
the Tn

f (A) → A∗ as n → +∞.
If F1, F2, . . . , Fm : X → Pcp(X) are multivalued operators on the met-

ric space, then the F = {F1, F2, . . . , Fm} is an iterated multifunction system
(IMS). If the Fi operators are upper semicontinuous, then the TF : Pcp(X) →
→ Pcp(X) given by

TF (Y ) =
m⋃

i=1

Fi(Y ), for each Y ∈ Pcp(X).

is called the fractal operator generated by the F .
We call a given element x ∈ X as a fixed point of T if and only if T (x) ∈ X.

Let us note the set of fixed point with Fix(T ) = {x ∈ X|x ∈ T (x)} which
we call as fixed set too. For multivalued contractions the same results hold
(see [8]).

Let be X the compact subset [0, 1]2.
The aim of this paper is to present a new construction method for self-

similar graph sequences using IFSs and IMSs. We init from an arbitrary graph
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and its adjacency matrix defined projected to [0, 1]2 and we generate the next
graph using IFSs and IMSs as the followings.

Just like in [11], we construct graph sequences based initially on an arbitrary
graph G(V,E) with n = |V | nodes such that the kth element of the sequence
is a graph with nk nodes.

Let us consider a simple graph G(V,E), where n = |V | and let be
T : [0, 1]2 → [0, 1]2. Our construction says that an undirected (i, j) ∈ E edge
exists if and only if

([
i−1
n , i

n

]
,
[

j−1
n , j

n

])
⊆ T ([0, 1]2) and

([
j−1
n , j

n

]
,
[

i−1
n , i

n

])
⊆

⊆ T ([0, 1]2), respectively.
We apply the f1, f2, . . . fm : [0, 1]2 → [0, 1]2 mappings on the adjacency

matrix and we get that an (i, j) ∈ E exists at the kth graph in the se-
quence generated by G if and only if

([
i−1
nk , i

nk

]
,
[

j−1
nk , j

nk

])
⊆ T k([0, 1]2) and([

j−1
nk , j

nk

]
,
[

i−1
nk , i

nk

])
⊆ T k([0, 1]2), respectively.

Our paper focuses on the construction of such IFSs and IMSs, which gen-
erate adjacency matrices of graph sequences and we interpret the limit sets of
these as the limit of the graph sequences. We define IFSs driven by graphs and
we construct IMSs using set operations on these such that the iterations give
the adjacency matrix of the graphs in the sequence.

The study of graph limits is known by testing homomorphisms in graphs
sequences (see [6]). The main aim of this paper is to create a new connection
between graph limits and fixed point theory. We know that the fixed sets of
IMSs corresponding to self-similar networks introduced Barabási, Ravasz and
Vicsek (see [1] and [10]) can be analyzed using the Cantor set (see [11]).

Let us consider a simple graph G = (V,E) with n = |V | nodes and let be
f an IFS, which will generate the adjacency matrices of the sequences. Thus,
let us note the graphs of the sequence as the followings.

f1(G) = f(G), f2(G), f3(G), . . . , fk(G), . . . .

Based on these results, we specially focus on graph sequences driven by
Erdős–Rényi graphs. We note the elements of a sequence based on the IFS f
and on an arbitrary Erdős–Rényi graph as the followings.

f1(ER(n, p)) = f(ER(n, p)), f2(ER(n, p)) . . . , fk(ER(n, p)), . . . .

We use the concept for referring to the graph sequences generated using an
arbitrary IMS F . For instance, we note the graphs of sequence based on the G
graph as the followings.

F 1(G) = F (G), F 2(G), F 3(G), . . . , F k(G), . . . .

If G is an ER(n, p) Erdős-Rényi graph, then the graphs of the sequence are
noted as

F 1(ER(n, p)) = F (ER(n, p)), F 2(ER(n, p)), . . . , F k(ER(n, p)), . . . .
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We note that for each given G = (V,E), n = |V | this construction always
init from f(G) = G.

We analyze the density properties in the graph sequences and we also show
that the limit sets of IFSs and IMSs can be described using the Sierpinski
carpet and the [0, 1]2 set.

2. Construction of iterated (multi)function systems driven by
Erdős–Rényi graphs

We introduce the generation of the graph sequences using IFSs and IMSs.
Firstly, we define those edge-directed functions which we use at the construc-
tion. We also introduce a class of functions which we call as diagonal-functions
in the next. Secondly, we introduce the IFSs and the IMSs which generate
graph sequences and we also focus on graph sequences driven by Erdős–Rényi
graphs.

Based on the graph G, let consider the following edge-directed fij : [0, 1]2 →
→ [0, 1]2 mappings

fij(x, y) =
( i− 1

n
,
j − 1

n

)
+

1
n

(x, y), ∀(i, j) ∈ E.

Let define the following fi : [0, 1]2 → [0, 1]2 functions corresponding to the
loops:

fi(x, y) =
( i− 1

n
,
i− 1

n

)
+

1
n

(x, y), i = 1, 2, . . . , n.

We refer to these the functions as diagonal-functions in the next.
Let consider the IFSs f(G) = {{fij |(i, j) ∈ E} ∪ {fi|i = 1, 2, . . . , n}} con-

structed by the fij and fi functions and let be Tf(G) : Pcp([0, 1]2) →: Pcp([0, 1]2)
the corresponding fractal operators as the followings.

Tf(G)(Y ) =
( ⋃

(i,j)∈E

fij(Y )
)
∪
( n⋃

i=1

fi(Y )
)
, for each Y ∈ Pcp([0, 1]2).

Let define and note the kth element of the F (G) : [0, 1]2 → [0, 1]2 graph-
directed IMSs’ sequences as the followings.

F (G)k(x, y) =
n⋃

i=1

n⋃
j=1

[( i− 1
n

,
j − 1

n

)
+

1
n

F (G)k−1(x, y)
]
.
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We define the corresponding fractal operators TF (G) : Pcp([0, 1]2) → Pcp([0, 1]2

as
TF (G)(Y ) = F (Y ).

In the next section we show that these graph-directed IFSs and IMSs gener-
ate the adjacency matrices of graph sequences on [0, 1]2. We base the sequence
on arbitrary G graphs such that their first iteration always generates the adja-
cency matrix of G.

We analyze the density properties in the graph sequences generated for
arbitrary graphs and we also focus on that case when the initial graph G is an
Erdős-Rényi graph such that n denotes the number of the nodes and p is the
independent probability of the edges.

We note the elements of the graphs sequences based on G and driven by
the fractal operator of f and F as

f1(G) = f(G), f2(G), . . . , fk(G), . . . ,

and
F 1(G) = F (G), F 2(G), . . . , F k(G), . . . , respectively.

Thus, we focus specially on that cases, when the initially graph is an Erdős–
Rényi graph.

3. Density properties in the IFS- and IMS-driven graph sequences

In this section we focus on the analyze of the density properties in the graph
sequences driven by the defined graph-driven IFSs and IMSs.

Let be G = (V,E) a simple graph such that n = |V |. Let define the density
of G as d(G) = |E|

n2 .
We describe the density properties in the graph sequences corresponding

to the iterated function system f , the iterated multifunction system F and we
also show that the IFS and the IMS generate self-similar graph sequences.

Theorem 3.1. For a given simple graph G = (V,E), n = |V | the

T 1
f(G)([0, 1]2), T 2

f(G)([0, 1]2), . . . , T k
f(G)([0, 1]2), . . .

sequence generates the adjacency matrices of a graph sequence such that the
density of the fk(G) graph given by T k

f(G)([0, 1]2) is

d(fk(G)) =
(n + |E|)k

(nk)2
,

for all n ∈ N∗.
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Proof. We use mathematical induction for showing that T k
f(G)([0, 1]2) gives

the adjacency matrix of fk(G) and we also use induction for showing that
d(fk(G)) = (n+|E|)k

(nk)2
for all n ∈ N∗.

The initial set is [0, 1]2 and we check that Tf(G)([0, 1]2) generates the ad-
jacency matrix of G. Here we apply the f on the [0, 1]2 set, so we get the
following set as Tf(G)([0, 1]2):

• For all (i, j) ∈ E, the fij gives us that
[

i−1
n , j−1

n

]
little square which

guarantees the existence of the edge (i, j). G is a simple graph, so the existence
of the function fji and the corresponding (j, i) edge are also showed.

• The fi functions from the IFS f gives the existence of the loops, which
don’t modify essentially the G graph.

Thus, the fractal operator given by the IFS f generates the adjacency matrix
of the G graphs, which we note as f(G) in the following.

Moreover, d(f(G)) = n + |E|, because the fi, i = 1, 2, . . . , n mappings
give us n degrees and we have |E| edges. Thus, we showed that Tf(G)([0, 1]2)

corresponds to f(G), whose density is d(f(G)) = (n+|E|)1
(n1)2

Secondly, let suppose that T k
f(G)([0, 1]2) generates the adjacency matrix of

the kth element is the graph sequence and its density is equal with d(fk(G)) =
= (n+|E|)k

(nk)2
.

We show that fk+1(G) is generated by T k+1
f(G)([0, 1]2) such that it is con-

structed by using n replicas of fk(G) and some more edges between the nodes of
these replicas. We also show that density of fk+1(G) is equal with d(fk+1(G)) =
= (n+|E|)k+1

(nk+1)2
.

Based on that T k
f(G)([0, 1]2) generates the adjacency matrix of fk(G) we

need show that T also generates from T k
f(G)([0, 1]2) a graph which we interpret

as fk+1(G).

Let be
{([

u−1
nk , u

nk

]
,
[

v−1
nk , v

nk ,
])

,
([

v−1
nk , v

nk

]
,
[

u−1
nk , u

nk ,
])}

⊆ T k
f(G)([0, 1]2)

such that u, v ∈ {1, 2, . . . , nk}, which means that (u, v) is an undirected edge
in fk(G) such that it has nk nodes.

Let apply the elements of the IFS f on these sets, where fi gives us the
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following sets:
(3.1)

fi(
([u− 1

nk
,

u

nk

]
,
[v − 1

nk
,

v

nk

])
=

=
( i− 1

n
,
i− 1

n

)
+

1
n

([u− 1
nk

,
u

nk

]
,
[v − 1

nk
,

v

nk
,
]

=

=
( i− 1

n
,
i− 1

n

)
+
([u− 1

nk+1
,

u

nk+1

]
,
[v − 1
nk+1

,
v

nk+1
,
])

=

=
([nk(i− 1) + (u− 1)

nk+1
,
nk(i− 1) + u

nk+1

]
,
[nk(i− 1) + (v − 1)

nk+1
,
nk(i− 1) + v

nk+1

])
and
(3.2)

fi(
([v − 1

nk
,

v

nk

]
,
[u− 1

nk
,

u

nk

])
=

=
([nk(i− 1) + (v − 1)

nk+1
,
nk(i− 1) + v

nk+1

]
,
[nk(i− 1) + (u− 1)

nk+1
,
nk(i− 1) + u

nk+1

])
,

for all u, v ∈ {1, 2, . . . , nk} and i = 1, 2, . . . ,= n.

It is easy to check that nk(i−1)+(u−1), nk(i−1)+(v−1)} ∈ {0, 1, . . . , nk+1−
−1} and {nk(i− 1) + u, nk(i− 1) + v} ∈ {1, 2, . . . , nk+1}, what means that fi

transforms the sets generated by the (u, v) edge from fk(G) to n edges from
fk+1(G).

Let index the nodes of fk(G) as 1, 2, . . . , nk.
We highlight that the elements fi transform the (u, v) edge from fk(G)

to the (nk(i − 1) + u, nk(i − 1) + v) edges, for all u, v = 1, 2, . . . , nk and
i = 1, 2, . . . , n. For an arbitrary fixed fi we get a replica of fk(G) which is
now part of fk+1(G).

The self-similar property of the graph sequence is showed, because the us-
ing of the fi transformations causes that the (k + 1)th element of the graphs
sequence is constructed by n replicas of the kth element in the same sequence.

On the other hand, the functions fij transform the sets corresponding to
the undirected (u, v) edge from fk(G) as the followings.

(3.3)

fij(
([u− 1

nk
,

u

nk

]
,
[v − 1

nk
,

v

nk

])
=

=
( i− 1

n
,
j − 1

n

)
+

1
n

([u− 1
nk

,
u

nk

]
,
[v − 1

nk
,

v

nk
,
]

=

=
( i− 1

n
,
j − 1

n

)
+
([u− 1

nk+1
,

u

nk+1

]
,
[v − 1
nk+1

,
v

nk+1
,
])

=

=
([nk(i− 1) + (u− 1)

nk+1
,
nk(i− 1) + u

nk+1

]
,
[nk(j − 1) + (v − 1)

nk+1
,
nk(j − 1) + v

nk+1

])
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and
(3.4)

fij(
([v − 1

nk
,

v

nk

]
,
[u− 1

nk
,

u

nk

])
=

=
([nk(i− 1) + (v − 1)

nk+1
,
nk(i− 1) + v

nk+1

]
,
[nk(j − 1) + (u− 1)

nk+1
,
nk(j − 1) + u

nk+1

])
,

for all u, v ∈ {1, 2, . . . , nk} and i = 1, 2, . . . ,= n.

Just like in Equation 3.3 and Equation 3.4, the application of the fij map-
pings transform the edges from fk(G) to fk+1(G). A function fij from for all
(u, v) in fk(G) edge generates n edges in fk+1(G).

Based on that d(fk(G)) = (n+|E|)k

(nk)2
and fk(G) has nk nodes we know that

fk(G) has (n+ |E|)k) edges. We know that for all edges from fk(G) correspond
(n+ |E|) edges from fk+1(G) such that n new edges are given by the functions
fi, i = 1, 2, . . . , m and |E| new connections are given by fij , (i, j) ∈ E functions.

The density of fk+1(G) holds the following equation.

d(fk+1(G)) =
(n + |E|)k+1

(nk+1)2
(3.5)

Based on that G = (V,E), V = |E| is the initial simple graph, n+ |E| ≤ n2.
The equality holds if and only if G is a complete graph and then d(fk(G)) = 1.
Otherwise, the density of the kth element in the sequence is as the followings.

lim
k→+∞

d(fk(G)) =
(n + |E|)k

(n2)k
= 0, for all non complete G graph.(3.6)

Thus, we based the graph sequences on an arbitrary graph and we generated
a self-similar sequence using the IFS f . We also analyzed the density of the
elements in the graph sequences and we showed that if we have a non-complete
graph then limit is equal with 0. �

We present the first and the second graphs and the corresponding adjacency
matrices of the following graph sequence.

Example 3.2. Let be G = (V,E) a simple graph completed with all of
the loops such that V = {1, 2, 3, 4, 5} and E = {(1, 2), (2, 1), (4, 5), (5, 4)} ∪
{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}. Let consider the f -driven graph sequence
based on G on Figure 1.

Let be G an Erdős–Rényi graph with n nodes and let be the independent
probability p. Thus, the next corollary is given.
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Figure 1. f(G) and f2(G) from Example 3.2 (the graphs and the corresponding
adjacency matrices).

Corollary 3.1. For a given Erdős–Rényi graph G(V,E) = ER(n, p),
n = |V | the T 1

f(ER(n,p))([0, 1]2), T 2
f(ER(n,p))([0, 1]2), . . . , T k

f(ER(n,p))([0, 1]2), . . .
sequence generates the adjacency matrices of a graph sequence such that the
expected value of the density of the graph fk(ER(n, p)) given by T k

f(G)([0, 1]2)

is E(d(fk(ER(n, p)))) =
(
n+p

n(n−1)
2

)k

(nk)2
, for all n ∈ N∗.

Proof. Let consider that G = ER(n, p) is an Erdős-Rényi graph such that it
has n nodes and the probability of nodes is always independently p. Based on
[2], we know that the expected number of edges in ER(n, p) is pC2

n = pn(n−1)
2 .

We also know that the existence of the edges is always independent in Erdős–
Rényi graphs.

Thus, the expected value of the density in the graph sequence generated by
ER(n, p) is as follows.

(3.7) E(d(fk(ER(n, p)))) =

(
n + pC2

n

)k
(nk)2

=

(
n + pn(n−1)

2

)k
(nk)2

.

�

Let us construct the iterated multifunction system F using Banach-type
transformations and set operations on the f and the f ′ iteration function sys-
tems defined above.
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The aim of this is to construct such IMSs, which generate graph sequences
with different density properties. Let show that F generates sequences based
on an arbitrary graph G such that the density of the kth element is larger or
equal then the density of the k + 1th element.

Theorem 3.3. For a given simple graph G = (V,E), n = |V | the

T 1
F (G)([0, 1]2), T 2

F (G)([0, 1]2), . . . , T k
F (G)([0, 1]2), . . .

sequence generates the adjacency matrices of a graph sequence such that the
density of the F k(G) graph given by T k

F (G)([0, 1]2) is

d(F k(G)) =
n + |E|

n2
,

for all n ∈ N∗.

Proof. For a given simple graph G = (V,E), n = |V |, the kth iteration of
TF (G) is constructed with(nk−1)2 replicas of it’s first iteration using Banach-
type transformations and shiftings.

Firstly, we verify the following equation.

(3.8)

T k
F (G)([0, 1]2) =

n⋃
i=1

n⋃
j=1

[( i− 1
n

,
j − 1

n

)
+

1
n

T k−1
F (G)(x, y)

]
=

=
nk−1⋃
i=1

nk−1⋃
j=1

[( i− 1
nk−1

,
j − 1
nk−1

)
+

1
nk−1

f(G)([0, 1]2)
]
,

for all k ∈ N \ {0, 1} such that F (G)([0, 1]2) = f(G)([0, 1]2).

This means that
(3.9)

T k
F (G)([0, 1]2) =

n⋃
i=1

n⋃
j=1

[( i− 1
n

,
j − 1

n

)
+

1
n

T k−1
F (G)(x, y)

]
=

=
n⋃

i=1

n⋃
j=1

[( i− 1
n

,
j − 1

n

)
+

1
n

[ n⋃
i2=1

n⋃
j2=1

[( i2 − 1
n

,
j2 − 1

n

)
+

1
n

T k−2
F (G)(x, y)

]]
=

=
n⋃

i=1

n⋃
j=1

[( i− 1
n

,
j − 1

n

)
+
[ n⋃

i2=1

n⋃
j2=1

[( i2 − 1
n2

,
j2 − 1

n2

)
+

1
n2

T k−2
F (G)(x, y)

]]
=

=
n2⋃
i=1

n2⋃
j=1

[( i− 1
n2

,
j − 1
n2

)
+

1
n2

T k−2
F (G)(x, y)

]
.
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Following the same transformation step by step, we get that

(3.10)

T k
F (G)([0, 1]2) =

nk−1⋃
i=1

nk−1⋃
j=1

[( i− 1
nk−1

,
j − 1
nk−1

)
+

1
nk−1

TF (G)([0, 1]2)
]

=

=
nk−1⋃
i=1

nk−1⋃
j=1

[( i− 1
nk−1

,
j − 1
nk−1

)
+

1
nk−1

F (G)([0, 1]2)
]

=

=
nk−1⋃
i=1

nk−1⋃
j=1

[( i− 1
nk−1

,
j − 1
nk−1

)
+

1
nk−1

f(G)([0, 1]2)
]
,

for all n ∈ N∗, k ∈ N \ {0, 1} such that F (G)([0, 1]2) = f(G)([0, 1]2).

As we showed in the proof of Theorem 3.1, f(G)([0, 1]2) gives the adjacency
matrix of G. We also know that the graph F k(G) given by T k

F (G)([0, 1]2) has

nk nodes, so the 1
nk T k

F (G)([0, 1]2) projected to the
([

i−1
nk , i

nk

]
,
[

j−1
nk , i

nk

])
little

squares also correspond to edges in F k(G), for all i, j = 1, 2, . . . , nk.

If (i, j) is an edge in F k(G), then
([

i−1
nk , i

nk

]
,
[

j−1
nk , i

nk

])
⊆ T k([0, 1]2).

Based on that G is a simple graph we know that f(G)([0, 1]2) is symmetric on
the first bisector. This and Equation 3.8 follow that

([
j−1
nk , j

nk

]
,
[

i−1
nk , j

nk

])
⊆

⊆ T k([0, 1]2), so (i, j) is also an edge. Thus, F k(G) is an undirected graph.
The T 1

F (G)([0, 1]2), T 2
F (G)([0, 1]2), . . . , T k

F (G)([0, 1]2), . . . sequence gives a self-

similar graph sequence with nk nodes at in T k
F (G)([0, 1]2) and

[(
i−1

nk−1 , i−1
nk−1

)
+

+ 1
nk−1 f(G)([0, 1]2)

]
⊆ T k

F (G)([0, 1]2) generates a replica of F (G), for all

i = 1, 2, . . . , nk. Thus, the kth element of the sequence contains nk replicas
of the first initial graph.

F k(G) is constructed by (nk−1)2 shiftings of F (G) and it has (nk)2 nodes.
Based on d(F (G)) = n+|E|

n2 we get that

(3.11) d(F k(G)) =
(n + |E|)(nk−1)2

(nk)2
=

n + |E|
n2

,

which means that the graph density is constant in the sequence generated by
G. �

Example 3.4. Let be G = (V,E) a simple graph completed with all of
the loops such that V = {1, 2, 3, 4, 5} and E = {(1, 2), (2, 1), (4, 5), (5, 4)} ∪
∪{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}. Let consider the F -driven graph sequence
based on G on Figure 2.
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Figure 2. F (G) and F 2(G) from Example 3.4 (the graphs and the corresponding
adjacency matrices).

Just like as above, be G an Erdős-Rényi graph with parameters n and p.

Corollary 3.2. For a given simple graph G(V,E) = ER(n, p), n = |V |
T 1

F (ER(n,p))([0, 1]2, T 2
F (ER(n,p))([0, 1]2), . . . , T k

F (ER(n,p))([0, 1]2), . . . generates the
adjacency matrices of a graph sequence such that the expected value of the den-
sity of the graph F k(ER(n, p)) given by T k

F (G)([0, 1]2) is E(d(F k(ER(n, p)))) =

=
(
n+p

n(n−1)
2

)
n2 for all n ∈ N∗.

Proof. Let us consider that G = ER(n, p). So, based also on [2], the expected
number of edges in ER(n, p) is pC2

n = pn(n−1)
2 and the edges of these graphs

are always independent.
The expected value of the kth element in the graph sequence generated by

G = ER(n, p) is

(3.12) E(d(F k(ER(n, p)))) =

(
n + pn(n−1)

2

)
n2

, for all i ∈ N∗.

�

Thus, in this section we constructed self-similar graph sequences using
graph-driven IFSs and IMSs and we analyzed the density properties in the
graph sequences. We focus on the description of the fixed sets generated by
these IFSs’ and the IMSs’.
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4. Description of the IFSs’ and the IMSs’ limit sets using
the Sierpinski carpet and the [0, 1]2 unit square

In this section we introduce the graph-driven version of the Sierpinski car-
pet, which we note as SIER(G) for a given graph G = (V,E).

Let consider the mappings fij : [0, 1]2 → [0, 1]2 as

fij(x, y) =
( i− 1

n
,
j − 1

n

)
+

1
n

(x, y), such that (i, j) ∈ E and i 	= j.

We complete the graph with all of the possible loops, so we define the
mappings fi : [0, 1]2 → [0, 1]2 as

fi(x, y) =
( i− 1

n
,
i− 1

n

)
+

1
n

(x, y), such that (i, i) ∈ E,

where fi corresponds to the loop of the ith node and let construct the graph-
driven IFS f(G) = {{fij |(i, j) ∈ E} ∪ {fi|(i, i) ∈ E}} using the presented
functions.

Example 4.1. For instance, if G = (V,E), V = {1, 2, 3} and E = {(1, 2),
(1, 3), (2, 1), (2, 3), (3, 1), (3, 2), } ∪ {(1, 1), (3, 3)}, then the corresponding f(G)
generates by iterations the classical Sierpinski carpet. Based on that the con-
struction uses shiftings and Banach-type contractions, the IFS has a fixed point
set , which is the Sierpinski carpet at this case.

Based on this example, we refer to the limit of these graph-driven general-
ization as the graph-driven extension of the Sierpinski carpet, which we note
as SIER(G) for a given G = (V,E).

The main fixed point set result for these graphs-driven IFS f is as follows.

Theorem 4.2. lim
k→+∞

T k
f(G)([0, 1]2) = SIER(G) = Fix(f(G)).

Proof. f(G) is constructed by the finite union of Banach-type operations, so
the corresponding fractal operator Tf(G) has an unique fixed point set. Based on
Example 4.1, we know that f is a graph-directed generalization of the Sierpinski
carpet. Thus, Tf(G) has the SIER(f(G)) graph-driven unique fixed point set,
which can approximated by iterations.

We interpret these limit sets as the limit of the f -driven graph sequence
based on the arbitrary G graph, which we characterized using the graph-driven
generalization of the Sierpinski carpet. �
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Let focus on the case, when G is an Erdős-Rényi graph. Thus, we also get
that the fixed set of the graph sequence driven by a random graph can be also
described using the graph-driven generalization of the Sierpinski carpet.

Corollary 4.1. lim
k→+∞

fk(ER(n, p)) = SIER(ER(n, p)) and

lim
k→+∞

fk(ER(n, p)) = Fix(f(ER(n, p))).

Proof. If G = ER(n, p), then the corresponding iterated function system
f(ER(n, p)) has the SIER(ER(n, p)) fixed set. �

For the constructed graph-driven IMS F corresponding to graph sequences
with constant graph density the following fixed point theorem hold for any
given G graph.

Theorem 4.3. lim
k→+∞

F k(G) = [0, 1]2.

Proof. The kth iteration of F is constructed by the union of (nk−1)2 number
of sets.

T k
F (G)([0, 1]2) =

nk−1⋃
i=1

nk−1⋃
j=1

[( i− 1
nk−1

,
j − 1
nk−1

)
+

1
nk−1

f(G)([0, 1]2)
]
,(4.1)

for all n, k ∈ N∗.

If k → +∞, then

lim
k→+∞

[( i− 1
nk−1

,
j − 1
nk−1

)
+

1
nk−1

f(G)([0, 1]2)
]

=
( i− 1

nk−1
,
j − 1
nk−1

)
,(4.2)

for all i, j = 1, 2, . . . , nk − 1.

Moreover, the crossing points of an nk−1 × nk−1 size grid is always in-
cluded in T k

F (G) such that it is projected to [0, 1]2. Although T k+1
F (G) contains

the skeleton of a nk×nk size grid projected to the unit square, the limit of the
T 1

F (G)([0, 1]2), T 2
F (G)([0, 1]2), . . . , T k

F (G)([0, 1]2), . . . sequence never reachs the
[0, 1]2 unit square.

If k → +∞, then lim
k→+∞

T k
F (G)([0, 1]2) = [0, 1]2.

On the other hand, TF (G)([0, 1]2) generates the adjacency matrix of G =
F (G). This means, that the limit of the F -driven graph sequences is the unit
square, but it is not a fixed set for the IMS F . �
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We also confirm this result for Erdős–Rényi graphs too.

Corollary 4.2. lim
k→+∞

F k(ER(n, p)) = [0, 1]2.

Proof. If G is an Erdős-Rényi graph such that it has n nodes and the proba-
bility of nodes is always independently p, the result of presented theorem hold
for it. �

As a conclusion, we based our graph sequence constructions using a set of
graph-driven IFS and a set of graph-driven IMSs. We showed that the results
hold for arbitrary graphs. We characterized the limit of the graph sequences
using the Sierpinski carpet and the unit square.
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