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Abstract. The invasive species model presents the ecosystem of the Easter
Island and describes the connections between three species: people, trees
and rats. In 2008, Basener, Brooks, Radin and Wiandt presented an arti-
cle, in which they created a mathematical model [1], [2]. The model was
investigated in [6], too. In this work we suggest a new model in which
discrete delay is involved. We investigate the equilibrium points and their
stability.

1. Introduction

The Easter Island is located in the Pacific Ocean, at the southeastern point
of the Polynesian Triangle. Primarily, it is famous for its culture and its ap-
proximately 900 stone statues, so called Moais. The Polynesian arrived to the
island around 400–700, where they built their civilization and used the am-
ple resources of the island. The human population used the trees for building
houses, creating canoes and for transportation of the statues.
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In the later centuries the population greatly increased, which caused ir-
reversible changes in the ecosystem of the island. Due to the deforestation
trees disappeared, while the agriculture declined due to the soil erosion. These
resulted in scarce availability of food.

According to Terry Hunt (an American anthropologist), the main reason
why the forests could not heal properly was the Polynesian rat. Most probably
the Polynesian rats arrived to the island with the first Polynesian settlers. Its
main nourishment was the fruit of the palm trees. All the above reasons caused
the disaster of the Easter Island’s ecosystem.

Mathematical models were created to model this phenomenon, one of them
is the invasive species model. However this model has a serious disadvantage:
it does not represent the reality exactly, as it does not consider that a certain
amount of time is needed for the seeds to become a full-grown tree. To overcome
this, in this paper we introduce discrete delay and compare the stability of the
original and the new model.

2. Invasive species model

In 2008, Basener et al. presented an article, in which they created a math-
ematical model for this phenomenon [1]. Using the notation P (t), T (t) and
R(t) at the given time instant for the people, trees and rats, respectively, the
invasive species model is a system of differential equations for these unknown
functions, which describe the relations between them. We note that we mea-
sure P in people, the units for T is the amount of trees that would support one
human, and for R it is the number of rats that would be supported by one tree
unit.

In the following we describe each equation in this system.

• It is assumed that the growth rate of the human population is defined by
the logistic equation, where the carrying capacity is the amount of the
trees. Hence, the equation has the form

(2.1)
dP

dt
= aP

(
1− P

T

)
,

where the non-negative parameter a shows the growth rate of the human
population.

• The growth rate of the rat population is defined also by the logistic equa-
tion, where the carrying capacity is the amount of the trees again. Hence,
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the equation has the form

(2.2)
dR

dt
= cR

(
1− R

T

)
,

where the non-negative parameter c represents the growth rate of the rat
population.

• The rats eat the seeds of the trees and the humans decrease the amount
of the trees, too. Therefore, the equation for the rats has the form

(2.3)
dT

dt
=

b

1 + fR
T

(
1− T

M

)
− hP,

where the non-negative parameter f shows the effect of the rats, b is the
growth rate of the trees, and h is the harvest by the human population.
The parameter M denotes the carrying capacity of the trees. We note
that linear harvesting is considered in this model.

The equations (2.1)–(2.3) yield a system of nonlinear ordinary differential equa-
tions, which is frequently called dynamical system.

In the following we analyse some qualitative properties for the above system.
First we define the equilibrium of the dynamical system. Roughly speaking,
it is a value of the state variables where the state variables do not change. In
other words, an equilibrium is a solution that does not change with time. This
implies the following definition.

Let f : IRn+1 → IRn be a given function.

Definition 2.1. When for the solution x(t) of the dynamical system

(2.4)
dx

dt
= f(t, x)

there exists a constant vector x∗ ∈ IRn such that x(t) = x∗ for all t, then the
vector x∗ is called equilibrium point of the system.

Clearly, the equilibrium can be defined from the equation f(t, x∗) = 0.
Therefore, for the invasive species model the equilibrium point (P ∗, R∗, T ∗) ∈
∈ IR3 of the system (2.1)–(2.3) can be defined as the solutions of the following
system of algebraic equations:

aP ∗
(

1− P ∗

T ∗

)
= 0,

cR∗
(

1− R∗

T ∗

)
= 0,(2.5)

b

1 + fR∗T ∗
(

1− T ∗

M

)
− hP ∗ = 0.
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Hence, following the results of [1], [2], by an easy computation we can define
the equilibrium points of the system (2.5), and we get the following four points:

(2.6) P1(0, 0, M),

(2.7) P2(0, M, M),

(2.8) P3

(
(b− h)M

b
, 0,

(b− h)M
b

)
,

(2.9) P4

(
(b− h)M
b + fhM

,
(b− h)M
b + fhM

,
(b− h)M
b + fhM

)
.

We note that only the point P4 is an inner point of the solution domain, while
in the other cases the equilibrium points are on the boundary. This means,
that for the points P1, P2 and P3 at least one species is not present in the
interaction. The point P4 is the most interesting one, because in this case all
the three populations (people, trees and rats) live together.

From a qualitative point of view, one of the most important properties of
a dynamical system is its stability, which means the following. The dynamical
system (2.4) is well-posed if we add an initial condition to this system, i.e., we
fix the initial state of the system. (This condition is necessary to guarantee
the uniqueness of the solution.) The stability theory addresses the stability
of solutions of differential equations and of trajectories of dynamical systems
under small perturbations of initial conditions. This means that some given
solution is called stable if the system always returns to it after small distur-
bances of the initial condition. Otherwise, i.e., if the system moves away from
the equilibrium after small disturbances, then the solution is called unstable.

Our aim is to investigate the stability property of the equilibrium points. In
[1] it is shown that for the dynamical system (2.1)–(2.3) the equilibrium points
P1,P2 and P3 are unstable, while P4 point is conditionally stable.

In the next sections we introduce a new model, we define its equilibrium
points, and we will investigate their stability properties.

3. The discrete delay system

The deficiency of the system (2.1)–(2.3) is that it does not reflect the reality
exactly, therefore we cannot consider it as an adequate model for the invasive
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species phenomenon. The problem is the following. The amount of the seeds
consumed by the rats does not decrease the amount of the trees immediately,
but those seeds will not become a full-grown tree. Hence, the effect of the rats
appears after a certain amount of time. This motivates to change the system
(2.1)–(2.3) by using discrete delay for modeling of the island’s ecosystem.

In the sequel, we incorporate in the system (2.1)–(2.3) the above-mentioned
discrete delay in order to build up a more reliable model for the island’s ecosys-
tem. This means that the delay differential equations have been used in the
modeling. The rodents eat the fruits of the trees and the seeds too, so the rats
prevent the regeneration of the trees. We denote by τ the time necessary for
a seed to become a full-grown tree. Hence, by modeling this process with a
delay differential equation, the third equation in the system (2.1)–(2.3), i.e.,
the equation for the trees, has the new form

dT (t)
dt

=
b

1 + fR(t− τ)
T (t− τ)

(
1− T (t− τ)

M

)
− hP (t).(3.1)

With this modification the new mathematical model is the following system of
equations:

dP

dt
= aP

(
1− P

T

)
,(3.2)

dR

dt
= cR

(
1− R

T

)
,(3.3)

dT (t)
dt

=
b

1 + fR(t− τ)
T (t− τ)

(
1− T (t− τ)

M

)
− hP (t).(3.4)

The system (3.2)–(3.4) yields a delay ODE system (DODE). Next we define
the equilibrium points of this system and we investigate also the stability of
these points.

First we give the definition of a DODE system. In the same way as it was
given for ODE system (2.4), we give the definition as follows.

Let fd : IR2n+1 → IRn be a given function.

Definition 3.1. When for the solution x(t) of the dynamical system

(3.5)
dx

dt
= fd(t, x(t), x(t− τ))

there exists a constant vector x∗ ∈ IRn such that x(t) = x∗ for all t, then the
vector x∗ is called equilibrium point of the system.
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The equilibrium points are independent of time, hence, the equilibrium
points can be defined by solving the system of algebraic equations f(t, x∗, x∗) =
= 0.

Let us define the equilibrium points for the DODE system (3.2)–(3.4). As
one can see, these points can be defined by solving the algebraic system (2.5).
This means that the discrete delay does not change the equilibrium points, i.e.,
the following statement is true.

Proposition 3.1. The equilibrium points of the DODE system (3.2)–(3.4) and
the ODE system (2.1)–(2.3) are the same.

Remark. Is this statement true for any DODE system, when fd in (3.5) is an
arbitrary function? As one can easily see, the corresponding algebraic equations
are the same for a system with delay and without delay if and only if the
coordinate functions f i

d of fd (i = 1, 2, . . . , n) depend only either on x(t) or
x(t − τ), i.e., they have the form f i

d(t, x(t)) or f i
d(t, x(t − τ)). For the DODE

system (3.2)–(3.4) this requirement is satisfied, and this fact causes the identity
of the equilibrium points.

4. Stability analysis

In this section we investigate the stability of the equilibrium points for
DODE system (3.2)–(3.4). As usual, first we linearize the delay equation system
around the equilibrium points and then examine the roots of the corresponding
characteristic equation. The real part of the roots of the characteristic equation
show the stability of the given equilibrium point: the given point is stable when
Reλ ≤ 0 for all roots. Otherwise, it is unstable.

The linerisation of the delay system (3.2)–(3.4) at the point P(P (t), R(t),
T (t)) has the form

d

dt

⎛⎝ P (t)
R(t)
T (t)

⎞⎠ = A1

⎛⎝ P (t)
R(t)
T (t)

⎞⎠+ A2

⎛⎝ P (t− τ)
R(t− τ)
T (t− τ)

⎞⎠ ,(4.1)

where A1(P) and A2(P) are 3 × 3 Jacobian matrices of the system and the
latter matrix depends on the delay parameter τ , too.
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The Jacobian matrices at the point P(P (t), R(t), T (t)) are the following:

A1 =

⎛⎝ a− 2aP
T 0 aP 2

T 2

0 c− 2cR
T

cR2

T 2

−h 0 0

⎞⎠ ,(4.2)

A2 =

⎛⎜⎝ 0 0 0
0 0 0
0 −bfT (t−τ)

(1+fR(t−τ))2

(
1− T (t−τ)

M

)
b

1+fR(t−τ) −
2bT (t−τ)

(1+fR(t−τ))M

⎞⎟⎠(4.3)

which means that the characteristic equation of the system (4.1) is

det
(
λI −A1 − e−λτA2

)
= 0.(4.4)

We examine the characteristic equation and their eigenvalues at the equi-
librium points Pi, (i = 1, 2, 3, 4), defined in (2.6)–(2.9).

4.1. The stability of P1

The first case shows the state of the island when there are no people and
rats, and the trees are at their carrying capacity. At the equilibrium point P1

the Jacobian has the form

(4.5) A1(P1) =

⎛⎝ a 0 0
0 c 0
−h 0 0

⎞⎠ , A2(P1) =

⎛⎝ 0 0 0
0 0 0
0 0 −b

⎞⎠ .

Hence, the characteristic equation is

(4.6)

∣∣∣∣∣∣
λ− a 0 0

0 λ− c 0
h 0 λ + be−λτ

∣∣∣∣∣∣ = (λ− a)(λ− c)(λ + be−λτ ) = 0.

Since λ1 = a > 0, the equilibrium point P1 is unstable.

4.2. The stability of P2

In this case we analyze the island before the arrival of the Polynesian set-
tlements. There are no people on the island, only the rat population and trees.
At the equilibrium point P2 the Jacobian matrices are the following:

(4.7) A1(P2) =

⎛⎝ a 0 0
0 −c c
−h 0 0

⎞⎠ , A2(P2) =

⎛⎝ 0 0 0
0 0 0
0 0 − b

1+fM

⎞⎠ .
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In this case the characteristic equation is

(4.8)

∣∣∣∣∣∣
λ− a 0 0

0 λ + c −c

h 0 λ + be−λτ

1+fM

∣∣∣∣∣∣ = (λ− a)
[
(λ + c)

(
λ +

be−λτ

1 + fM

)]
= 0.

Since λ1 = a > 0, the equilibrium point P2 is unstable.

4.3. The stability of P3

In this situation there are no rats on the island, only the human population
and trees. We investigate the stability of the equilibrium point P3, the Jacobian
matrices have the form

A1(P3) =

⎛⎝ −a 0 a
0 c 0
−h 0 0

⎞⎠ , A2(P3) =

⎛⎝ 0 0 0
0 0 0
0 −hfM(b−h)

b 2h− b

⎞⎠ .

The characteristic equation at the equilibrium point P3 is the following:

(4.9)

∣∣∣∣∣∣
λ + a 0 −a

0 λ− c 0
h h(b−h)Mf

b e−λτ λ− (2h− b)e−λτ

∣∣∣∣∣∣ =
= (λ− c)

[
(λ + a)(λ− (2h− b)e−λτ ) + ah

]
= 0.

The λ1 = c > 0 is the eigenvalue of the characteristic equation, thus the
equilibrium point P3 is unstable.

Proposition 4.1. The equilibrium points P1,P2 and P3 of the DODE system
(3.2)–(3.4) are unstable, and the discrete delay does not change the stability.

4.4. The stability of P4

The last case is the most interesting both mathematically and ecologically,
because it is the equilibrium that corresponds to the coexistence of all three
biological populations: the people, the trees and the rats. The equilibrium
point is conditionally stable in the case of system (2.1)–(2.3). For this point
the Jacobian matrices have the form

A1(P4) =

⎛⎝ −a 0 a
0 −c c
−h 0 0

⎞⎠ , A2(P4) =

⎛⎝ 0 0 0
0 0 0
0 bfF (F−M)

(1+fF )2M
b(M−2F )
(1+fF )M

⎞⎠ ,
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where

F :=
(b− h)M
b + fhM

(4.10)

denotes the equilibrium point.
The characteristic equation is in this case

(4.11)

P (λ) :=

∣∣∣∣∣∣
λ + a 0 −a

0 λ + c −c

h − bfF (F−M)
(1+fF )2M e−λτ λ− b(M−2F )

M(1+fF )e
−λτ

∣∣∣∣∣∣ =
= λ3 + λ2(a + c) + λ(ac + ah)− λ2e−λτF2+

+λe−λτ (−cF1 − cF2 − aF2) + e−λτ (−acF1 − acF2) + ahc = 0,

where F1 and F2 denote the following:

F1 =
bfF (F −M)
(1 + fF )2M

,(4.12)

F2 =
b(M − 2F )
M(1 + fF )

.(4.13)

The characteristic equation of the point P4 is complicated and it depends on
different parameters. Thus, to examine the stability, we fix those parameters
which are determined from the original phenomenon, and we analyse the sta-
bility in dependence of those parameters which can be controlled, which are
the parameters h and f , showing the effect of the people and rats. We can
control these influences, thus we use a wide range of these parameter values to
solve the characteristic equation and examine the real part of the roots.

Hence, we fix the parameters as a = 0.03, b = 1, c = 10, M = 12000 and the
parameters may vary as h ∈ [0, 0.5] and f ∈ [0, 0.01], respectively.

We examined the stability domain with different values of parameters f and
h. The following figures show the non-positive real part roots of the equation
(4.11) (i.e., the stability of P4 ) with different delay parameters τ . In all figures
the horizontal axis is h, the vertical axis is f .

The first picture shows the non-positive real part roots of the characteristic
equation if τ = 0. This case yields the system without delay, i.e., the ODE
system (2.1)–(2.3). We note that this figure is identical to the figure given in
[1] for this system.

Figure 2 shows the stability domain when the delay parameter is chosen as
τ = 0.005.

Finally, Figure 3 represents the stability domain when the delay parameter
is increased significantly.
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Figure 1. The non-positive real part roots of the characteristic equation with
τ = 0.

Figure 2. The non-positive real part roots of the characteristic equation with
τ = 0.005.

Figure 3. The non-positive real part roots of the characteristic equation with
τ = 2.02.
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As we can see, by these given fixed parameters a, b, c and M , the stability
domain (f, h) does not change considerably.

However, we can choose such parameter values (a = 0.03, b = 10, c = 1,
M = 4000), for which the stability domain of the DODE system and the ODE
system can be different.

Figure 4. The non-positive real parts of the characteristic equation with τ = 0.

Figure 5. The non-positive real parts of the characteristic equation with τ = 2.

Based on the above numerical experiments, the effect of the delay shows
the following. For several choices of the parameters a, c, b and M the (f, h) sta-
bility map is the same, while for other choices the map is changed significantly.
However for the equilibrium point P4 we can find suitable parameter setting
under which this point is stable.
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5. Summary

The invasive species model describes the relationship between three species
on the Easter Island. This process is both mathematically and ecologically
interesting. We have modified the invasive species model with introducing a
discrete delay differential equation. This new model represents the processes
more accurately, this is why it is really important to analyse it. Our aim was
to investigate the stability of this modified system. We found that the delay
does not affect the instability of the equilibrium points P1,P2 and P3.

The case of point P4 is more complicated. If τ = 0, we get the invasive
species model (2.1)–(2.3), which is conditionally stable. In the previous section
we consider the stability domain for different τ values and fixed parameters.
The stability domains are considerably similar and there exist such parame-
ters when the stability domains are different. With the introduction of τ the
equilibrium point P4 can be stable.

However we still have open questions like: For which parameters and delay is
the system stable? Has the system bifurcation for different parameter domains?
Our plan in the future is to determine the effect of the delay and the stability
domain. To be able to perform these, we would like to use other methods, e.
g., Rouché’s theorem [3]. Also we would like to use numerical methods to solve
the DODE system. Using the operator splitting could be useful by separating
the different components: in the DODE model the delayed and the non-delayed
term. Our aim is to use different operator splitting techniques, especially the
sequential and the Strang-Marchuk splittings [4], [5].
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