
Annales Univ. Sci. Budapest., Sect. Comp. 45 (2016) 135–156

DEVELOPMENT AND MATHEMATICAL ANALYSIS

OF A SPACE-DEPENDENT

INTEGRO-DIFFERENTIAL MODEL FOR THE

SPREAD OF EBOLA BY USING OPERATOR

SPLITTING
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Abstract. The Ebola virus causes an acute, serious illness, which is often
fatal if untreated. Thus, it is important to give an epidemic model that
considers not only the spread of the disease, but also a feasible delivery
system, the speed of producing the vaccine, a drug for Ebola or the effect
of the migration so that we can optimize the eradication of the virus. In
this work we develop a model to describe the dynamic of the virus in space
and time and for this purpose the extended version of the SEIRS epidemic
spread model is used in combination with extra carriers and other groups.
Our aim is to extend this model by different influential factors, such as the
population migration. This modification introduces space dependence into
the system and transforms it into the form of partial differential equations.
One way to combine the original system with the migration model is the
operator splitting method, which allows us to solve the extra operators
connected to each other by the appropriate initial conditions independently
from the basic model. Thus we apply the sequential splitting method
based on the classical explicit Euler scheme for the numerical analysis in
order to predict the morphosis of the disease spreading and to give some
preventative or amending suggestions.
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1. Introduction and biological backgrounds

The Ebola virus causes an acute, serious illness, which is often fatal if
untreated. Thus, it is important to give an epidemic model that considers not
only the spread of the disease, but also feasible feasible delivery system, the
speed of manufacturing of the vaccine or drug for Ebola so that we can optimize
its eradication of it. The Ebola disease is a zoonose epidemic which extends
basically from animals to people. The Ebola virus genera involves five species
at present. The most dangerous of the for people from them is a so called Zaire
Ebola virus (ZEBOV). The first registered person with Ebola virus was the
44 years old teacher, Mabalo Lokela. The affection was caused perhaps by a
reused unsterilized hollow needle. This is a really usual source of infection in
underpossessed civilizations.

A further potential source of infection could be the non-competent using of
medical equipments, nursing service having low quality, void precautions (for
example rubber gloves) or traditional burial rituals especially in developing
countries of Africa. The most probably putative virus hosts are fruit-eating
bats but some plants and arthropods became suspicious, as well. Other research
showed that infected bats did not get ill from the Ebola virus. The occurrence
of the virus in natural environment and possible infections to people are not
known. However, people are infected definitely not directly by the virus hosting
bats instead by infected mammals which more often have direct contact with
populations. On the other hand, it is also known that bats are usually consumed
by the residents, especially in West-Africa.

After getting the disease from animals, the virus will spread inside the civ-
ilization, nevertheless, Ebola is not able to keep up permanently inside human
populations. It is important to mention that diseased people can not spread
the Ebola virus as they do not show any symptoms and the ZEBOV virus
does not spread among airborne. It follows that it can only circulate among
people by direct contact with infected blood or other body-fluids (semen, gob)
but infection during mouth and conjunctiva is also possible. Furthermore on
accordance with the above mentioned facts, the spread of the virus could be
promoted by local traditions, such as burial rituals. This is representative
mostly in the African continent where this ritual go hand in hand with wash
down and kissing of the dead body.

After infection, a latent period (4 − 10) days is expected. After that the
disease begins suddenly with flue-like symptoms which is typical by viral in-
fections. These symptoms are usually discomfort, fever, headache, bellyache,
synanche, myalgia and myasthenia. Later symptoms include problems with
some organ system, such as the respiratory system, digestive system, nervous
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system or vascular system. At the acme of the disease, after 5 − 7 days from
the first symptoms, haemorrhagic fever stigmas emerge and the morality rate
in this phase is approximately 70− 80%, but in Africa this rate is higher.

Survivors might become fully recovered from the disease, however, the heal-
ing process can take a long time, as well, even weeks or months and the virus
may be present for a good while in the body-fluids (for example in semen).
A good counter example was written in an online article from October, 2015
about a recovered man who had after 9 and a half months still Ebola virus
in his semen [1]. Thereout we can not draw any conclusion about the exact
subsistence time of Ebola virus in human organ after healing. That is how-
ever an acknowledged statement of facts that the risk of re-influence is quietly
low but even so during sexual contact is theoretically still possible. After all
it is reassuring that in the Sierra Leone area, where the most infected people
were registered [2], not one official re-infected affair happened. For additional
soothing a study was published by an other research documentation in 2014 [3]
where it was shown that the organism of a totally recovered person produces
antibodies against Ebola virus, which protects the individual for at least 3− 5
years from re-infection.

In addition an other reassuring fact is that there is no vertical transmission
from mothers to newborns because of the fast disease progress of Ebola with
frequent death rate. At last it is worth mentioning that Ebola virus is an age
specify infection, i.e. the disease progress takes different times by different age
groups [7].

The sickness hasn’t presently any permanent treatment. Individuals diag-
nosed by Ebola virus are immediately isolated from the population (in normal
case, according to prescriptions). Without effective disposalt, the prevention
of the infection has a central role in people’s life. Diseased and necrolatry by
Ebola are miasmatic by contact with body-fluids. Therefore direct relations to
them should be neglected. The Ebola epidemic in West-Africa in 2014 created
a national panic and sped up the propagation of immunization against Ebola
virus [2]. The effect of these was the development of a vaccine which was tested
in Guinea where researchers experimented 100% successfulness by testing 7651
individuals [4].

At last we describe how this paper is organized. In Section 2 we introduce
the used basic model of SEICR [6] and we define the basic notations. In Section
3 we extend the SEICR model by 3 various influential factors, namely quar-
antines, vaccination and vital dynamic with natural birth and mortality rate.
The basic model of population migration is presented in Section 4 where the
coupled system is developed, together with initial and boundary conditions.
Section 5 is for getting acquainted with the numerical algorithm of the sequen-
tial splitting method. In this section we determine also the coupling procedure
of the extended SEICR and the population migration model. In Section 6 we
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define the general form of the partial-integral-differential equations (PIDEs)
and we prove a statement about the qualitative properties of the discretized
numerical model of it to. In the last section we do some numerical tests in
order to say something about the effectiveness of the sequential splitting algo-
rithm and about the behaviour of individuals in different subgroups within the
population during the epidemic.

2. Basics of the model

In mathematical epidemic modeling there exist many structures for disease
spreading. From these, in this work the SEIR-model is used as default model,
e.g. [6], with extra carriers, denoted by C. For combining them, the SEICR-
model was developed, where initials define the following arts of population
classes:

• S: Susceptibles, i.e. those individuals who are capable of contracting the
disease and might becoming themselves infectives later

• E: Latent individuals, who undergo a latent period, before being them-
selves capable of transmitting the disease

• I: Infectives, i.e. those individuals who are capable of transmitting the
disease to susceptibles

• C: Carriers, i.e. those individuals, who carry and spread the infection
disease, but has no clinical symptoms

• R: Removed, i.e. those individuals who have contracted the disease or,
if recovered, are permanently immune.

This model can be extended to the SEICRS-model with the assumption
of possible reinfection even if there were no registered issue for that because it
is theoretically possible. From now our aim is to extend and combine the basic
SEICRS epidemic model with more influential factors.

The general idea of epidemic spread models is the separation of the whole
population into several sub-population having the same properties in some
sense. Generally these groups determine the aim structure of epidemic models
which are called usually SI, SIR, SIRS, SEIR, SEIRS or SEICRS model
according to the spread direction of the disease. In this paper the last model
is developed and investigated because to the best of our knowledge there is no
mathematical model describing its mechanism of it. To understand the essence
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of this model, it is recommended to analyze simpler models first. When dealing
with populations with space structure, the relevant quantities are spatial den-
sities. Firstly we shall define a bounded 2-dimensional domain in R2 denoted
by Ω. Let us denote the number of individuals in group Mi, at a location
x ∈ Ω and at time t ≥ 0 by Mi(x, t), where Mi represents one of S, E, I, C
or R, i.e Mi ∈ {S, E, I, C, R} for all i = 1, 2, 3, 4, 5. It should be noted that
x is a 2-dimensional vector in space in domain Ω which coordinates actually
representing the geographical degrees of latitude and of longitude. If we denote
the number of individuals inside the different groups in the territory Ω for all
Mi by

(2.1) M
(ω)
i (t) =

∫
ω

Mi(z, t)dz ,

then the whole population in the habitat ω, denoted by N (ω)(t) can be specified
according to (2.1) as follows:

(2.2) N (ω)(t) =
5∑

i=1

M
(ω)
i (t) .

In the further work we assume that habitat ω is a bounded and fixed pa-
rameter and we simplify our notations by omitting it from the superscript.

Corresponding to the classical ”law of mass action”, which actually means
the homogeneous distribution of the epidemic spread between dissimilar groups,
many epidemic models have a force infection operator based on linear depen-
dence of individuals from various classes. Ebola virus epidemic is similar to
AIDS, which has a non-linear force infection operator during modeling. This
means that the infection process from S to E is driven by a given non-linear
operator due to the pathogen material produced by the latent individual and
susceptibles and available at location x and at time t.

Analogously to the previous details, a further operator can be defined which
includes the quality and quantity of individuals transmitting from one class to
the other one. The rudimentary model described in the previous section will
be transformed to adapted form as developed by Legrand et al, which was
previously used to describe the 2000 Uganda Ebola outbreaks [5]. The used
model takes into consideration the number of people infected due to direct
contact with an infected/carrier individual, the number of people infected due
to direct contact with latent individuals etc. Individuals in the latent stage will
eventually show the symptoms of the disease and enter into infectious stage.
Using notations in (2.1)–(2.2), the time dependent differential equation of the
SEICR-model system can be formalized as follows with the appropriate initial
conditions:
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(2.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′(t) = −
[
γI(t)
N(t)

I(t) +
γC(t)
N(t)

C(t)
]

S(t) + σ(t)R(t) ,

E′(t) =
[
γI(t)
N(t)

I(t) +
γC(t)
N(t)

C(t)
]

S(t)− δ(t)E(t) ,

I ′(t) = δ(t)E(t)− [ε(t) + κ(t)] I(t) ,

C ′(t) = ε(t)I(t)− ξ(t)C(t) ,

R′(t) = ξ(t)C(t)− σ(t)R(t) .

(2.4) S(0) = S0, E(0) = E0, I(0) = I0, C(0) = C0, R(0) = R0 .

The flow chart in Figure 1 represents well the one directional connection
between groups.

Figure 1. Flow chart about the possible transitions between groups

Here, we have γI(t) = pI(t) · cI(t) and γC(t) = pC(t) · cC(t) where pI(t) and
pC(t) denote the probabilities of successfully getting infected when coming into
contact with an infected or carrier individual, respectively, additionally cI(x, t)
and cC(x, t) are the force infection functions of infected and carrier individuals,
respectively. Furthermore δ(t) denotes the per-capita infectious rate between
individuals in latent period and infected humans. In that case, 1/δ(t) becomes
the average time for a latent individual to become infectious. ε(t) marks the
rate of individuals who recovered from the virus and are on the mend, but are
still infectious. On the other hand κ(t) denotes the death rate of the epidemic.
Finally ξ(t) stands for the totally recovered humans rate while σ(t) implements
the proportion of people who are over the protection meaning 10 years against
the virus and get into again to the group of susceptibles.
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3. Influential factors for the spread of Ebola

3.1. Quarantine and vaccination

The developed model in (2.3)-(2.4) suggests that Ebola will eventually be
out of control, as time goes by. Until now there is no way to cure Ebola, but
we do have an effective way to prevent its spread, which is supposed to be the
introduction of individuals in quarantines be denoted by Q(t). This denotes the
infectious population being hospitalized by the governments and other medical
organizations at time t. Let the rate of infectious individuals being hospitalized
denoted by λ(t) where we assume that the hospitalized individuals share the
same death probability with the normal infectious ones but do not infect any
exposed individual or susceptible one. Let κI(t) and additionally κQ(t) mark
the death rates of infections caused by the Ebola’s epidemic in group I and
Q, respectively. Furthermore, let ϕ(t) be chosen as the per-capita rate of
individuals who are on the mend and become carriers.

In addition, let us denote the seventh class of individuals by V (t), which
represents the number of individuals who have been vaccinated before the in-
fection. Therefore individuals belonging this class are not able to get infected
and they are not the part of the disease’s circulation anymore. Let us denote
the vaccination rate by the function θ(t).

With all this in mind we can establish connection between groups after
introducing individuals in quarantines and possible vaccination in a flow chart
in Figure 2.

Figure 2. Flow chart of the possible transitions between groups expanded by
quarantined and vaccinated individuals.
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Vaccination program is used to prevent the epidemic and it could alter the
courses of the infection, as well. To estimate the best possible approximation
of θ(t) for t, we shall take into consideration the different connections between
individuals. These connections are often described in terms of the mixing pat-
terns of the network. We consider two types of mixing patters here, namely,
assortative mixing and proportionate mixing. Assortative mixing describes
situations in which individuals are more likely to interact with other individu-
als who are similar to them in some respects, while proportionate mixing (or
random mixing) occurs when interactions have no particular preference.

3.2. Vital dynamics

The invariance of the total population can be maintained by introducing
the intrinsic vital dynamics of individuals by means of net mortality rate com-
pensated by equal birth input α(t)N(t) in the susceptible group, where α(t)
is a known function. This assumption contains obviously also that there is no
vertical transmission of the disease, in other words everybody is assumed to
be born clear from infection. We suppose that the natural mortality rate is
different in each group and let this rate be denoted in every case by β(t) with
the appropriate initial letters of various sub-groups in the subscript. We can
assume that α(t)N(t) =

∑7
i=1 βMi

(t)Mi(t) for all t ≥ 0, where Mi denotes the
initial identifying the i-th group to be modelled, i.e. Mi ∈ {S, E, I, C, R, Q, V }
for i = 1, 2, 3, 4, 5, 6, 7. Similarly as before, we establish the connection between
the groups in Figure 3 after assuming the vital dynamics.

Figure 3. Flow chart of the possible transitions between groups expanded by
assuming the vital dynamic.
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With these three modifications (i.e. quarantine, vaccination, vital dynam-
ics) we can rewrite the extended form of the system (2.3) with appropriate
initial conditions (2.4). Thus we get the following system of ordinary differen-
tial equations with initial conditions for the spread of Ebola:

(3.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′(t) = −
[
γI(t)
N(t)

I(t) +
γC(t)
N(t)

C(t) + θ(t) + βS(t)
]

S(t)+

+σ(t)R(t) + α(t)N(t) ,

E′(t) =
[
γI(t)
N(t)

I(t) +
γC(t)
N(t)

C(t)
]

S(t)− [δ(t) + βE(t)] E(t) ,

I ′(t) = δ(t)E(t)− [ε(t) + κ(t) + λ(t) + βI(t)] I(t) ,

C ′(t) = ε(t)I(t) + ϕ(t)Q(t)− [ξ(t) + βC(t)] C(t) ,

R′(t) = ξ(t)C(t)− [σ(t) + βR(t)] R(t) ,

Q′(t) = λ(t)I(t)− [κQ(t) + ϕ(t) + βQ(t)] Q(t) ,

V ′(t) = θ(t)S(t)− βV (t)V (t) ;

(3.2)

⎧⎨⎩ S(0) = S0, E(0) = E0, I(0) = I0, C(0) = C0,

R(0) = R0, Q(0) = Q0, V (0) = V0.

4. The effect of population migration

The basic importance of space dependent epidemic spread models lies in the
distribution of infected individuals inside the population. We suppose that the
individuals are continuously on the mend, in consequence reactions (diseases)
emerge between different sub-groups. It is important to analyse not isolated
populations (no islands or closed biomes). In this work we use only the main
results of the proliferation stationary cases of the spatial distributed epidemic
spread model developed in [12]. The basic proliferation-stationary system can
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be determined for the sub-groups Mi ∈ {S, E, I, C, R, Q, V } for all i as follows

(4.1)
∂Mi

∂t
(x, t) =

∫
Ω

v(x, y)Mi(y, t)dy − ve(x)Mi(x, t) ,

where domain Ω ⊂ R2 denotes the living space of the population. Additionally
the multivalued function v(x, y) is the so called migration rate, and ve(x) de-
notes the emigration rate function. Functions v(x, y) and ve(x) can be defined
as follows according to [12]

(4.2) v(x, y) := lim
diam(Ox)→0
diam(Oy)→0

M(Ox, Oy)
|Ox|M(Oy)

, ve(x) :=
∫
Ω

v(y, x)dy ,

where Ox, Oy ∈ Ω are two disjoint subsets which include x and y points, respec-
tively, furthermore, M(Ox, Oy) represents the number of migrated individuals
in a unit time interval from location Oy to Ox, and the whole number of pop-
ulation at place Oy before migration is denoted by M(Oy). Additionally the
classical n-dimensional Lebesgue-measure of Ox is denoted by |Ox|. We sup-
pose that our migration system has an ergodic property, which means that
individuals can migrate from each location to the other place by finite number
of steps.

After introducing the classical proliferation-stationary population migration
model in (4.1) using notations (4.2), we can transform our extended Ebola
epidemic system (3.1) into the form of partial differential equations (PDE), and
we can combine it with the proliferation-stationary model in (4.1) according to
[12] as follows:

(4.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S

∂t
(x, t) = −

[
γI(x, t)
N(x, t)

I(x, t) +
γC(x, t)
N(x, t)

C(x, t)
]

S(x, t)+

− [θ(x, t) + βS(x, t)] S(x, t) + σ(x, t)R(x, t)+

+α(x, t)N(x, t) +
∫
Ω

v(x, y)S(y, t)dy − ve(x)S(x, t) ,

∂E

∂t
(x, t) =

[
γI(x, t)
N(x, t)

I(x, t) +
γC(x, t)
N(x, t)

C(x, t)
]

S(x, t)−

− [δ(x, t) + βE(x, t)] E(x, t) +
∫
Ω

v(x, y)E(y, t)dy−

−ve(x)E(x, t) ,
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(4.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂I

∂t
(x, t) = δ(x, t)E(x, t)− [ε(x, t) + κI(x, t) + λ(x, t)] I(x, t)+

−βI(x, t)I(x, t) +
∫
Ω

v(x, y)I(y, t)dy − ve(x)I(x, t) ,

∂C

∂t
(x, t) = ε(x, t)I(x, t) + ϕ(x, t)Q(x, t)− ξ(x, t)C(x, t)+

−βC(x, t)C(x, t) +
∫
Ω

v(x, y)C(y, t)dy − ve(x)C(x, t) ,

∂R

∂t
(x, t) = ξ(x, t)C(x, t)− [σ(x, t) + βR(x, t)] R(x, t)+

+
∫
Ω

v(x, y)R(y, t)dy − ve(x)R(x, t) ,

∂Q

∂t
(x, t) = λ(x, t)I(x, t)− [κQ(x, t) + ϕ(x, t) + βQ(x, t)] Q(x, t)+

+
∫
Ω

v(x, y)Q(y, t)dy − ve(x)Q(x, t) ,

∂V

∂t
(x, t) = θ(x, t)S(x, t)− βV (x, t)V (x, t)

+
∫
Ω

v(x, y)V (y, t)dy − ve(x)V (x, t)

with initial conditions

(4.4)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
S(x, 0) = S0(x), E(x, 0) = E0(x), I(x, 0) = I0(x),

C(x, 0) = C0(x), R(x, 0) = R0(x), Q(x, 0) = Q0(x),

V (x, 0) = V0(x).

Our aim is to apply the sequential splitting algorithm to approximate the
solution of the system of PDE’s (4.3)-(4.4). For this purpose first we determine
the appropriate boundary conditions for points x ∈ ∂Ω, where ∂Ω denotes the
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boundary of habitat Ω. To do that we use the classical Neumann-boundary
conditions which defines the flux (combination of immigration and emigration
rate) of individuals at ∂Ω. We suppose that this flux depends on time and on
the location uniformly. In mathematical formulation this means the following

(4.5)
∂Mi

∂x
(x̃, t) = ΨMi

(x̃, t), x̃ ∈ ∂Ω, t ∈ [0, T ] .

The last thing we need to do is determining functions ΨMi
(x̃, t) for every

sub-group, namely, for all Mi ∈ {S, E, I, C, R, Q, V }.
We assume that the emigration rates of susceptibles and latent individuals

increases after the outbreak of Ebola and going to be decreased after dangerous
state. Vaccinated individuals have no reason to move, that is why their flux at
the boundary is much lower. The flux by quarantines is even more restricted
because people are not able to move of their own own free will or they are in
safety in quarantines. Infected, carriers and removed individuals neither have
too much reason to migrate, they are already infected or belong to the small
group who survived the virus Ebola.

If we accept these assumptions, we can actually define arbitrarily functions
ΨMi

(x̃, t) for all Mi as the modulator of normal distribution where the ex-
pected value mi determines the expected hollow point of the epidemic for all
i = 1, 2, 3, 4, 5, 6, 7 and the variance is taken as constant

(4.6) ΨMi
(x̃, t) :=

k̃i(x̃)√
2π

e−
(t−mi)

2 , x̃ ∈ ∂Ω, t ∈ [0, T ] ,

where k̃i(x̃) denotes the flux constant for all locations at the boundary of the
domain for the different sub-groups (S, E, I, C, R, Q, V ).

In the next section we describe the basics of sequential splitting solution and
we determine an algorithm to find the approximated solution of the Ebola epi-
demic spread model (4.3) with the given initial (4.4) and boundary conditions
(4.5)-(4.6).

5. Sequential splitting and the numerical scheme

Splitting methods are generally used to solve partial differential equations
or system of equations [8], [9], [10]. The main idea is to replace the complex
problem with the sequence of sub-problems with simpler structure. In the
following the general method of sequential splitting [11] is presented briefly for
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the solution of PDEs. The mathematical model can be described in the form
of the following abstract Cauchy problem for t ∈ [0, T ] and x ∈ [0, L]

(5.1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂w(x, t)

∂t
=

n∑
i=1

Aiw(x, t)

w(x, 0) = w0(x),
∂w(0, t)

∂x
= g1(t),

∂w(L, t)
∂x

= g2(t)

where w : R×R → Λ is the Λ-valued unknown function for every fixed t ∈ [0, T ]
and Λ denotes the possible states space, which is usually assumed to be a Ba-
nach space. Furthermore w0(x) ∈ Λ and g1(t), g2(t) ∈ Λ define the initial and
boundary conditions of the problem, and operators Ai : Λ → Λ define the dif-
ferent sub-processes. Operator splitting techniques were developed to find the
solution of problem (5.1), when Ai consists of non-linear operator(s). Usually
operators are split by the different mathematical structures (e.g. linear and
non-linear part of the equation are grouped separately) or by the same partial
differential operators (grouping different time and space derivatives together),
but the splitting is arbitrary. Then the obtained simpler systems are discretized
on potentially different meshes. One of the main advantage of operator split-
ting techniques is that different numerical schemes and discertizations with
different length and time scales can be applied, selecting the most adequate
one for a given sub-problem. The main drawback, however may be the loss of
convergence and/or accuracy.

For the numerical solution of problem (5.1) the following mesh is defined for
the macroscopic (approximation on a normal mesh) and microscopic problem
(approximation on a finer mesh), respectively. First, an appropriate grid is
generated for the macroscopic problem. Let ωmac

h,τ be a mesh, which consists
of (xi, tk) mesh-points, where h and τ denote the chosen spatial and time
resolution of the mesh, according to the following

(5.2)
xi = ih, h = L

NL
i = 0, 1, 2, . . . , NL

tk = kτ, τ = T
NT

k = 0, 1, 2, . . . , NT

where NL and NT denote the numbers of division parts in space and time.
Then we introduce a finer mesh for the microscopic problem. Let this mesh be
denoted by ωmic

h,Δτ which consists of the (xi, tn) mesh-points, where h and Δτ
denote the chosen spatial and time resolution, respectively. In this case
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(5.3)
xi = ih, h = L

NL
i = 0, 1, 2, . . . , NL

tn = nΔτ, Δτ = τ
Nτ

n = 0, 1, 2, . . . , NT ·Nτ

where Nτ marks the number of subdivision parts in time and space. Note that
perceive that NT ·Nτ ·Δτ = NT · τ = T which means that the time interval is
the same as by mesh ωmac

h,τ , only with finer time steps.

There are two things worth mentioning: First, ωmic
h,τ contains every point

from mesh ωmac
h,τ and additionally extra points. Alternatively the two mesh-

points are not necessarily required to overlap, but this case is not investigated
here. Second, the spatial resolution of the mesh is not changed, because the
convergence criterion for FDM is linked with time through Δτ

h2 . Hereinafter
the introduction of a corresponding vector space Ξ(ωmic

h,Δτ ) is needed, where the
approximated mesh-functions are interpreted on ωmic

h,Δτ (defined in (5.3)). Our
aim is to find series of mesh-functions (yn

i )j := (yh,Δτ )j (xi, tn) ∈ Ξ(ωmic
h,Δτ )

which approximates well the j-th components of vector function (�w)j (xi, tn)
at the mesh-point (xi, tn) ∈ ωmic

h,Δτ . Let us denote by j = 1, 2, 3, 4, 5, 6, 7 the
components of the solution S, E, I, C, R, Q and V , respectively.

First and last, the original problem (or the operator of the problem) is split
into macroscopic (Problem 1) and microscopic (Problem 2) sub-problems. The
sequential splitting method solves the sub-problem iteratively by applying the
steps depicted in Figure 4.

Figure 4. The flow chart of sequential splitting algorithm on macroscopic (Prob-
lem 1) and microscopic (Problem 2) sub-problems [10].

The following algorithm describes the solution sequence of the sub-problems
where t ∈ [0, T ] and x ∈ [0, L] on the above defined meshes. In the first step of
the algorithm, both sub-problems are considered on the interval [0, τ ].
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Problem 1 - Normal mesh (macroscopic)

(5.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
(

�w
(1)
1

)
j

∂t
(x, t) =

k∑
i=1

Ai

(
�w

(1)
1

)
j
(x, t)

(
�w

(1)
1

)
j
(x, 0) = (�w0)j (x)

∂
(

�w
(1)
1

)
j

∂x
(0, t) = (g1)j (t),

∂
(

�w
(1)
1

)
j

∂x
(L, t) = (g2)j (t)

Problem 2 - Finer mesh (microscopic)

(5.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
(

�w
(1)
2

)
j

∂t
(x, t) =

n∑
i=k+1

Ai

(
�w

(1)
2

)
j
(x, t)

(
�w

(1)
2

)
j
(x, 0) =

(
�w

(1)
1

)
j
(x, τ)

∂
(

�w
(1)
2

)
j

∂x
(0, t) = (g1)j (t),

∂
(

�w
(1)
2

)
j

∂x
(L, t) = (g2)j (t)

The subscript of �w corresponds to the solution of each sub-problem and the
superscript is the splitting step. Furthermore Problem 2 is solved independently
Nτ times to reach the solution at point τ , because Nτ ·Δτ = τ .

In the second step we solve the PDE applying the operator in Problem 1
iteratively but now on time interval [τ, 2τ ] time interval with initial condition
w

(1)
2 (x, τ) and so forth in the following steps of the algorithm. By solving the

previous n steps iteratively, the constructed w
(n)
2 (x, nτ) is the solution of the

sequential splitting on the given Ξ(ωmic
h,Δτ ) mesh.

The splitted solution of the PDE-system is approximated in this work by ex-
plicit Euler scheme which consists of explicit approaches on both sub-problems.

6. Qualitative properties of a simplified model

The model (4.3) is too complex to analyze or determine any qualitative
properties of it. Hence, in this section we simplify (4.3) into a system of partial-
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integro-differential equations (PIDE) with one variable. Our aim is now to say
something about the connection of the continuous and the discretized model
for the general form of PIDEs.

Starting with the reduction of (4.3) with initial (4.4) and boundary condi-
tions (4.5)–(4.6) we define the following PIDE

(6.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂η

∂t
(x, t) = F (x, t, η(x, t)) + G(η(x, t)), x ∈ [0, 1], t ∈ [0, T ] ,

η(x, 0) = η0(x), x ∈ [0, 1] ,

∂η

∂x
(x, t) =

k√
2π

e−
(t−m)

2 , x ∈ {0, 1}, t ∈ [0, T ] ,

where F is a nonlinear positive function and G is the classical definite integral
operator, namely

(6.2) G(η(x, t)) :=

1∫
0

η(x, t)dx.

The discretized form of (6.1) can be determined applying the explicit Euler
scheme on F and the trapezoidal rule on G and considering the mesh ωmic

h,Δτ in
(5.3) as follows for all i = 1, 2, . . . , NL and n = 1, 2, . . . , NT ·Nτ :

(6.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ηn
i − ηn−1

i

Δτ
= Fn−1

i +
h

2
(
ηn−1

i − ηn−1
i−1

)
,

η0
i = η0(xi) ,

ηn
1 − ηn

0

h
=

k√
2π

e−
(tn−m)

2 ,
ηn

NL
− ηn

NL−1

h
=

k√
2π

e−
(tn−m)

2 .

It is an essential expectation from the discretized model (6.3) to have the
equivalent qualitative properties with the continuous model (6.1). From this
purpose we investigate if the discretized model preserve the non-negativity
and give some further condition which guarantees this property. Keeping non-
negativity means that the initial condition η0

i ≥ 0 for any i = 1, 2, . . . , NL

implies that ηn
i ≥ 0 for all i = 0, 1, . . . , NL and n = 0, 1, . . . , NT ·Nτ .

Let us consider according to the sequential splitting algorithm as discretized
macroscopic and microscopic problems the following equations in every algo-
rithm step and for all i and n. As a microscopic problem we shall consider the
equation

(6.4)
ηn
1,i − ηn−1

1,i

Δτ
= Fn−1

i
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and in the same manner as a macroscopic problem the equation

(6.5)
ηn
2,i − ηn−1

2,i

τ
=

h

2
(
ηn−1
2,i − ηn−1

2,i−1

)
,

where the subscripts denote the number of sub-problems.
From Section 5 we know that (6.4) and (6.5) are connected to each other by

the appropriate initial conditions. Hence, we need to analyze the non-negativity
of (6.4) and (6.5) simultaneously.

ηn
1,i in (6.4) is trivially non-negative because F was defined as a positive

multivalued function. Taking this and η0
1,i ≥ 0 into consideration one can eas-

ily check that ηn
1,i ≥ 0 for all n and i. However the value of ηn

2,i depends on the
solution of (6.4), therefore we use and proof the following statement.

Statement 6.1. Let us suppose that for the initial condition in (6.5) the
inequality η0

2,i ≥ 0 holds for all i = 0, 1, . . . , NL and for the discrete values of
function F , namely for F 1

i , F 1
j the following inequalities hold:

(6.6)
(

1 +
2
τh

)
η0
2,i ≥ η0

2,j and
(

1 +
2
τh

)
F 1

i ≥ F 1
j for all i 	= j.

Then for all n = 1, 2, . . . , NT ·Nτ and i = 0, 1, . . . , NL the discrete value of ηn
2,i

holds the non-negativity.

Proof. We prove our statement with induction. Hence η0
2,i ≥ 0 for all

i = 0, 1, . . . , NL according to (6.5) one can see that

η1
2,i =

(
1 +

τh

2

)
η0
2,i −

τh

2
η0
2,i−1.

Since η0
2,i and η0

2,j hold the inequality (6.6), we can obtain that(
1 +

2
τh

)
η0
2,i ≥ η0

2,j for all i 	= j.

holds. Therefore, for n = 0 the non-negativity is clear.
Let k − 1 be a fixed index and suppose that Statement 6.1 holds for ηk−1

2,i

for all i = 0, 1, . . . , NL. Now we prove that ηk
2,i ≥ 0 holds uniformly on the

same manner such as in case of η0
2,i. Finally we need to show, that inequalities,

defined in (6.6), imply the followings

(6.7)
(

1 +
2
τh

)
ηn
2,i ≥ ηn

2,j and
(

1 +
2
τh

)
Fn+1

i ≥ Fn+1
j
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for all i 	= j for fixed n = 1, 2, . . . , NT ·Nτ .
We assume now that (6.7) holds for a fixed n − 1. Using this we prove

by mathematical induction that (6.7) holds for n. Since (6.4) and (6.5) are
connected through their initial conditions, we can see that for fixed n the
equality

ηn
1,i = ηn−1

2,i for all i 	= j

holds. Therefore, (6.4) implies that

ηn
1,i = ηn−1

2,i = ΔτFn−1
i + ηn−2

2,i

which yields after re-arrangement and substitution into (6.7) the inequality

(6.8)
(

1 +
2
τh

)
ΔτFn

i +
(

1 +
2
τh

)
ηn−1
2,i ≥ ΔτFn

i−1 + ηn−1
2,i−1

Hence

Fn
i =

ηn
2,i − ηn−1

2,i

Δτ
and Fn

i−1 =
ηn
2,i−1 − ηn−1

2,i−1

Δτ

holds uniformly and using our induction assumption for ηn−1
2,i and Fn

i after
substitution to (6.8) we get the following inequality

(6.9)

(
1 +

2
τh

)
ηn
2,i −

(
1 +

2
τh

)
ηn−1
2,i ≥ ηn

2,i−1 − ηn−1
2,i−1 ≥

≥ ηn
2,i−1 −

(
1 +

2
τh

)
ηn−1
2,i ,

which yields the inequality (6.7) for a fixed index n. Using (6.9) it can be
shown in the same way that (6.7) holds for Fn+1

i . �

7. Numerical testing

In the last section we turn back to the numerical testing of the developed
PIDE-system defined in (4.3) with appropriate initial (4.4) and boundary con-
ditions (4.5)-(4.6). As numerical solution algorithm we use the sub-problems
of sequential splitting defined in (5.4)-(5.5). We take the integral-part (mi-
gration factor) as the macroscopic and the differential part (epidemic spread)
as the microscopic problem. For simplicity in this work we analyze only the
one-dimensional system on the space interval [0, L] and time interval [0, T ].
Furthermore all time and space dependent parameter functions are supposed
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to be used as constant functions. In favour of better visibility we normalized
the initial parameters according to the whole population.

We apply the explicit Euler numerical scheme on the system and we imple-
ment the split solution solved by sequential splitting. The examined time and
space intervals are chosen as [0, 5] and [0, 1]. Let us consider a mesh with micro
time step size Δτ , macro time step size τ and spatial step size h chosen as 0.01,
0.1 and 0.01, respectively. With all this in mind we implement the results in
Figure 5.

Figure 5. Solution functions of various groups and total population. Last figure
implement the average error of sequential splitting in space and time.

Blue continuous, red dotted and green dashed lines represent actually the
motion at three different location. Subplots in Figure 5 represent the behaviour
of individuals in the sub-group of suspectibles, latents, infected, carriers, re-
moved, quarantined and vaccinated, respectively, since the last sub-plot imple-
ment the absolute error of sequential splitting, averaged in space, compared
with the reference solution calculated without splitting by using the explicit
Euler method on a very fine time and space mesh.

The middle-bottom part of Figure 5 shows that the number of the whole
population decreases at the beginning of the analyzed time interval because
of the epidemic and the emigration rate. Later this number behaves invertible
because the birth and immigration rate overtake the death rate. We can obtain
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the same behaviour by susceptibles on the first subplot in a faster manner. It
can be concluded that the population will not be extinct by the used param-
eter settings. On the one part this is because the initial population size was
relatively high, on the other hand we have been assumed a respectably small
number of infected individuals.

The top-middle part of Figure 3 shows the numerical behaviour of the sub-
populations after infection. The function of the infected individuals shows a
strongly decreasing behaviour because of the very small reinfection-rate (σ) and
the really big mortality rate (κ). The compartments of individuals immediately
before (E), after infection (C) and in quarantines (Q) are not surprising. At
the very beginning of the disease they are increasing, however, after the critical
period the number of individuals inside these two groups converges to zero,
and so does the number number of infected people. The size of the group of
recovered and vaccinated individuals shows a strongly increasing behaviour in
contrast with infected or susceptible people since the getting out rate, such
as it was explained before, is small and every individual survived the virus.
Obviously the increasing speed is high only at the beginning of the epidemic.

The analysis of error figures on the right-bottom part of Figure 5 indicates
the conclusion that the system is not sensitive to the splitting algorithm, the
error’s order is approximately 10−3.

8. Conclusion and further work

In this work we gave a short introduction for the mathematical modeling
of Ebola epidemic spread and we produced some new results with respect to
the numerical approximations. The main aim of this work was to develop
an extended epidemic model of Ebola in form of partial-integral-differential
equations (PIDEs) by using time and space dependency. We have developed
the simplified form of the general PIDEs in continuous and in discretized form,
as well. We concluded that the space and time discretized model has the
non-negativity preservation such as the continuous model under some rational
conditions.

Furthermore we determined that the sequential splitting algorithm based on
the explicit Euler scheme is effective to approximate the solution numerically.
The main conclusion is that the operator splitting technique can be applied
easily to extend the existing model by other influential factors and sub-groups
such as quarantines, vaccination or the population migration factor.

As further work we can extend the model by time-delayed infection rates
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or we can classify the individuals by ages or sexual attitudes, which strongly
affect the spread of the virus. As further numerical analysis, the convergence of
the numerical model, investigation of the properties and solutions of different
operator splitting techniques or numerical schemes can be interesting, as well.

Finally, we mention that the accurate modelling of disease spread of Ebola
is essential to give some preventative suggestions to predict the virus and rescue
thousands of people.
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