
Annales Univ. Sci. Budapest., Sect. Comp. 45 (2016) 119–133

ANALYSIS OF SOME CHARACTERISTIC

PARAMETERS IN AN INVASIVE SPECIES MODEL
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Abstract. In this article we expand the model first proposed by Basener et
al. in [3] describing the dynamics and ecological disaster of Easter Island.
We examine how the choice of two parameters (the number of regions and
the effect of rats on the reproduction of trees) changes the stability of the
system. We state some propositions about the stability region, and then
draw it using numerical methods. Then we compare our results to the
original choice by Basener et al. in [3].

1. Introduction

In recent years numerous papers and books discussed the events that led
to the demographic collapse on Easter Island (Rapa Nui) in the 16th and 17th
century. Most of them visualized a scenario in which the reckless consumption
of goods provoked the catastrophic events. Some of them even claimed that
these events could happen globally, so our increasing growth will lead to the
fall of humanity (see [1]).

However, in the early 2000s Hunt ([5], [6]) proposed a new theory in which
the collapse was caused not only by people, but also the rats (originally brought
by the settlers) which ate the seeds of the trees. Some even suppose that the rats
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were transported to the island for dietetic purposes – this model was studied
in [9], but now we will neglect this effect.

The theories of Hunt were formalized by Basener et al. ([2]) the following
way:

(1.1)
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in which P , R, T denote the number of people, rats and trees, and a, b and
c are the birth ratio for humans, the trees and the rats, respectively. Further,
f is the destructive effect of the rats on trees, M is the maximum amount of
trees which can live on the island, and h is the number of trees cut down by a
person in a year.

In [3], Basener et al. used the following spatial invasive species model to
represent the dynamics on Easter Island: they thought of Rapa Nui as an
island which has a volcano in the middle, so they split the habitable coast into
N regions and labelled them from 1 to N (Figure 1). This way, the neighbours
of region s (if 1 < s < N) are the regions with labels s− 1 and s + 1. Also, the
region with label 1 and the one with label N are next to each other.

Figure 1. The split of the habitable coast into N regions.
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They also introduced the parameters Dp and Dr to describe the diffusion
of people and rats. This way, they got the equations

(1.2)
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where P s, Rs and T s denote the numbers of the corresponding groups in region
s (s ∈ {1, . . . N}).

In their article, it turned out that if we increase either the constant Dp

or the Dr, the system becomes unstable. However, one can suppose that the
source of this instability comes from the system’s asymmetry: the first two
equations involve diffusion, while the third one does not. In a closed system
like Easter Island, the movement of seeds (by the wind or animals) cannot be
overlooked. For this reason we can modify the previous equation and add a
term which corresponds to the diffusion of the trees, or any other resources:

(1.3)
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The coexistence equilibrium computed in [2] is also an equilibrium of this
system (Eq. 1.3), which is

Pε = Rε = Tε =
1
N

M(b− h)
b + hMf

for every one of the N systems.
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If we linearize the system at this equilibrium, we get the following:

(1.4)
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We decouple the equations using the Fourier transformation. For the first
two equations (with functions x and y) we get the same results as [3], while
the equation of the z function can be computed the following way:
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Using the notations
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we can rewrite the previous expression as follows:
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Thus, the decoupled system can be written as:
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If we use the values of the constants from [2], which are a = 0.03, b = 1,
c = 10, M = 12000 and h = 0.25, the matrix from equation (1.5) has the
following form:
(1.6)
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For example, if we choose the values f = 0.001 and N = 10 (like in [3]), we
get

(1.7)
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for every r = 1, . . . 10 region on the island.
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The system is stable, if it is stable in every region. Thus, if we want to
examine the stability of the system, we have to examine all the ten matrices.
One region is stable if all the eigenvalues of the corresponding matrix have a
negative real part. If this property holds for every region, then the system is
stable, otherwise it is unstable.

In [3], the values f = 0.001 and N = 10 were chosen, and only the param-
eters of diffusion were changed. However, it is not clear how this choice affects
the stability of the system. In the following pages, we will do this analysis: we
fix the (Dp, Dr, Dt) triplet and only change the parameters f and N . This way
we will search for those (f, N) pairs (for a fixed (Dp, Dr, Dt) triplet) where our
system is stable and those for which it is unstable.

2. Choosing the parameters f and N

From now on, we call an (f, N) pair stable, if our system is stable at those
values (with a fixed diffusion parameter triplet (Dp, Dr, Dt)). Similarly, we call
it unstable if our system is unstable for those f and N values. This way, we
define the function g : N \ {0} → R the following way:

g(N) := {f : ∀ε > 0 (f − ε, N) is stable and (f + ε, N) is unstable} .

In other words, we will search for that value f for a fixed N where upon
increasing f the system becomes unstable. We will assume that there is at
most one such value for every N . Note that it may happen that g(N) < 0 or
g(N) = ∞, which means that for some (Dp, Dr, Dt) triplets the system will
always be either unstable, or stable. From now on, we will examine those cases
when 0 ≤ g(N) < ∞.

We also define the following parameter:

Cr := 4sin2 πr

N
.

It is clear that Cr ∈ (0, 4). Now we state the following proposition:

Proposition 2.1. For every fixed (Dp, Dr, Dt) triplet

g(N) −→ min
n∈N

g(n) as N →∞.

The convergence of g(N) means that if we increase N , after a sufficiently
large N0 the value f where the system changes stabilty will be almost the same
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for every value of N for which N > N0. Also, because we know the limit, we
can choose the value N to be N = minn∈N g(n) and do not have to use a large
N (which would mean the calculation of the eigenvalues of N matrices).

For the proof of Proposition 2.1, we define the following sequence for every
value of f :

aN (f) :=
{

1, if the system is stable for (f, N)
−1, if the system is unstable for (f, N)

}
.

Proposition 2.2. For every f 	= minn∈N g(n), aN (f) converges as N →∞.

Note that because aN is a function with a discrete range, the convergence
means that

∃N0 : ∀n, m > N0 : an(f) = am(f).

Proof. (Proposition 2.2.) For the proof, we will use the Routh-Hurwitz criteria
for stability (see Theorem 5.1 in the appendix). From this, we get that our
system is stable if the functions A, B, C and D are positive on the interval
[0, 4] (for the definitions of these functions, see the appendix). When we change
N , we examine several points from this interval, and if at all points the system
is stable (all functions are positive), then we call it stable - otherwise, we call
it unstable.

Now, we will separate three cases. In the first case, let us assume that all
functions are positive on the whole interval [0, 4]. It means that if we take any
number of points, the system is always stable. For these values of f aN (f) = 1,
so because it is a constant sequence, it converges.

In the second case, let us assume that for every point in the interval [0, 4]
there is always a function which is not positive. It means that if we take
any number of points, the system is always unstable. For these values of f
aN (f) = −1, so it converges.

In the third case, let us assume that there are stable and unstable parts of
the interval [0, 4]. Then, in this case, we will prove three lemmas:

Lemma 2.1. Let us assume that f 	= minn∈N g(n). In this case, there exists
an N for which there is an examined point where the system is unstable if and
only if there is an unstable interval in [0, 4].

Lemma 2.2. If there exists an N such that there is an examined point in the
unstable part of the interval [0, 4], then there is an n bigger than N for which
there are two such points in the unstable part.

Lemma 2.3. If there exists an N such that there are two examined points in
the unstable part of [0, 4], then for every n bigger than N there is an examined
point in the unstable interval.
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It is clear, that if all three lemmas are true, then by the definition of con-
vergence, aN (f) −→ −1 as N →∞, so the proposition holds.

First we prove the first lemma. Let us pick a point in the unstable interval
and denote it by x. A point can only be an examination point, if its inverse
image by the 4sin2(πx) function is rational. If x satisfies this condition, then
it is an examined point, and the first lemma holds. If its inverse image is
irrational, then by the density of the irrational points on the real line, and
because 4sin2(πx) is continuous, there exists a rational point near x, for which
its image is still in the unstable region.

Now we have to prove that it cannot happen that there are only isolated
unstable points in the interval [0, 4] for f0 	= minn∈N g(n). The isolated points
can only occur when one or more of the functions has a minimum value 0 and
it is positive otherwise. For the proof, we separate two cases. In the first case,
for f0 +ε0 our system becomes unstable and for f0−ε0 it is stable. The change
of the stability is caused by the function with minimum value at zero, and all
the other functions are positive. This means that ∃n0 : f = g(n0). Now we
show that in this case, f = minn∈N g(n). Let us assume that ∃n1 for which
g(n1) < g(n0) = f . This means that for (f, n1) : f ∈ (f0 − ε1, f0 + ε1) our
system is unstable for every small ε1. This means that our system is unstable
at (n0, f0 − ε1) for every small ε1, but if ε1 = ε0, it must be stable, so we got
a contradiction.

In the second case let us assume that our system is stable in every small
neighbourhood of f0, but it is unstable at f0. If the unstable point has a rational
inverse image, this will mean that g(N) is not well defined. On the other hand,
if the unstable point has an irrational inverse image, then g(N) < 0, but we
assumed that g(N) ≥ 0. Thus we proved the first lemma.

Now we prove the second lemma. Let us pick two points in the unstable
interval (because of the first lemma, we know that such an interval exists). If
both points have rational inverse images, for example

a

b
and

c

d
then if we take

the common denominator of the two points, for example
e

(b, d)
and

h

(b, d)
, then

if n = (b, d), then these two points are examined points. If one of the points
has an irrational inverse image, then as in the previous case, we can choose
another point still in the unstable interval, which has a rational inverse image.
Thus we proved the second lemma.

We prove the third lemma by contradiction. Let us assume that ∀n : n > N
there are no examined points in the interval. Because of the second lemma, we
know that there exists an N1 ≤ N for which there are two examined points in
the unstable interval. Let us suppose that there are no other examined points
between them, and denote them by y and z. Let us look at those inverse images
of these points which are in the interval [0, 0.5]. Let us denote these inverse
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images by y′ and z′. We know that their difference is
1

N1
. Because of the

assumption, we know that there is no such point which has an inverse image in
[y′, z′] for ∀n : n > N . It would mean that the inverse images of the examined

points are farther than
1
n

for every n > N – however, it is a contradiction. �

Proof. (Proposition 2.1.) We prove the proposition by contradiction. Let us
assume that there is an ε > 0 for which ∀N there exists an n > N for which
|g(n)−minn∈N g(n)| ≥ ε. Let us examine aN (minn∈N g(n)+ε). By the previous
proposition, we know that aN (minn∈N g(n) + ε) converges. However, because
of the first assumption, it cannot converge, so we get a contradiction. �

It is clear that the f = minn∈N g(n) case is the one when there are only
isolated unstable points on the interval [0, 4]. Depending on their location, we
separate three cases.

In case (A), the only unstable point is at Cr = 0. In this case g(N) is a
constant function, because we found the unstable point for N = 1, so it will
not change.

In case (B), the only unstable point is at Cr = 4. In this case g → g(2),
and g(N) = g(2) for every even N .

In case (C), we assume that one function, or more functions have a minimum
value zero in the interval. If all the points have irrational inverse images, then
we will never find them, so in this case aN (minn∈N g(n)) = 1. If at least one
of them has a rational inverse image (let us denote it by

a

b
), then the sequence

g(N) will be eventually periodic with period b. If more of them has a rational
inverse image, then the sequence will have more periods, having the smallest
denominator as prime period.

As we can see, the minimum of the function g(N) may have different values
depending on the (Dp, Dr, Dt) triplet. However, we can state the following
proposition about the maximum of this function.

Proposition 2.3. For every (Dp, Dr, Dt) triplet

max
n∈N

g(n) = g(1).

Proof. We prove this by contradiction. Let us assume that ∃k : g(k) > g(1).
We know that for this k, the (g(1) + ε, k) pair will be a stable point (where
ε > 0 is a small value). But this is a contradiction, because the point Cr = 0 is
an examined point for every n ∈ N, so the (g(1) + ε, 1) point must have been
stable, but it was not. �

If we want to compute g(1), we will have to search for that one f value, for
which (at least) one of the stability functions has a root at Cr = 0. Because of
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the form of the functions B, C and D, the value of g(1) will be the same for
every (Dp, Dr, Dt) triplet. This way we get the following three inequalities for
those values of f for which the system is stable:

−0.3f2 − 0.3f1 + 0.075 > 0,

−10f1 − 10.03f2 + 0.3075 > 0,

(−10f1 − 10.03f2 + 0.3075)(10.03− f2) +−0.3f2 − 0.3f1 + 0.075 > 0,

where
f1 :=

−2250f

1 + 12000f
,

f2 :=
6000f − 1
2 + 24000f

.

This way, we get that our system is stable only if f < 1.3353 · 10−3, so
g(1) = 1.3353 · 10−3 for every (Dp, Dr, Dt) value.

3. Numerical results

For the numerical calculations, we will use the bisection method. In this
case, we choose one point (f0) to be very small (in the algorithm, we use 0)
and the other (f1) to be very large (we choose it to be 107). If the system
is stable in f0 and unstable in f1, then the border is between these two, so

we check it in the point
f0 + f1

2
. If it is stable, then the border is above this

point, and if it is unstable, then it is under this point. Then we continue this
iteration while the distance of f0 and f1 will be small (we usually use 0.0001),
and then we say that the border is the mean of the two endpoints of the last
interval. This way we search for every N for the only value of f where the
system changes its stability. We get the graph on Figure 2 for the (Dp, Dr, Dt)
values (0.1, 0.003, 0.003), where the points above the graph are unstable points,
and the ones below it are stable.

So we got the function g(N) with the convergence property proved before.
We can also see that we got case (B) mentioned before, because g(2) = g(N)
for every even N .

For (Dp, Dr, Dt) values (0.1, 0.03, 0.03) we get the graph on Figure 3.
In this case, we got a constant function g(N), so we got case (A).
Note that we also got the value of g(1) calculated before.
During our examinations, we tested several values, but found only cases (A)

and (B). Because of this, we state the following conjecture:
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Figure 2. The border of stability (and also the image of the function g(N)) for
(0.1, 0.003, 0.003).

Figure 3. The border of stability (and also the image of the g(N) function) for
(0.1, 0.03, 0.03).
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Conjecture 3.1. For every (Dp, Dr, Dt) triplet

min
n∈N

g(n) = g(2).

This way, Proposition 2.1 has the following form:

g(N) −→ g(2) as N →∞.

Note that in this case the previous case (A) is just a special version of case
(B).

4. Conclusions

In the previous pages we studied the stability region on the (f, N) plane
for fixed (Dp, Dr, Dt) values. It turned out that the border of this region
described by the function g(n) can have three different shapes, depending on
the (Dp, Dr, Dt) triplet. We also stated a conjecture, from which we get the
following property for the g(n) function:

g(2) ≤ g(n) ≤ g(1).

Without the conjecture, we only have an upper bound for this function,
which means that for every f > g(1), the system is unstable.

From all this we can conclude that the choice f = 0.001 in [3] is under
the value g(1), so the system can change stability there for some (Dp, Dr, Dt)
values, but not necessarily (see the (0.1, 0.03, 0.03) case above).

However, we can make a better choice than N = 10 using the previous
propositions: if our conjecture is true, it is enough to examine our system for
N = 2. If the conjecture is false, then we can also use the N = 2 value (it is not
worse than N = 10), or we have to calculate minn∈N g(n) for every (Dp, Dr, Dt)
triplet.

This way, the results of this paper give motivation on how to fix the pa-
rameters (f, N) in this analysis.

In our paper we assumed that g(n) is well-defined. The proof of this state-
ment and the conjecture may be the subject of further research. Also, we only
examined our system for fixed (Dp, Dr, Dt) values: another method would be
to fix the (f, N) values and only change the parameters of diffusion (like in [3]).
This method will be used in [4].



Parameters in an invasive species model 131

5. Appendix

Our system (described by (1.6)) is stable if and only if all the eigenvalues
of its characteristic polynomial have negative real parts. The characteristic
polynomial is the determinant of the matrix |Iλ−A|, which is

λ3 + F1λ
2 + F2λ + F3,

where
F1 = CrDt − f2 + 0.03 + CrDp + 10 + CrDr,

F2 = (10 + CrDr)(CrDt − f2) + (0.03 + CrDp)(CrDt − f2)+

+(10 + CrDr)(0.03 + CrDp)− 10f1 + 0.0075,

F3 = (0.03 + CrDp)(10 + CrDr)(CrDt − f2)− 10f1(0.03 + CrDp)+

+0.0075(10 + CrDr).

It is quite difficult to compute the real parts of the roots of this function.
Because of this, we will use the following theorem:

Theorem 5.1 (Routh - Hurwitz criteria for stability, [7], [8]). Let us consider
the following polynomial: p(x) = xn + an−1x

n−1 + an−2x
n−2 + · · ·+ a1x + a0.

Then all of its roots will have a negative real part if and only if all the minors
of the following matrix are positive definite:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

an−1 1 0 . . . . . . 0
an−3 an−2 an−1 1 0 . . .

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

0 . . . 0 a0 a1 a2

0 . . . . . . . . . 0 a0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

If n = 3, the previous theorem can be stated the following way:

Theorem 5.2 (Routh - Hurwitz criteria for three dimensional systems). Let
us consider the following polynomial: p(x) = x3 + a2x

2 + a1x + a0. Then all of
its roots will have a negative real part if and only if a2 > 0, a1 > 0, a0 > 0 and
a2a1 − a0 > 0.

It is also easy to see that in this case a1 is the opposite of the trace of the
matrix, a2 is the sum of all of its minors, and a3 is the determinant.
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Using Theorem 5.1, we get four functions which must be positive if our
system is stable, which are as follows. The first one is

A(Cr) := Cr(Dp + Dr + Dt) + 10.03− f2,

which is always positive. The second one is

B(Cr) := B1C
3
r + B2C

2
r + B3Cr + B4,

where
B1 = DpDrDt,

B2 = 0.03DrDt + 10DpDt − f2DpDr,

B3 = −10f2Dp + 0.3Dt − 0.03f2Dr − 10f1Dp + 0.0075Dr,

B4 = −0.3f2 − 0.3f1 + 0.075,

which is a first concave, then convex (as Cr increases) cubic function.
For the third one, we define three other terms:

G1 = DrDt + DpDt + DrDp,

G2 = 10Dt − f2Dr + 0.03Dt − f2Dp + 0.03Dr + 10Dp,

G3 = −10.03f2 − 10f1 + 0.3075;

with these, we can define function C the following way:

C(Cr) := H1C
3
r + H2C

2
r + H3Cr + H4,

where
H1 = G1(Dp + Dr + Dt)−B1,

H2 = G2(Dp + Dr + Dt) + G1(10.03− f2)−B2,

H3 = G2(10.03− f2) + G3(Dp + Dr + Dt)−B3,

H4 = G3(10.03− f2)−B4,

which has the same shape as B. The fourth one is an upward parabola:

D(Cr) := L1C
2
r + L2Cr + L3,

where
L1 = DrDt + DpDt + DrDp,

L2 = 10.03Dt + (10− f2)Dp + (0.03− f2)Dr,

L3 = −10f1 − 10.03f2 + 0.375.

With these, we can state the following:

The system is stable ⇐⇒ B(Cr) > 0, C(Cr) > 0, D(Cr) > 0 for ∀Cr ∈ [0, 4].
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[9] Sebestyén, G. and I. Faragó, Invasive species model with linear rat
harvesting on Easter Island, J. Appl. Computat. Math., 4:278, (2015).

B. Takács
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