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Abstract. The problem of spectral synthesis is formulated on commuta-
tive hypergroups and is solved for finite dimensional varieties.

1. Introduction

The study of spectral analysis and spectral synthesis problems is based on
the concept of exponential monomials on Abelian groups. Until the appro-
priate definitions were not available on general hypergroups these problems
could be studied on special types of hypergroups only. In the papers [4] and
[5] we introduced the corresponding concept on polynomial hypergroups in one
variable and in several variables, respectively. Using these concepts we were
able to prove spectral analysis and spectral synthesis on those types of hyper-
groups. Based on the generally accepted term exponential on hypergroups in
[6] we proved spectral analysis for finite dimensional varieties on commutative
hypergroups (see also [7]).
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As in the papers [8, 9] the first author introduced a definition for exponential
monomials on general (commutative) hypergroups, it is possible to formulate
and to study the problems of spectral synthesis on those structures. In this
paper we prove that spectral synthesis holds for finite dimensional varieties on
any commutative hypergroup.

In this paper K will denote a commutative hypergroup. The nonzero con-
tinuous function m : K → C is an exponential if

(1) m(x)m(y) = m(x ∗ y) =
∫
K

m(t) d(δx ∗ δy)(t)

holds for any x, y in K. Here, as usual, δx denotes the point mass with support
at the singleton {x}.

If y is in K and f : K → C is a continuous function, then the function τyf
defined by

τyf(x) = f(x ∗ y) =
∫
K

f(t) d(δx ∗ δy)(t)

for each x in K is called the translate of f by y. Let C(K) denote the space
of all continuous complex valued functions on K equipped with the pointwise
operations and the topology of uniform convergence on compact sets. A closed
subspace V of C(K) is called a variety, if it is translation invariant, that is, if
f belongs to V then all translates of f belongs to V , too. Given a continuous
function f the variety generated by f is the intersection of all varieties including
f and it is denoted by τ(f).

The problem of spectral analysis for a given variety means that we are
looking for exponentials in the variety. If there is an exponential in the variety
then we say that spectral analysis holds for the variety. If spectral analysis
holds for each nonzero variety, then we say that spectral analysis holds on the
hypergroup K. In [6] it has been proved that spectral analysis holds for every
finite dimensional variety on any commutative hypergroup.

For each exponential on K and for every y in K we define the modified
difference Δm;y as the the linear operator on C(K) by the equation

Δm;y = τy −m(y)τe,

that is, we have for each x, y in K and f in C(K)

Δm;yf(x) = f(x ∗ y)−m(y)f(x).

Iterates of modified difference operators are defined by successive composition
and we use the notation

Δm;y1,y2,...,yn+1 = Δm;y1,y2,...,yn
◦Δm;yn+1

for each y1, y2, . . . , yn+1 in K.
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The continuous function ϕ : K → C is called a generalized exponential
monomial, if there exists an exponential m and a natural number n such that

Δm;y1,y2,...,yn+1f(x) = 0

holds for each x, y1, y2, . . . , yn+1 in K. We note that if ϕ 	= 0, then m is
unique, and the smallest n with this property is called the degree of ϕ. In
this case we say that ϕ corresponds to the exponential m. The generalized
exponential monomial ϕ is simply called an exponential monomial, if τ(ϕ) is
finite dimensional (see [8, 9]). Linear combinations of exponential monomials
are called exponential polynomials.

We say that the variety V in C(K) is synthesizable if all exponential mono-
mials in V span a dense subspace. We say that spectral synthesis holds for
V if every subvariety of V is synthesizable. If every variety in C(K) is syn-
thesizable, then we say that spectral synthesis holds on K. In [4] and in [5]
we proved that spectral synthesis holds on every polynomial hypergroup. It is
known that spectral synthesis holds for every finite dimensional variety on any
commutative topological group (see e.g. [3, 10]). In the subsequent paragraphs
we prove the same result for commutative hypergroups.

2. A matrix equation

In this section first we shall consider the matrix equation

(2) L(x ∗ y) = L(x)L(y)

on the commutative hypergroup K, where L : K → L(Cn) is a continuous map-
ping and the equation is supposed to hold for each x, y in K. Here L(Cn) de-
notes the space of all linear operators on Cn, which is identified with the space
of all n × n complex matrices. This equation has been studied on Abelian
groups, even on commutative semigroups (see e.g. [3], and further references
given therein). We shall apply our results for the Levi–Civitá functional equa-
tion and for spectral synthesis on finite dimensional varieties.

We shall use the following result (see [1], [2]).

Theorem 1. Let S be a family of commuting linear operators in L(Cn). Then
Cn decomposes into a direct sum of linear subspaces Xj such that each Xj is a
minimal invariant subspace under the operators in S. Further, Cn has a basis
in which every operator in S is represented by an upper triangular matrix.
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In other words, there exist positive integers k, n1, n2, . . . , nk with the prop-
erty n1 +n2 + · · ·+nk = n, and there exists a regular matrix C such that every
matrix L in S has the form

L = S−1diag {L1, L2, . . . , Lk}S

where Lj is upper triangular for j = 1, 2, . . . , k. Here diag {L1, L2, . . . , Lk}
denotes the block matrix with blocks L1, L2, . . . , Lk along the main diagonal,
and all diagonal elements of the block Lj are the same. As a consequence the
following theorem holds true.

Theorem 2. Let K be a hypergroup and let L : K → L(Cn) be a continuous
mapping satisfying (2) for each x, y in K. Then there exist positive integers
k, n1, n2, . . . , nk with the property n1 + n2 + · · · + nk = n, and there exists a
regular matrix S such that

(3) L(x) = S−1diag {L1(x), L2(x), . . . , Lk(x)}S

for each x in K, where Lj(x) is an upper triangular nj × nj matrix in which
all diagonal elements are equal, and it satisfies (2) for each x, y in K and for
every j = 1, 2, . . . , l.

3. Spectral synthesis for finite dimensional varieties

Theorem 3. Spectral synthesis holds for finite dimensional varieties on every
commutative hypergroup.

Proof. Suppose that K is a commutative hypergroup and V 	= {0} is a
finite dimensional variety in C(K). We show that V consists of exponential
polynomials. Let f1, f2, . . . , fn be a basis of V , then there exist complex valued
functions λi,j for i, j = 1, 2, . . . , n such that

(4) fi(x ∗ y) =
n∑

j=1

λi,j(y)fj(x)

holds for every x, y in K and i = 1, 2, . . . , n. As the functions f1, f2, . . . , fn are
linearly independent, hence there are elements xk for k = 1, 2, . . . , n in K such
that the matrix

(
fj(xk)

)n
j,k=1

is regular. We have

fi(xk ∗ y) =
n∑

j=1

λi,j(y)fj(xk)
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for each y in K and k = 1, 2, . . . , n.

Using the associativity of convolution we infer that

(5)
n∑

j=1

λi,j(z)fj(x ∗ y) =
n∑

j=1

λi,j(y ∗ z)fj(x) ,

or

(6)
n∑

j=1

λi,j(z)
n∑

l=1

λj,l(y)fl(x) =
n∑

j=1

λi,j(y ∗ z)fj(x)

holds for each x, y, z in K. This is equivalent to

(7)
n∑

k=1

n∑
j=1

λi,j(z)λj,k(y)fk(x) =
n∑

k=1

λi,k(y ∗ z)fk(x) .

By the linear independence of the fk’s we have

(8)
n∑

j=1

λi,j(z)λj,k(y) = λi,k(y ∗ z) = λi,k(z ∗ y)

for each y, z in K. Let L(x) be the matrix
(
λi,j(x)

)n
i,j=1

, then from (8) it
follows

(9) L(x ∗ y) = L(x) · L(y)

for each x, y in K. In particular, the matrices L(x) are commuting for different
x’s. By Theorem 2, L(x) has the form given in Theorem 2. We show that the
elements of each Lj are exponential polynomials for j = 1, 2, . . . , l. For the sake
of simplicity we suppose that l = 1 and L = L1. Then L is upper triangular:
λi,j = 0 for i > j, it satisfies equation (2), and all diagonal elements in L are
the same: λi,i = λj,j for i, j = 1, 2, . . . , n. Then we have

λi,j(x ∗ y) =
j∑

k=i

λi,k(x) · λk,j(y)

holds for i = 1, 2, . . . , j and for each x, y in K. If we put j = i we get

(10) λi,i(x ∗ y) = λi,i(x) · λi,i(y)

for i = 1, 2, . . . , n and for each x, y in K, which means that the functions λi,i

(i = 1, 2, . . . , n) are exponentials. We denote m(x) = λi,i(x) for x in K and
i = 1, 2, . . . , n. We show by induction on j − i that λi,j is an exponential
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monomial of order j − i corresponding to the exponential m. As λi,j is in V
for each i, j and V is a variety, hence it is enough to show that

Δm;y1,y2,...,yj−i+1λi,j(x) = 0.

Clearly, the statement holds for j − i = 0. Suppose that we have proved it for
j − i ≤ l and let j = i + l + 1. Then we have

Δm;y1,y2,...,yl+1,yl+2λi,i+l+1(x) =

Δm;y1,y2,...,yl+1 [λi,i+l+1(x ∗ yl+2)−m(yl+2)λi,i+l+1(x)] =

Δm;y1,...,yl+1

[i+l+1∑
k=i

λi,k(x)λk,i+l+1(yl+2)
]
−m(yl+2)Δm;y1,...,yl+1λi,i+l+1(x) =

Δm;y1,...,yl+1

[
λi,i+l+1(x)m(yl+2)

]
−m(yl+2)Δm;y1,...,yl+1λi,i+l+1(x) = 0.

This shows that the functions λi,j are all generalized exponential monomials.
As τ(λi,j) is in V , hence, in fact, the functions λi,j are exponential monomials.
By (4), substitution x = e gives that fi is an exponential polynomial for each
i, hence the variety V consists of exponential polynomials. The proof is com-
plete. �
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[10] Székelyhidi, L., Harmonic and Spectral Analysis, World Scientific Pub-
lishing Co. Pte. Inc., Teaneck, NJ, 2014.
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