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Abstract. Given an integer k ≥ 0, let σ∗k(n) stand for the k-fold iterate

of σ∗(n), the sum of the unitary divisors of n. We show that
σ∗
2 (p+1)

σ∗
1 (p+1)

tends

to 1 for almost all primes p.

1. Introduction and notation

Let σ∗(n) be the sum of the unitary divisors of n, that is,

σ∗(n) :=
∑
d|n

(d,n/d)=1

d.

Given an integer k ≥ 0, let σ∗
k(n) stand for the k-fold iterate of σ∗(n), that is,

σ∗
0(n) = n, σ∗

1(n) = σ∗(n), σ∗
2(n) = σ∗(σ∗

1(n)), and so on. The function σ∗(n)
is easily checked to be multiplicative with σ∗(pα) = pα + 1 for each prime p
and integer α ≥ 1.
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In 1971, Erdős and Subbarao [3] proved that

(1.1)
σ∗

2(n)
σ∗

1(n)
→ 1 for almost all n .

This is quite a contrast with the easily proven estimate

σ2(n)
σ1(n)

→∞ for almost all n .

In 1991, Kátai and Wisjmuller [6] proved that

σ∗
3(n)

σ∗
2(n)

→ 1 for almost all n

and conjectured that, given an arbitrary integer k ≥ 0,

σ∗
k+1(n)
σ∗

k(n)
→ 1 for almost all n .

This remains unproven.
Here, we consider similar quotients, namely those where the arguments of

the functions σ∗
k+1 and σ∗

k are running over shifted primes.

2. Main result

Theorem 1. We have

σ∗
2(p + 1)

σ∗
1(p + 1)

→ 1 for almost all primes p .

Of course, the above statement is equivalent to the following one.

Given any ε > 0, we have

lim
x→∞

1
π(x)

#
{

p ≤ x :
σ∗

2(p + 1)
σ∗

1(p + 1)
> 1 + ε

}
= 0.

In the following, we denote by p(n) and P (n) the smallest and largest prime
factors of n, respectively. We let μ(n) stand for the Moebius function and φ(n)
for the Euler totient function. For each integer n ≥ 2, we let ω(n) stand for the
number of distinct prime factors of n and set ω(1) = 0. The letters p, q, π and
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Q, with or without subscript, will stand exclusively for primes. On the other
hand, the letters c and C, with or without subscript, will stand for absolute
constants but not necessarily the same at each occurrence. We will let ℘ stand
for the set of all primes. Moreover, we shall at times use the abbreviations
x1 = log x, x2 = log log x, and so on. We denote the logarithmic integral∫ x

2

dt

log t
by li(x). Finally, we let π(x) stand for the number of primes p ≤ x

and we write π(x; k, �) for #{p ≤ x : p ≡ � (mod k)}.

3. Preliminary results

For the proof of our main result, we will need the following lemmas.
Our first lemma is a classical result.

Lemma 1. (Brun-Titchmarsh Theorem) For every positive integer k < x,
we have

π(x; k, �) ≤ 2x

φ(k) log(x/k)
.

A proof of the following result follows from Theorem 3.12 in the book of
Halberstam and Richert [4].

Lemma 2. There exists a positive constant C1 such that

#{p, q ∈ ℘ : p + 1 = aq ≤ x} < C1
x

φ(a) log2(x/a)
.

The following can be obtained from Theorem 4.2 in the book of Halberstam
and Richert [4].

Lemma 3. Given an arbitrary positive number δ < 1, there exists an absolute
constant C2 > 0 such that

lim
x→∞

#{p ≤ x : P (p + 1) < xδ or P (p + 1) > x1−δ} < C2 δ li(x).

It was proved by the first author [5] that the distribution of the numbers

ω(σ(p + 1))− 1
2 (log log p)2

1√
3
(log log p)3/2

as p runs through the primes obeys the Gaussian Law. It is easy to show that
the same statement holds if σ(p + 1) is replaced by σ∗(p + 1). The following
result is an immediate consequence of this observation.
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Lemma 4. We have

1
π(x)

#{p ≤ x : ω(σ∗(p + 1)) > x2
2} → 0 as x →∞.

4. Proof of the main result

First let
t(n) :=

∑
qα‖σ∗(n)

1
qα

.

It is clear that, for each integer n ≥ 2,

σ∗(n)
n

=
∏

qα‖n

(
1 +

1
qα

)
= exp

⎧⎨⎩∑
qα‖n

log
(

1 +
1
qα

)⎫⎬⎭ ≤ exp

⎧⎨⎩∑
qα‖n

1
qα

⎫⎬⎭
and therefore that

σ∗
2(n)

σ∗
1(n)

=
σ∗(σ∗(n))

σ∗(n)
≤ exp

⎧⎨⎩ ∑
qα‖σ∗(n)

1
qα

⎫⎬⎭ = et(n).

From this observation, it follows that the claim in Theorem 1 is equivalent to
the assertion that

(4.1) t(p + 1) → 0 for almost all primes p.

Let δ > 0 be any small number, let ℘x := {p ∈ ℘ : p ≤ x} and consider the
set

℘(1)
x := {p ≤ x : P (p + 1) < xδ or P (p + 1) > x1−δ}.

In light of Lemma 3,

(4.2) #℘(1)
x < C2 δ li(x).

This is why we only need to work with the set

℘(2)
x := ℘x \ ℘(1)

x .

So, let us assume that p ∈ ℘
(2)
x , let T be a large integer and consider the set

DT made up of all those primes p such that π2 | p + 1 for some prime π > T .



Iterates of the sum of the unitary divisors of an integer 105

Using Lemma 1, for some constant C3 > 0, we then have

#{p ≤ x : p ∈ DT } ≤
∑

T<π<
√

x

∑
p≤x

p+1≡0 (mod π2)

1 =
∑

T<π<
√

x

π(x; π2,−1) ≤

≤ C3li(x)
∑

T<π<
√

x

1
φ(π2)

= C3li(x)
∑

T<π<
√

x

1
π(π − 1)

�

� li(x)
T log T

+ O
(
x3/4

)
.(4.3)

Hence, in light of (4.3), we may now discard those primes p ≤ x for which
p ∈ DT , since their number is O(li(x)/(T log T )). This is why, for each prime
number q, we now focus our attention on the set

(4.4) Eq(x) := {p ∈ ℘(2)
x : p 	∈ DT and qT � σ∗(p + 1)}

and the sum

ST (x) :=
∑
q≤T

#Eq(x).

Moreover, for each prime q, we let Bq be the semigroup generated by those
primes Q such that q � Q + 1.

Let us now consider a fixed prime q ≤ T and those integers

(4.5)
K = πα1

1 · · ·παr
r ≥ 2 for which q | παj

j + 1

for j = 1, . . . , r with αj = 1 if πj > T.

In order to estimate #Eq(x), we first introduce the set

HK,R :={p : p + 1 = KRmP, P (R) ≤ T, p(mP ) > T,

μ2(m) = 1, (m,Bq) = 1, P (p + 1) = P}.

Writing each prime p ∈ HK,R as p + 1 = KRmP = aP , then, since P was
assumed to be such that P > xδ, it follows that a < x1−δ, and therefore, using
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Lemma 2, that

#HK,R ≤ C2 δ C1
x

log2 x

∑
m≤x

μ2(m)
φ(KRm)

≤

≤ C1C2 δ
x

log2 x

1
φ(KR)

∑
m≤x/KR
(m,Bq)=1

μ2(m)
φ(m)

≤

≤ C1C2 δ
x

log2 x

1
φ(KR)

·
∏

T <π≤x
π+1�≡0 (mod q)

(
1 +

1
π − 1

)
≤

≤ C1C2 δ
x

log2 x

1
φ(KR)

exp
{

q − 2
q − 1

x2

}
=

= C1C2 δ
x

log2 x

1
φ(KR)

· log x · exp
{
− x2

q − 1

}
≤

≤ C1C2 δ
1

φ(KR)
li(x) · exp

{
− x2

q − 1

}
.(4.6)

On the one hand, observe that∑
R

P (R)≤T

1
φ(R)

≤
∏
p≤T

(
1 +

1
φ(p)

+
1

φ(p2)
+ · · ·

)
=

=
∏
p≤T

(
1 +

1
p− 1

+
1

p(p− 1)
+ · · ·

)
=

=
∏
p≤T

(
1 +

1
p

+ O

(
1
p2

))
=

= exp

⎧⎨⎩∑
p≤T

1
p

+ O(1)

⎫⎬⎭ ≤ C4 log T(4.7)

for some positive constant C4.

On the other hand, writing each K as K = K1K2, where P (K1) ≤ T and
p(K2) > T . Then, by the nature of K (see (4.5)), it is clear that K2 is square-
free and that ω(K2) ≤ r ≤ T − 1. From this, it follows that, for some constant
C5 > 0,
(4.8)

∑
K

1
φ(K)

≤
∑
K2

1
φ(K2)

≤
T−1∑
j=0

1
j!

⎛⎜⎝ ∑
π≤x

π+1≡0 (mod q)

1
π − 1

⎞⎟⎠
j

< C5
xT−1

2

(T − 1)!
.
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Recalling that for all K, R ∈ N, we have φ(KR) ≥ φ(K)φ(R), and combin-
ing (4.7) and (4.8) in (4.6), it follows that

(4.9) #Eq(x) ≤
∑
K,R

HK,R ≤ C6 δli(x)
xT−1

2

(T − 1)!
· exp

{
− x2

q − 1

}
· log T

for some constant C6 > 0, from which it follows that

(4.10) ST (x) = o(li(x)) (x →∞).

We now move to estimate t(p+1) when the primes q such that qα | σ∗(p+1)
satisfy q > T .

We first consider the case where α = 1, and for this we introduce the sum

s(p + 1) :=
∑

T <q≤x
1−ε
2

q‖σ∗(p+1)

1
q
,

where ε > 0 is an arbitrarily small number. We then have, using Lemmas 1, 2
and 3,∑
p∈℘

(2)
x

s(p + 1) =
∑

T<q≤x1−ε
2

1
q
#{p ∈ ℘

(2)
2 : p + 1 = QHmP, P (H) ≤ T, p(m) > T,

P > xδ, Q + 1 ≡ 0 (mod q), (m,Bq) = 1} +

+
∑

T<q≤x1−ε
2

1
q
#{p ∈ ℘

(2)
2 : p + 1 = HmP, P (H) ≤ T, p(m) > T,

P > xδ, P + 1 ≡ 0 (mod q)} ≤

≤ C2 δ
x

x2
1

∑
T<q≤x1−ε

2

1
q

∑
Q≡−1 (mod q)

(m,Bq)=1
P (H)≤T, p(m)>T

1
φ(HmQ)

≤

≤ C2 δ
x

x2
1

∑
T<q≤x1−ε

2

1
q

∑
Q≡−1 (mod q)

1
Q

∑
P (H)≤T, p(m)>T

1
φ(H)

·

·
∏

π �≡−1 (mod q)

(
1 +

1
π − 1

+
1

π(π − 1)
+ · · ·

)
≤

≤ C2 δ
x

x2
1

∑
T<q≤x1−ε

2

1
q2
· 2 log T · x2 · exp

{
− x2

q − 1

}
,

from which it follows that

(4.11)
∑

p∈℘
(2)
x

s(p + 1) � δ
x

x2
1

log T

T
x2 = o(li(x)) (x →∞).
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To account for those q ∈ [x1+ε
2 , x2+ε

2 ], we will consider the sum

r(p + 1) :=
∑

x
1+ε
2 ≤q≤x

2+ε
2

q‖σ∗(p+1)

1
q
.

Proceeding as above, we obtain that∑
p∈℘

(2)
x

r(p + 1) ≤
∑

x1+ε
2 ≤q≤x2+ε

2

1
q

∑
Q≤x

Q+1≡0 (mod q)

π(x; Q,−1) ≤

≤ C2 δli(x)
∑

x1+ε
2 ≤q≤x2+ε

2

1
q

∑
Q≤x

Q+1≡0 (mod q)

1
Q− 1

≤

≤ C2 δli(x)
∑

x1+ε
2 ≤q≤x2+ε

2

1
q
· C6

x2

q
≤

≤ C2 δ C6li(x) x2

∑
x1+ε
2 ≤q≤x2+ε

2

1
q2
≤

≤ C2 δ C6li(x) x2
1

x1+ε
2 x3

,

from which it clearly follows that

(4.12)
∑

p∈℘
(2)
x

r(p + 1) = o(li(x)).

We now split t(p + 1) into five sums as follows.

(4.13) t(p + 1) = t1(p + 1) + t2(p + 1) + t3(p + 1) + t4(p + 1) + t5(p + 1),

where
tj(p + 1) =

∑
qα‖σ∗(p+1)

q∈Ij

1
qα

(j = 1, . . . , 5),

with the five intervals Ij being defined as

I1 = [2, T ], I2 = (T, x1−ε
2 ], I3 = (x1−ε

2 , x1+ε
2 ),

I4 = [x1+ε
2 , x2+ε

2 ], I5 = (x2+ε
2 ,∞).

We will show that the next five inequalities hold for almost all primes
p ∈ ℘

(2)
x .
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First of all, in light of (4.10), we have

(4.14) t1(p + 1) � 1
2T

(p →∞),

with the exception of at most O

(
li(x)
2T

)
primes p ∈ ℘

(2)
x .

In light of (4.11), we have that

(4.15) t2(p + 1) ≤ s(p + 1) +
∑

T<q≤x1−ε
2

1
q2
≤ o(1) +

1
T log T

(p →∞).

Clearly,

(4.16) t3(p + 1) ≤
∑

x1−ε
2 <q<x1+ε

2

1
q
≤ log

(
1 + ε

1− ε

)
< 2ε.

In light of (4.12), we have

(4.17) t4(p + 1) ≤ r(p + 1) +
∑

q>x1+ε
2

1
q2
≤ o(1) + O

(
1

x1+ε
2 x3

)
(p →∞).

Finally, using Lemma 4, it follows that

(4.18) t5(p + 1) ≤ x−ε
2 (p →∞).

Gathering inequalities (4.14) through (4.18) in (4.13), we have thus estab-
lished that

1
π(x)

#
{

p ≤ x : t(p + 1) >
2
T

}
≤ δ

and since this is true for every δ > 0 and for every large number T , our claim
(4.1) is established and the proof of Theorem 1 is complete. �

5. Final remark

The unitary analog of φ(n) denoted by φ∗(n) and introduced by Cohen [1]
is defined by

φ∗(n) :=
∏

pα‖n

(pα − 1).
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Denote by φ∗
k(n) the k-fold iterate of φ∗(n). Erdős and Subbarao [3] claimed

that
φ∗

2(n)
φ∗

1(n)
→ 1 (n →∞)

except on a set of integers n of zero density. In fact, they mentioned that they
could prove this result by using the same methods as those used to prove (1.1).

With the approach we used to prove Theorem 1, we can also prove the
following.

Theorem 2. Given any ε > 0,

1
π(x)

#
{

φ∗
2(p + 1)

φ∗
1(p + 1)

< 1− ε

}
→ 0 (x →∞).
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[2] De Koninck, J.-M. and I. Kátai, On the distribution of the number of
prime factors of the k-fold iterate of various arithmetic functions, preprint.
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