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Abstract. Let γ(n) stand for the product of the prime factors of
n. The index of composition λ(n) of an integer n ≥ 2 is defined as
λ(n) = log n/ log γ(n) with λ(1) = 1. Given an arbitrary integer k ≥ 0
and letting φk(n) stand for the k-fold iterate of the Euler totient function,
we show that, given any real number ε > 0, λ(φk(p−1)) < 1+ε for almost
all prime numbers p.

1. Introduction and notation

Let γ(n) stand for the product of all the prime factors of the positive integer
n. The index of composition of an integer, defined by λ(1) = 1 and for n ≥ 2 by
λ(n) := log n/ log γ(n) was studied by De Koninck and Doyon [2] and thereafter
by many more (see [3], [6], [9]). In 2007, De Koninck and Luca [7] showed that
the normal order of λ(σ(n)), where σ(n) stands for the sum of the divisors
function, is equal to 1. Let σk(n) stand for the k-fold iterate of the σ(n)
function, that is, let σ0(n) = n, σ1(n) = σ(n), σ2(n) = σ(σ(n)), and so on.
Recently, the authors [4] proved that, for every ε > 0,

(1.1)
1
x

#{n ≤ x : λ(σk(n)) ≥ 1 + ε} → 0 (x →∞).
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They also showed that (1.1) holds if σk(n) is replaced by φk(n), the k-fold
iterate of the Euler φ function.

Here, we prove an analogous result for the shifted primes, namely the fol-
lowing.

Theorem 1. Given any ε > 0 and letting π(x) stand for the number of primes
not exceeding x, then

(1.2)
1

π(x)
#{p ≤ x : λ(φk(p− 1)) ≥ 1 + ε} → 0 (x →∞).

In the following, we denote by p(n) and P (n) the smallest and largest prime
factors of n, respectively. We let μ(n) stand for the Moebius function. For each
integer n ≥ 2, we let ω(n) stand for the number of distinct prime factors of n
and Ω(n) for the total number of prime factors of n counting multiplicity and
we set ω(1) = Ω(1) = 0. The letters p, q, π, ρ and Q, with or without subscript,
will stand exclusively for primes. On the other hand, the letters c and C, with
or without subscript, will stand for absolute constants but not necessarily the
same at each occurrence. Moreover, we shall use the abbreviations x1 = log x,

x2 = log log x, and so on. We denote the logarithmic integral
∫ x

2

dt

log t
by li(x).

Finally, we shall write π(x; k, �) for #{p ≤ x : p ≡ � (mod k)}.

2. Preliminary results

Lemma 1. Given an arbitrary positive number δ < 1/20, then,

(2.1) lim
x→∞

1
π(x)

#{p ≤ x : P (p− 1) > x1−δ} < C1δ

for some absolute constant C1 > 0.

Proof. For a proof see Theorem 4.2 in the book of Halberstam and Richert
[8]. �

Let us now set

N (1)
x := {p ≤ x and P (p− 1) ≤ x1−δ}.

Also, for each positive δ < 1/20, let us introduce the functions

ωδ(n) :=
∑
p|n

xδ<p<x1/5

1 and Aδ(x) :=
∑

xδ<p<x1/5

1
p
.
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It is easy to show that

Aδ(x) = log
1
5δ

+ o(1) (x →∞).

The following Turán–Kubilius type inequality can be deduced using the
Bombieri–Vinogradov inequality.

Lemma 2. Given δ ∈ (0, 1/20), there exists an absolute constant C2 > 0 such
that

1
π(x)

∑
p≤x

(ωδ(p− 1)−Aδ(x))2 ≤ C2Aδ(x).

Letting A(1)
x := {p ≤ x : ωδ(p − 1) ≤ 4}, then the following result is easily

established.

Lemma 3. Given δ ∈ (0, 1/20), there exist real numbers C3 and x0 = x0(δ)
such that, for all x ≥ x0, we have

1
π(x)

#A(1)
x ≤ C3δ.

Given positive integers k and D, set Uk(x; D) := #{n ≤ x : D | φk(n)}.
The following result was established by Bassily, Kátai and Wijsmuller [1].

Lemma 4. Given positive integers k and D, there exists a constant C4 =
= C4(k, Ω(D)) such that

Uk(x; D) ≤ C4
x x

kΩ(D)
2

D
.

Letting �k(x) = x5 if k = 0 and x1x
2k
2 if k ≥ 1. Then, for each integer

k ≥ 0, setting

B(k)
x = {p ≤ x : there exists q > �k(x) such that q2 | φk(p− 1)},

the following result follows from Lemma 4.

Lemma 5. There exists an absolute constant C5 > 0 such that

1
π(x)

#B(k)
x ≤ C5

x2
(k = 0, 1, . . .).

For each integer k ≥ 0, let ak = 1/(k + 1)! and, given a real number κ > 0,
set

D(k)
x := {p ≤ x : ω(φk(p− 1)) > (1 + κ)akxk+1

2 }.
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In Bassily, Kátai and Wijsmuller [1], it was proved that, for each integer
k ≥ 0 and for every real number z,

lim
x→∞

1
π(x)

#

{
p ≤ x :

ω(φk(p− 1))− akxk+1
2

bkx
k+1/2
2

< z

}
= Φ(z),

where bk = 1/(k!
√

2k + 1) and where

Φ(z) :=
1√
2π

∫ z

−∞
e−u2/2 du

stands for the standard Gaussian law.
It then follows from this result that the following is true.

Lemma 6. For each integer k ≥ 0,

1
π(x)

#D(k)
x → 0 (x →∞).

We will also need the following, which is a particular case of Lemma 2.5 in
Bassily, Kátai and Wisjmuller [1].

Lemma 7. Letting δ(x, k) :=
∑
p≤x

p≡1 (mod k)

1
p
, there exists an absolute constant

C6 > 0 such that

δ(x, k) ≤ C6x2

φ(k)
,

provided k ≤ x and x ≥ 3.

We say that a k+1-tuple of primes (q0, q1, . . . , qk) is a k-chain if qi−1 | qi+1
for i = 1, 2, . . . , k, in which case we write q0 → q1 → · · · → qk. We then have
the following result, whose proof can be deduced from Lemma 2 established in
our earlier paper [5].

Lemma 8. For any fixed prime q0 and integer k ≥ 1, there exist absolute
constants c1, c2, . . . , ck such that∑

q0→q1
q1≤x

1
q1
≤ c1x2

q0
,

∑
q0→q1→q2

q2≤x

1
q2
≤ c2x

2
2

q0
, . . . ,

∑
q0→q1→···→qk

qk≤x

1
qk

≤ ckxk
2

q0
.

Moreover, summing over those k + 1 chains for which q0 ≡ 1 (mod D), then
there exists a constant C7 > 0 such that∑

q0→q1→···→qk
qk≤x

1
qk

≤ C7x
k+1
2

φ(D)
.
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Now, let

N (2)
x = N (1)

x \

⎛⎝⎛⎝ k⋃
j=0

D(j)
x )

⎞⎠⋃⎛⎝ k⋃
j=0

B(j)
x )

⎞⎠⎞⎠ .

Defining Lk(x) = x5 if k = 0 and x2k
2 if k ≥ 1, let us introduce the function

(2.2) Sk(n) =
∏

qα‖φk(n)
q>Lk(x)

qα,

We then have the following result.

Lemma 9. For each integer j = 0, 1, . . . , k,

1
π(x)

#{p ∈ N (2)
x : μ(Sj(p− 1)) = 0} → 0 (x →∞).

Proof. The result is almost obvious if k = 0. Indeed, first observe that

(2.3) #{p ≤ x : q2 | p− 1 for some prime q > L0(x)} ≤
∑

q>L0(x)

π(x; q2, 1).

Recall that according to the Brun-Titchmarsh theorem, given δ ∈ (0, 1), there
exists a constant c1 = c1(δ) > 0 such that

(2.4) π(x; k, �) < c1
li(x)
φ(k)

provided k < x1−δ.

Thus, using (2.4), we may write that, for some absolute constant C8 > 0,

(2.5)
∑

q>L0(x)

π(x; q2, 1) ≤ C8li(x)
∑

L0(x)<q<x1/5

1
φ(q2)

+
∑

q≥x1/5

x

q2
= o(li(x)),

so that the result follows by combining (2.3) and (2.5).
So, let us assume that k ≥ 1. Let us first count the number of primes

p ∈ N (2)
x such that Sj(p− 1) is square-free for j = 0, 1, . . . , k− 1 and for which

there exists some prime q > Lk(x) such that q2 | φk(p − 1). Since p 	∈ B(k)
x , it

follows that q ≤ �k(x). On the other hand, since q2 | φk(p− 1), then

• either there exist two primes π1 	= ρ1 such that q → π1 and q → ρ1

(meaning that π1 ≡ 1 (mod q) and ρ1 ≡ 1 (mod q)), with
π1ρ1 | φk−1(p− 1),
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• or there exists a prime π such that π ≡ 1 (mod q2) and π | φk−1(p− 1).

In other words, one of the following two situations (1) and (2) will occur.

(1) There exist two k + 1-chains

q → π1 → · · · → πk (→ p),
q → ρ1 → · · · → ρk (→ p),

where πν , ρν (ν = 1, . . . , k) are distinct primes and πkρk | p− 1.

(2) There exists a positive integer h such that

πνρν | φk−ν(p− 1) for ν = 0, . . . , h,

Qh+1 | φk−h−1(p− 1), Qh+1 ≡ 1 (mod πhρh),
Qh+1 → Qh+2 → · · · → Qk (→ p).

It follows from the above that if we set

Mq := #{p ∈ N (2)
x : q2 | φk(p− 1)},

then
(2.6)

Mq ≤
∑

q→π1→···→πk
q→ρ1→···→ρk

π(x; πkρk, 1) +
k−1∑
h=0

∑
q→π1→···→πh→Qh+1→···→Qk
q→ρ1→···→ρh→Qh+1→···→Qk

π(x; Qk, 1).

But since p ∈ N (2)
x implies that ωδ(p−1) > 4, we obtain that πkρk < x1−δ and

Qk < x1−δ. Hence, in light of Lemmas 1, 2 and 3, we may use (2.4) in (2.6)
and obtain that, for some constant C9 > 0,

(2.7) Mq ≤ C9li(x)
∑

q→π1→···→πk
q→ρ1→···→ρk

1
πkρk

+ C9li(x)
∑

q→π1→···→πh→Qh+1→···→Qk
q→ρ1→···→ρh→Qh+1→···→Qk

1
Qk

.

using Lemma 8, inequality (2.7) yields

(2.8) Mq ≤ C10li(x)
x2k

2

q2

for some positive constant C10. Since, for some C11 > 0,∑
q>Lk(x)

1
q2
≤ C11

Lk(x) log Lk(x)
,
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it follows from (2.8) that∑
q>Lk(x)

Mq ≤ C10li(x)x2k
2

C11

x2k
2 2kx3

� x

x3
,

thus completing the proof of Lemma 9. �

Recalling the definition of Sk(n) provided in (2.2), we now introduce the
function

(2.9) Tk(n) =
φk(n)
Sk(n)

(k = 0, 1, . . .)

and prove the following result.

Lemma 10. For each j = 0, 1, . . . , k, we have

(2.10)
1

π(x)
#
{

p ∈ N (2)
x :

log Tj(p− 1)
log x

≥ 1
x2

}
→ 0 (x →∞).

Proof. Consider the set

N (3)
x := {p ∈ N (2)

x : μ2(Sj(p− 1)) = 1 for j = 0, 1, . . . , k}.

Since #(N (2)
x \N (3)

x ) = o(π(x)) as x →∞, in order to prove Lemma 9, we need
to find an adequate upper bound for the number of primes p ∈ N (3)

x .
First of all, it is clear that (2.10) is true for j = 0. Indeed, by definition

(2.9) for k = 0, we have

p− 1 = T0(p− 1)S0(p− 1),

where S0(p−1) is square-free, p(S0(p−1)) > x5 and p(T0(p−1)) ≤ x5. Hence,
(T0(p− 1), S0(p− 1)) = 1, and therefore

φ(p− 1) = φ(T0(p− 1)) · φ(S0(p− 1)),

with
φ(S0(p− 1)) =

∏
πα‖φ(S0(p−1))

π≤L1(x)

πα ·
∏

π|φ(S0(p−1))
π>L1(x)

π,

since in N (3)
x , π2 � φ(S0(p− 1)) if π > L1(x).

It follows from this that

T1(p− 1) = φ(T0(p− 1)) ·
∏

πα‖φ(S0(p−1))
π≤L1(x)

πα
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and
φ(p− 1) = T1(p− 1) · S1(p− 1),

where P (T1(p − 1)) ≤ L1(x) and p(S1(p − 1)) > L1(x), thus implying in par-
ticular that (T1(p− 1), S1(p− 1)) = 1, so that

φ2(p− 1) = φ(T1(p− 1)) · φ(S1(p− 1)).

More generally, if

φj−1(p− 1) = Tj−1(p− 1)Sj−1(p− 1),

then P (Tj−1(p − 1)) ≤ Lj−1(x) and p(Sj−1(p − 1)) > Lj−1(x), Sj−i(p − 1) is
square-free and

φj(p− 1) = Tj(p− 1)Sj(p− 1)

and

Tj(p− 1) = φ(Tj−1(p− 1))
∏

πα‖φ(Sj−1(p−1))
π≤Lj(x)

πα,

Sj(p− 1) =
∏

π|φ(Sj−1(p−1))
π>Lj(x)

π (a square-free number).

Let us now estimate the expression

Kj(p) :=
∏

πα‖φ(Sj−1(p−1))
π≤Lj(x)

πα.

For this, let us assume that π�π | φ(Sj−1(p − 1)) with π ≤ Lj(x). Since
φ(Sj−1(p− 1)) is a divisor of φj(p− 1) and since ω(φj(p− 1)) < aj(1+κ)xj+1

2 ,
it follows that there exists a prime q0 such that q0 | φj−1(p−1) and πrπ | q0−1
with

rπ ≥
�π

ω(φj(p− 1))
≥ �π

aj(1 + κ)xj+1
2

.

Thus, for fixed πrπ and using Lemma 8 along with inequality (2.4), it follows
that the number of possible primes p ∈ N (3)

x for which π�π | φ(Sj−1(p− 1)) is
less than ∑

(πrπ→)q0→···→qj−1

π(x; qj−1, 1) ≤ C12li(x) · xj
2

πrπ
.

Letting �π be sufficiently large so that

(2.11) π
�π

aj(1+κ)x
j+1
2 > xj+1

2 ,
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it follows that

1
π(x)

#{p ∈ N (3)
x : there exists one π ≤ Lj(x) and �π satisfying (2.11)

such that π�π | φ(Sj−1(p− 1))} = o(1) (x →∞).(2.12)

Hence, if πmπ | φ(Sj−1(p− 1)) and it is not counted in the set appearing in
(2.12), then

πmπ < (xj+1
2 )aj(1+κ)xj+1

2

and so

(2.13) Kj(p) ≤
∏

π≤Lj(x)

πmπ ≤ (xj+1
2 )aj(1+κ)xj+1

2 x2j
2 ≤ exp{x3j+2

2 },

say, provided x is large enough.
Now, since

(2.14) Tj(p− 1) = φ(Tj−1(p− 1))Kj(p),

and since φ(n) ≤ n, it follows that, in light of (2.13) and (2.14)

Tj(p− 1) < exp{2x3j+2
2 } (j = 0, 1, . . . , k).

when p ∈ N (3)
x with the possible exception of o(li(x)) primes.

This completes the proof of Lemma 10. �

3. Proof of Theorem 1

We are now in a position to prove our main theorem.
We first write

#{p ≤ x : λ(φk(p− 1)) ≥ 1 + ε} ≤
≤ #{p ∈ N (1)

x : λ(φk(p− 1)) ≥ 1 + ε}+ #{p ∈ Nx : P (p− 1) > x1−δ} ≤
≤ #{p ∈ N (3)

x : λ(φk(p− 1)) ≥ 1 + ε}+ #{p ∈ Nx : P (p− 1) > x1−δ}+
+#(N (1)

x \ N (3)
x ) = S1(x) + S2(x) + S3(x),

say.
Using Lemma 10, we have that S1(x) = o(li(x)) as x → ∞. On the other

hand, using Lemma 1, we get that S2(x) ≤ C1δli(x), while it is clear that
S3(x) = o(li(x)) as x →∞.



98 J.-M. De Koninck and I. Kátai

We have therefore established that, for some constant c > 0,

(3.1) lim sup
x→∞

1
π(x)

#{p ≤ x : λ(φk(p− 1)) ≥ 1 + ε} ≤ cδ.

But since δ can be chosen arbitrarily small, the right hand side of (3.1) is equal
to 0.

The proof of our main theorem is therefore complete. �

4. Final remarks

Let σ∗ and φ∗ be the unitary analogues of σ and φ. These are multiplicative
functions defined on prime powers pα by

σ∗(pα) = pα + 1 and φ∗(pα) = pα − 1.

Using the same methods as those above, we can prove the following.

Theorem 2. For every ε > 0 and each k = 0, 1, . . ., we have

1
π(x)

#{p ≤ x : λ(φ∗
k(p− 1)) ≥ 1 + ε} → 0 (x →∞)

and
1

π(x)
#{p ≤ x : λ(σ∗

k(p− 1)) ≥ 1 + ε} → 0 (x →∞).

Perhaps, Theorem 2 is true also for λ(σk(p − 1)) for a general k, but we
could only prove the case k = 1.
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[4] De Koninck, J.-M. and I. Kátai, The index of composition of the
iterates of the Euler function (preprint).
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