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Abstract. Given a complex valued multiplicative function f such that
|f(n)| = 1 for each n € N, let hy(n) := S"Z] f(v)f(n — v). We investi-
gate under which conditions we have hy(n) = o(n) for almost all positive
integers n as n — oo.

1. Introduction and notation

Let M; stand for the set of those multiplicative functions f which are
such that |f(n)| = 1 for each n € N. Then, given f € M;j, consider the
corresponding convoluted sum

hyn) = 3 F)f(n - v).

This function was studied by Corradi and Katai [2] in 1969 in the case where
the function f takes the values +1 only, and more recently by De Koninck,
Germén and Kdtai [4] in the case where |f(n)| < 1 for each n € N. Here, we
are interested in establishing under which conditions we have that

h
£(n) 0 asn— oo for almost all n.

n
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Letting f be as above and a € R, consider the exponential sum

N-1
S¢(N,a) := Z f(n)e(na),

where we used the classical notation e(y) = €2™®¥. Then it is clear that

2N -2
S3N,a) = > hpn(n)e(na),
n=1
where
hy(n) if n<N,
hyn(n) = Z fWfn—v) if n>N.

max(v,n—v)<N-—1

From this, it follows that

N
SihoP < 3 el = [

n<2N -1

1/2
1SN, a)|* da <
/2

IN

1/2
max [S;(N,« 2-/ S+(N,)|? da,
e 1SV [ 1850
from which it follows, in light of the fact that this very last integral is equal to
N, that

S¢(N, ) 2

(1.1) Z M < max N

n2  ~ aego,1)
N/2<n<N

Hence, using (1.1), it follows that if

Sf (N, a)
(A) alél[%ﬁ) -~ |~ 0 (N — o0),
then
(B) th(Ln) -0 (n — o) for almost all n.

This raises the following question: “Under which condition does (A) hold ?”

Now, an obvious necessary condition for (A) to hold is that for every integers
q > 1 and ¢ > 0, we have that
1

n<N
n=¢ (mod q)
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Indeed, this follows from the fact that

S im=Y f<n>~;qzle (=) - 15, (-2) syt

n<N n<N a=0 q q a=0
n=¢ (mod q) -

Here, we investigate the particular cases when f is a completely multiplica-
tive function and when f is g-multiplicative.

2. Main results

Let M7 stand for those functions f € M; which are completely multiplica-
tive.

Theorem 1. Let f € M5. Statement (A) holds if and only if for every ¢ € N
and every corresponding Dirichlet character x, and every T € R we have

= o0

%1_ q T
3 (1 = xq(P)P"" f(p))

P p

and
R(1 T
2 : ( " f(p))

p

= Q.
P

Let /\/l((ll) stand for the set of all g-multiplicative functions f : Ny — C
satisfying f(0) =1 and |f(n)=1 for each positive integer n. To each f € Mé”,
we associate the sum

(2.1) Se(z) =Y f(n)2".

n<x

Theorem 2. Let f € ./\/lt(zl) with corresponding sum S;(z) defined in (2.1).

Further set
q—1

Zf(aqm)z“ (m=1,2,...)

a=0

@

S

&
!

and assume that

= G
(2.2) Z (1 — Irilli)i
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Then,
(2.3) lim max 22 _ g
T—00 |z]|=1 xT
and
h
(2.4) £(n) -0 asn— o0 for almost all n.

3. Preliminary results

In 1974, Daboussi [3] proved that given o € [0,1) and assuming that

s}

1
3?7

3 < q<+/N/logN, there exists an absolute constant ¢; > 0 such that

a— — where a and ¢ are positive integers satisfying (a,q) = 1 and

)

max [Sx(f,a)] <

FEM; Vioglogq

In 1977, Montgomery and Vaughan [7] proved that letting a and ¢ be two

positive integers such that (a,q) = 1 and ¢ < N, there exists an absolute
constant ¢o > 0 such that
3/2
coN c2 q\1/2 2N
max |Sny(f,a <——+—F<+c (—) log — ,
fe/\i‘;| ~n(f,a/q)] < Toeon o Ty £,

where ¢ stands for the Euler totient function.

As an immediate consequence of Montgomery and Vaughan’s inequality, we
have the following result.

1
< —, where a, g and R are

P 2 )

q
positive integers satisfying (a,q) =1 and 2 < R < ¢ < N/R. Then,
there exists an absolute constant c3 > 0 such that

a

Let « € [0,1) and assume that |a — —

1 R3/2
C3 +03(og ) )
gN VR

3.1
(3.1) Joax

Sn(fo)l <

The following is a variant of a theorem of Kétai (see Kétai [6]).
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Lemma 1. Let py be an arbitrary subset of the primes, each element of which
does not exceed N. Further set Ay := 1/p and, given any arbitrary real

PEPN
number o € [0,1), let

1
e

where ||y|| stands for the distance from y to the nearest integer. Then there
exist absolute constants Cy > 0 and Cs > 0 such that

1SN (f, )| Cy Cs (Oz)
(3.3) frgﬂc{ N < Tic + . .

Proof. Let w,, (n Z 1. Then, by using the Turdan-Kubilius inequality,

pn
PEPN

it is clear that there exists an absolute constant C; > 0 such that

Y lwpn(n) — An[* < C1NAy

n<N

and therefore that, for some absolute constant Cy > 0, we have

(3.4) D |wen (n) — An| < CoN /Ay,

n<N

Let

Since

Un(fre)= > f(p)f(m)e(pma),

pm<N
PEPN

it follows from (3.4) that

(35) |SN(f,Oz)‘AN SCQN\/AN+|UN(f,Oé)‘.
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Now, observe that

2

Un(f0)* < 1 Z Z f(p)e(pma) <
m<N m<N | p<N/m
PEPN
s N Zl+ Z Z e((p1 —p2)ma) p <
meEy ey memin(NTp N pa)
< N{e&NAy+ Y mi ( 1 NN )
& mn|(-————
SR R N T oy O
P1#P2
thereby implying that
2
hN(a)
U < (34 —_
‘N N f7 ) — 3 N+ N P

that is,
UN f7

‘N )| < Cuv/An + %\/hw),

which, with (3.5), proves (3.3), thereby completing the proof of Lemma 1. W

As an immediate consequence of Lemma 1, we have the following.

Lemma 2. Let f € Mj. Let ¢ > 0 be an arbitrarily small number. Let

p1 < -+ < pi be a sequence of prime numbers satisfying 25:1 1/p; > 1/e.
Then, provided N > py, we have

ISn(f, o)l hy(a)
— 7

< 04\6 + Cse N

The following is a consequence of a theorem of G. Haldsz [5].

Lemma 3. If statement (A) holds for some f € M7, then for every positive
integer q and every corresponding Dirichlet character x4, we have for each
TEeR,

(3.6) 3 R~ Xq(]f)p”f(p))

=0
p

(3.7) 3 W = .
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Lemma 4. Let f € Mj. If estimate (3.6) holds for every q and xq and if
relation (3.7) holds as well, then

S
(3.8) Sn(f.afa) 0 (N — o)
N
for every congruence class a (mod ¢q), a =0,1,...,q¢— 1.

Proof. Assume first that (a,q) = 1 and let

|1 ifn=a (modyg),
Un) = { 0 otherwise.

It is known that

Un) = dy-x(n),

where x runs over the characters mod ¢ and d, are suitable constants. Hence,
it follows that

S fn) = dy-Sn(f,xg) =0o(N) (N — o0),
so that
yu(fan =5 ¥ foe (D) ~0 (v ),

n<N q

thus completing the proof of Lemma 4 in the case where (a,q) = 1.

In the more general case, that is when (a,q) = A > 1, let a; = a/A and
g1 = q/A. We then have that

SN(fv a/q) = SN(fa al/(h),

allowing one to easily establish that (3.8) holds in the general case as well. B

Let f € ./\/lél) with corresponding sum S, (z) defined in (2.1). We then have

(39) SqN (Z) = f[ {i f(aqj)zaqj} .

=0 la=0
The following result will be used in the proof of Theorem 2.
Lemma 5. Let f € ./\/lt(ll) with corresponding function Sy(z) defined in (2.1).

If
WERE]

—0 (N — 0),
lz|I=1 ¢
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then g
|z|=1 x
Proof. Let
Sy (z
AN = sup 7’ qNI\E )‘
|z|=1 q
and write successively
x = bog" + a1,
_ N-1
where 11 = bigq + xa,
where xo = bgqN_2 + z3,

We then have
Salz) = (ﬁj f(an>z“qN> Sy (2) + £ (bog™) 207 S, (2),
=0
where '
S, (2) = (ﬁj f(anl)Z“qN_l> Synor () + flbig¥ )0 8, (=),
=0
and so on, at eacah step introducing successively the definitions of Sy, (2), Sz, (2),

It follows from this representation of S;(z) that

S, NA by + )¢V TAn_
|52 (2)| < (b0+1)q N+(1+)q N-1 o
x z x
An_ An_
< q(AN+ dlee 522+"'>’
which clearly implies (3.9), thus completing the proof of Lemma 5. |

4. The proof of Theorem 1

It is sufficient to prove that if (3.6) and (3.7) hold, then (A) holds. To do
so, we first observe that Lemmas 3 and 4 imply that

1
NSN(f’ a/q) — 0 as N — oo for every ¢ and every a (mod q).
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Consequently, there exists a suitable sequence (K )n>1 which tends to infinity
with N such that

1
(4.1) max  —|Sw(f.a/a)l =0 (N = oo)
a=0,1,...,q—1

Now, let § > 0 be an arbitrarily small number. Then, for every pair of positive
integers N1 < Na such that Ny(1 —d) > Ny, we have

1 an
a=0,1,...,q—1 1<n< N3
Assume that |o| < e/N. We then have
so that
(4.0 SIS (f.0)| < &+ |Sw(£.0)
' sy NN @S e g loN UL BT

If, on the other hand, we have

0<E cac<h
=N
we then create the sequence
(4.5) Ny = 6N, N;={(+1)0N forj=1,2,...,
so that
Nj+1—Nj
(4.6) SNy (fr0) = Sn, (fra) = e(Nja) Y f(N; + e(la).

£=0

Using the fact that |e(fa) — 1] < LK/N, it follows from relations (4.3) to (4.6)
that

SN
K
|SNj+1(f»O‘) - SNj(f’O‘)| < ’SNJ'H(f’O) - SNj(f’0)| + ﬁzg =
£=0
= O(1)dN + K§*N.
Summing the above inequality for all j < 1/§, we obtain that

SN (f, )] < o(l)gN—&—K(SN (N — )
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and therefore that

(4.7)

Sn(f,a)| <o(1)+ Ko (N — o0).

¥

Let us now assume that we have chosen ¢ = e. It then follows from (4.7) that

(4.8) max CISK(fa) S Ketoll) (N - oc).

Assume that p; < --- < py, are fixed primes and further assume that 25:1 1/p; >
> 1/e and that N > pg. Moreover, let T be a large number and let By be the
set of those a € [0,1) for which the inequality

(4.9) I(pi = pj)edl > T/N

holds for every prime pair p;,p; with 1 < j <4 < k. In this case, we obtain
that

R T
a— > (ReZ).
Di —Pj N(pi — pj)
Using this and the representation of hy(«) provided by (3.2), it follows that
Npyk?
h(a) < 2R

T
Choosing T = pik?, it follows, using Lemma 2, that

1 Cs
sup — | S .
bl;le ~N(f,a)| < o Ve
On the other hand, if (4.9) does not hold, then
R T
o — < (ReZ),
Di —Pj N(pi — pj)
we may first write that
R
o= + 3, where |8] < ——m—.
pi—D; 1 N(pi — pj)

Repeating the argument used above, namely by first defining the sequence
(N;)j>0 as in (4.5), we obtain that

SNy (fra) = S, (f, ) =

Njt1—N;

R
S+ (52— 0) et -

= O(B&*N) + e(N; ﬂ)( Njt1 (f’pi]—%p) -9 (f’pi 1—%173'))'
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Observing that

R R
Sn..q | S, = SN, | s =0(Njy1 — N,
N+ <f pi—pg) N <f pz——pj) (Nj+1 = )

for every j uniformly as j < 1/4, it follows that

1
sup —|Sn(f,a)[ =0 (N —o0),
OCEEN

thus completing the proof of Theorem 1. |

5. The proof of Theorem 2

Let us separate the real and imaginary parts of G,,(z) — 1 by writing

qg—1
Gn(z)—1= Zg(aqm)z“ =U+iV, UV eR,

a=1

where U and V depend on z. Since U? + V2 < (¢ — 1), it follows that, for
each m > 1, there exists some p,,, > 0 such that

|m\21)§ §R(C’Ym(’z) - Q) = —Pm-

Now, 1 + U — ¢ < —p,,, implies that U < (¢ — 1) — p,, from which it follows
that

Gm(2))P=(1+UP+V2=U?+V24+2U+1<
<(g=1)*+1+2(¢—1) = 2pm = ¢° = 2pm.

From this, we obtain that

‘Gm(’z) <1-— 2p2m
q q
and therefore that )
2P2m <1- ‘Gm(z)
q q

Using this, we get that

’sq;N(@ 2:71111) Gn;( >‘ <j—_[: (“Eﬁ? (1_‘0,7;(2) 2))
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In light of hypotheses (2.2), it follows from the above inequality that

Sy (2)
max
lz|I=1 q

—0 (N — o),

thus, in light of Lemma 5, establishing (2.3). Finally, since (2.4) is an immediate
consequence of (2.3), the proof of Theorem 2 is complete. |

6. Final remarks

For the general case, that is when we do not assume that the arithmetic
function f belongs to M7 or to Mél), we are unable to prove results similar
to those stated in Theorems 1 or 2. However, it is interesting to observe that
if the arithmetic function f is such that |f(n)| < 1, one can prove that, given
any € > 0,

St(N.a) == 3" f(n)e(na) = O(VN - (log N)*+%)
(6.1) n<N
for almost all a € R.

This can be deduced from the famous result of Carleson [1] which states that if
> reolek? < oo, then the corresponding Fourier series > p-  cre(k6) converges
for almost all # € R. A deduction of (6.1) from the Carleson result can be found
in the paper of Murty and Sankaranarayanan [8].
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