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Abstract. Given a complex valued multiplicative function f such that
|f(n)| = 1 for each n ∈ N, let hf (n) :=

∑n−1
ν=1 f(ν)f(n − ν). We investi-

gate under which conditions we have hf (n) = o(n) for almost all positive
integers n as n → ∞.

1. Introduction and notation

Let M1 stand for the set of those multiplicative functions f which are
such that |f(n)| = 1 for each n ∈ N. Then, given f ∈ M1, consider the
corresponding convoluted sum

hf (n) :=
n−1∑
ν=1

f(ν)f(n− ν).

This function was studied by Corrádi and Kátai [2] in 1969 in the case where
the function f takes the values ±1 only, and more recently by De Koninck,
Germán and Kátai [4] in the case where |f(n)| ≤ 1 for each n ∈ N. Here, we
are interested in establishing under which conditions we have that

hf (n)
n

→ 0 as n →∞ for almost all n.
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Letting f be as above and α ∈ R, consider the exponential sum

Sf (N, α) :=
N−1∑
n=1

f(n)e(nα),

where we used the classical notation e(y) = e2πiy. Then it is clear that

S2
f (N, α) =

2N−2∑
n=1

hf,N (n)e(nα),

where

hf,N (n) =

⎧⎪⎨⎪⎩
hf (n) if n ≤ N,∑
max(ν,n−ν)≤N−1

f(ν)f(n− ν) if n > N.

From this, it follows that

N∑
n=1

|hf (n)|2 ≤
∑

n≤2N

|hf,N (n)|2 =
∫ 1/2

−1/2

|Sf (N, α)|4 dα ≤

≤ max
α∈[0,1)

|Sf (N, α)|2 ·
∫ 1/2

−1/2

|Sf (N, α)|2 dα,

from which it follows, in light of the fact that this very last integral is equal to
N , that

(1.1)
∑

N/2≤n≤N

|hf (n)|2
n2

≤ max
α∈[0,1)

∣∣∣∣Sf (N, α)
N

∣∣∣∣2 .

Hence, using (1.1), it follows that if

(A) max
α∈[0,1)

∣∣∣∣Sf (N, α)
N

∣∣∣∣→ 0 (N →∞),

then

(B)
hf (n)

n
→ 0 (n →∞) for almost all n.

This raises the following question: “Under which condition does (A) hold ?”
Now, an obvious necessary condition for (A) to hold is that for every integers

q ≥ 1 and � ≥ 0, we have that

(C)
1
N

∑
n≤N

n≡� (mod q)

f(n) → 0 (N →∞).
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Indeed, this follows from the fact that

∑
n≤N

n≡� (mod q)

f(n) =
∑
n≤N

f(n) · 1
q

q−1∑
a=0

e

(
a(n− �)

q

)
=

1
q

q−1∑
a=0

e

(
−a�

q

)
Sf (N, a/q).

Here, we investigate the particular cases when f is a completely multiplica-
tive function and when f is q-multiplicative.

2. Main results

Let M∗
1 stand for those functions f ∈M1 which are completely multiplica-

tive.

Theorem 1. Let f ∈M∗
1. Statement (A) holds if and only if for every q ∈ N

and every corresponding Dirichlet character χq and every τ ∈ R we have

∑
p

�(1− χq(p)piτf(p))
p

= ∞

and ∑
p

�(1− piτf(p))
p

= ∞.

Let M(1)
q stand for the set of all q-multiplicative functions f : N0 → C

satisfying f(0) = 1 and |f(n)=1 for each positive integer n. To each f ∈M(1)
q ,

we associate the sum

(2.1) Sx(z) :=
∑
n<x

f(n)zn.

Theorem 2. Let f ∈ M(1)
q with corresponding sum Sx(z) defined in (2.1).

Further set

Gm(z) =
q−1∑
a=0

f(aqm)za (m = 1, 2, . . .)

and assume that

(2.2)
∞∑

m=1

(
1−max

|z|=1

∣∣∣∣Gm(z)
q

∣∣∣∣2
)

= ∞.
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Then,

(2.3) lim
x→∞

max
|z|=1

|Sx(z)|
x

= 0

and

(2.4)
hf (n)

n
→ 0 as n →∞ for almost all n.

3. Preliminary results

In 1974, Daboussi [3] proved that given α ∈ [0, 1) and assuming that∣∣∣∣α− a

q

∣∣∣∣ ≤ 1
q2

, where a and q are positive integers satisfying (a, q) = 1 and

3 ≤ q ≤
√

N/ log N , there exists an absolute constant c1 > 0 such that

max
f∈M∗

1

|SN (f, α)| ≤ c1N√
log log q

.

In 1977, Montgomery and Vaughan [7] proved that letting a and q be two
positive integers such that (a, q) = 1 and q ≤ N , there exists an absolute
constant c2 > 0 such that

max
f∈M∗

1

|SN (f, a/q)| ≤ c2N√
log 2N

+
c2

φ(q)
+ c2

( q

N

)1/2
(

log
2N

q

)3/2

,

where φ stands for the Euler totient function.

As an immediate consequence of Montgomery and Vaughan’s inequality, we
have the following result.

Let α ∈ [0, 1) and assume that

∣∣∣∣α− a

q

∣∣∣∣ ≤ 1
q2

, where a, q and R are

positive integers satisfying (a, q) = 1 and 2 ≤ R ≤ q ≤ N/R. Then,
there exists an absolute constant c3 > 0 such that

(3.1) max
f∈M∗

1

|SN (f, α)| ≤ c3

log N
+ c3

(log R)3/2

√
R

.

The following is a variant of a theorem of Kátai (see Kátai [6]).
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Lemma 1. Let ℘N be an arbitrary subset of the primes, each element of which
does not exceed N . Further set AN :=

∑
p∈℘N

1/p and, given any arbitrary real
number α ∈ [0, 1), let

(3.2) hN (α) :=
∑

p,q∈℘N
p�=q

1
‖α(p− q)‖ ,

where ‖y‖ stands for the distance from y to the nearest integer. Then there
exist absolute constants C4 > 0 and C5 > 0 such that

(3.3) max
f∈M∗

1

|SN (f, α)|
N

≤ C4√
AN

+
C5

AN

√
hN (α)

N
.

Proof. Let ω℘N
(n) :=

∑
p|n

p∈℘N

1. Then, by using the Turán-Kubilius inequality,

it is clear that there exists an absolute constant C1 > 0 such that

∑
n≤N

|ω℘N
(n)−AN |2 ≤ C1NAN

and therefore that, for some absolute constant C2 > 0, we have

(3.4)
∑
n≤N

|ω℘N
(n)−AN | ≤ C2N

√
AN .

Let

UN (f, α) :=
∑
n≤N

f(n)e(nα)ω℘N
(α).

Since

UN (f, α) =
∑

pm≤N
p∈℘N

f(p)f(m)e(pmα),

it follows from (3.4) that

(3.5) |SN (f, α)|AN ≤ c2N
√

AN + |UN (f, α)|.
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Now, observe that

|UN (f, α)|2 ≤

⎧⎨⎩∑
m≤N

1

⎫⎬⎭
⎧⎪⎨⎪⎩
∑

m≤N

∣∣∣∣∣∣∣
∑

p≤N/m
p∈℘N

f(p)e(pmα)

∣∣∣∣∣∣∣
2⎫⎪⎬⎪⎭ ≤

≤ N

⎧⎪⎨⎪⎩
∑

pm≤N
p∈℘N

1 +
∑

p1,p2∈℘N
p1 �=p2

∑
m≤min(N/p1,N/p2)

e((p1 − p2)mα)

⎫⎪⎬⎪⎭ ≤

≤ N

⎧⎪⎨⎪⎩c3NAN +
∑

p1,p2∈℘N
p1 �=p2

min
(

1
‖α(p1 − p2)‖

,
N

p1
,
N

p2

)⎫⎪⎬⎪⎭ ,

thereby implying that ∣∣∣∣ 1
N

UN (f, α)
∣∣∣∣2 ≤ C3AN +

hN (α)
N

,

that is, ∣∣∣∣ 1
N

UN (f, α)
∣∣∣∣ ≤ C4

√
AN +

C5√
N

√
hN (α),

which, with (3.5), proves (3.3), thereby completing the proof of Lemma 1. �

As an immediate consequence of Lemma 1, we have the following.

Lemma 2. Let f ∈ M∗
1. Let ε > 0 be an arbitrarily small number. Let

p1 < · · · < pk be a sequence of prime numbers satisfying
∑k

j=1 1/pj > 1/ε.
Then, provided N > pk, we have

|SN (f, α)|
N

≤ C4

√
ε + C5ε

√
hN (α)

N
.

The following is a consequence of a theorem of G. Halász [5].

Lemma 3. If statement (A) holds for some f ∈ M∗
1, then for every positive

integer q and every corresponding Dirichlet character χq, we have for each
τ ∈ R,

(3.6)
∑

p

�(1− χq(p)piτf(p))
p

= ∞

and

(3.7)
∑

p

�(1− piτf(p))
p

= ∞.
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Lemma 4. Let f ∈ M∗
1. If estimate (3.6) holds for every q and χq and if

relation (3.7) holds as well, then

(3.8)
SN (f, a/q)

N
→ 0 (N →∞)

for every congruence class a (mod q), a = 0, 1, . . . , q − 1.

Proof. Assume first that (a, q) = 1 and let

�(n) :=
{

1 if n ≡ a (mod q),
0 otherwise.

It is known that
�(n) =

∑
χ

dχ · χ(n),

where χ runs over the characters mod q and dχ are suitable constants. Hence,
it follows that∑

n≤N
n≡a (mod q)

f(n) =
∑

χ

dχ · SN (f, χq) = o(N) (N →∞),

so that

1
N

SN (f, a/q) =
1
N

∑
n≤N

f(n)e
(

an

q

)
→ 0 (N →∞),

thus completing the proof of Lemma 4 in the case where (a, q) = 1.
In the more general case, that is when (a, q) = Δ ≥ 1, let a1 = a/Δ and

q1 = q/Δ. We then have that

SN (f, a/q) = SN (f, a1/q1),

allowing one to easily establish that (3.8) holds in the general case as well. �

Let f ∈M(1)
q with corresponding sum Sx(z) defined in (2.1). We then have

(3.9) SqN (z) =
N−1∏
j=0

{
q−1∑
a=0

f(aqj)zaqj

}
.

The following result will be used in the proof of Theorem 2.

Lemma 5. Let f ∈ M(1)
q with corresponding function Sx(z) defined in (2.1).

If

max
|z|=1

∣∣SqN (z)
∣∣

qN
→ 0 (N →∞),
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then

max
|z|=1

|Sx(z)|
x

→ 0 (x →∞).

Proof. Let

ΛN := sup
|z|=1

∣∣SqN (z)
∣∣

qN

and write successively

x = b0q
N + x1,

where x1 = b1q
N−1 + x2,

where x2 = b2q
N−2 + x3,

...

We then have

Sx(z) =

(
b0∑

a=0

f(aqN )zaqN

)
SqN (z) + f(b0q

N )zb0qN

Sx1(z),

where

Sx1(z) =

(
b1∑

a=0

f(aqN−1)zaqN−1

)
SqN−1(z) + f(b1q

N−1)zb1qN−1
Sx2(z),

and so on, at each step introducing successively the definitions of Sx2(z), Sx3(z),
. . .

It follows from this representation of Sx(z) that

|Sx(z)|
x

≤ (b0 + 1)
qNΛN

x
+

(b1 + 1)qN−1ΛN−1

x
+ · · · ≤

≤ q

(
ΛN +

ΛN−1

q
+

ΛN−2

q2
+ · · ·

)
,

which clearly implies (3.9), thus completing the proof of Lemma 5. �

4. The proof of Theorem 1

It is sufficient to prove that if (3.6) and (3.7) hold, then (A) holds. To do
so, we first observe that Lemmas 3 and 4 imply that

1
N

SN (f, a/q) → 0 as N →∞ for every q and every a (mod q).
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Consequently, there exists a suitable sequence (KN )N≥1 which tends to infinity
with N such that

(4.1) max
q≤KN

a=0,1,...,q−1

1
N
|SN (f, a/q)| → 0 (N →∞).

Now, let δ > 0 be an arbitrarily small number. Then, for every pair of positive
integers N1 < N2 such that N2(1− δ) ≥ N1, we have

(4.2) max
q≤KN1

a=0,1,...,q−1

1
N2 −N1

∑
N1≤n≤N2

f(n)e
(

an

q

)
→ 0 (N1 →∞).

Assume that |α| ≤ ε/N . We then have

(4.3) |SN (f, α)− SN (f, 0)| ≤ εN,

so that

(4.4) max
|α|≤ε/N

1
N
|SN (f, α)| ≤ ε +

1
N
|SN (f, 0)|.

If, on the other hand, we have

0 ≤ ε

N
< α ≤ K

N
,

we then create the sequence

(4.5) N0 = δN, Nj = (j + 1)δN for j = 1, 2, . . . ,

so that

(4.6) SNj+1(f, α)− SNj (f, α) = e(Njα)
Nj+1−Nj∑

�=0

f(Nj + �)e(�α).

Using the fact that |e(�α)− 1| ≤ �K/N , it follows from relations (4.3) to (4.6)
that

∣∣SNj+1(f, α)− SNj
(f, α)

∣∣ ≤ ∣∣SNj+1(f, 0)− SNj
(f, 0)

∣∣+ K

N

δN∑
�=0

� =

= O(1)δN + Kδ2N.

Summing the above inequality for all j ≤ 1/δ, we obtain that

|SN (f, α)| ≤ o(1)
δ

δ
N + KδN (N →∞)
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and therefore that

(4.7)
∣∣∣∣ 1
N

SN (f, α)
∣∣∣∣ ≤ o(1) + Kδ (N →∞).

Let us now assume that we have chosen δ = ε. It then follows from (4.7) that

(4.8) max
|α|≤K/N

1
N
|SN (f, α)| ≤ Kε + o(1) (N →∞).

Assume that p1 < · · · < pk are fixed primes and further assume that
∑k

j=1 1/pj >
> 1/ε and that N > pk. Moreover, let T be a large number and let BN be the
set of those α ∈ [0, 1) for which the inequality

(4.9) ‖(pi − pj)α‖ > T/N

holds for every prime pair pi, pj with 1 ≤ j < i ≤ k. In this case, we obtain
that ∣∣∣∣α− R

pi − pj

∣∣∣∣ > T

N(pi − pj)
(R ∈ Z).

Using this and the representation of hN (α) provided by (3.2), it follows that

hN (α) ≤ Npkk2

T
.

Choosing T = pkk2, it follows, using Lemma 2, that

sup
α

1
N
|SN (f, α)| ≤ C6√

AN

< C6

√
ε.

On the other hand, if (4.9) does not hold, then∣∣∣∣α− R

pi − pj

∣∣∣∣ ≤ T

N(pi − pj)
(R ∈ Z),

we may first write that

α =
R

pi − pj
+ β, where |β| < T

N(pi − pj)
.

Repeating the argument used above, namely by first defining the sequence
(Nj)j≥0 as in (4.5), we obtain that

SNj+1(f, α)− SNj (f, α) =

= e(Njα)
Nj+1−Nj∑

�=0

f(Nj + �)e
(

R

pi − pj
(Nj − �)

)
· e(β�) =

= O(βδ2N) + e(Njβ)
(

SNj+1

(
f,

R

pi − pj

)
− SNj

(
f,

R

pi − pj

))
.
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Observing that

SNj+1

(
f,

R

pi − pj

)
− SNj

(
f,

R

pi − pj

)
= o(Nj+1 −Nj)

for every j uniformly as j ≤ 1/δ, it follows that

sup
α∈BN

1
N
|SN (f, α)| → 0 (N →∞),

thus completing the proof of Theorem 1. �

5. The proof of Theorem 2

Let us separate the real and imaginary parts of Gm(z)− 1 by writing

Gm(z)− 1 =
q−1∑
a=1

g(aqm)za = U + iV, U, V ∈ R,

where U and V depend on z. Since U2 + V 2 ≤ (q − 1)2, it follows that, for
each m ≥ 1, there exists some ρm > 0 such that

max
|z|=1

�(Gm(z)− q) = −ρm.

Now, 1 + U − q ≤ −ρm implies that U ≤ (q − 1) − ρm, from which it follows
that

|Gm(z)|2 = (1 + U)2 + V 2 = U2 + V 2 + 2U + 1 ≤
≤ (q − 1)2 + 1 + 2(q − 1)− 2ρm = q2 − 2ρm.

From this, we obtain that∣∣∣∣Gm(z)
q

∣∣∣∣2 ≤ 1− 2ρm

q2

and therefore that
2ρm

q2
≤ 1−

∣∣∣∣Gm(z)
q

∣∣∣∣2 .

Using this, we get that∣∣∣∣SqN (z)
qN

∣∣∣∣2 =
N−1∏
m=0

∣∣∣∣Gm(z)
q

∣∣∣∣2 ≤ N−1∏
m=0

(
1−max

|z|=1

(
1−
∣∣∣∣Gm(z)

q

∣∣∣∣2
))

.
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In light of hypotheses (2.2), it follows from the above inequality that

max
|z|=1

SqN (z)
qN

→ 0 (N →∞),

thus, in light of Lemma 5, establishing (2.3). Finally, since (2.4) is an immediate
consequence of (2.3), the proof of Theorem 2 is complete. �

6. Final remarks

For the general case, that is when we do not assume that the arithmetic
function f belongs to M∗

1 or to M(1)
q , we are unable to prove results similar

to those stated in Theorems 1 or 2. However, it is interesting to observe that
if the arithmetic function f is such that |f(n)| ≤ 1, one can prove that, given
any ε > 0,

(6.1)
Sf (N, α) :=

∑
n≤N

f(n)e(nα) = O(
√

N · (log N)
1
2+ε)

for almost all α ∈ R.

This can be deduced from the famous result of Carleson [1] which states that if∑∞
k=0 |ck|2 < ∞, then the corresponding Fourier series

∑∞
k=0 cke(kθ) converges

for almost all θ ∈ R. A deduction of (6.1) from the Carleson result can be found
in the paper of Murty and Sankaranarayanan [8].
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