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Abstract. In this paper, we propose a new algorithm to the non-
overlapping Schwarz domain decomposition methods for solving one dimen-
sional advection reaction diffusion problem. More precisely, our method
provides a good estimation of parameters which are used in Schwarz wave-
form relaxation methods. The advantage of our algorithm is that it is
simple, efficient and easy to extend to more general partial differential
equations. Numerical experiments are provided to show the efficiency of
the new method and to compare with the optimized Schwarz waveform
relaxation methods in [4].

1. Introduction

Domain decomposition methods are very important techniques in solving
boundary value problems for partial differential equations. The main idea con-
sists of decoupling the original problem into several sub-problems and solving
the discrete problems on parallel computing. The first domain decomposition
method has been known as the classical Schwarz method which was proposed
by H. Schwarz in [17], to study the case of a domain that is the union of
subdomains. The convergence properties of the classical Schwarz methods are
well studied in several books [16], [18] and references therein. In [11], P. L.
Lions developed the non-overlapping variant of the Schwarz method to obtain
a convergent algorithm, since without overlap the classical Schwarz method
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does not converge. Following the pioneering work of P. L. Lions, a new domain
decomposition method for solving evolution problems in parallel in space-time
has been developed by M. J. Gander et al., so called Schwarz waveform re-
laxation method, see [2], [3], [8], [9]. The convergence rates of these methods
come from the different transmission conditions which are differential type in
both time and space, and depend on several coefficients. These coefficients are
determined by the optimization of convergence factor. The best optimal ap-
proximation of transmission conditions was studied as the optimized Schwarz
waveform relaxation (SWR) method by M. J. Gander and L. Halpern to solve
the one dimensional advection diffusion equation in [4]. The optimized Schwarz
waveform relaxation method is very efficient, which gives idea to study theo-
retical results for non-overlapping domain decomposition method. However,
this method may be difficult to apply in solving some other complicated prob-
lems. One thinks about a simpler domain decomposition method that also
gives good convergence results. For this purpose, in this paper we propose a
simple algorithm and show that the convenient framework is efficient, flexible
and robust. In addition, in this work we also point out that this new method is
inherently adaptive for parallel computing. The rest of this paper is organized
as follows. In the next section, we start with a brief mathematical description
of the domain decomposition methods, in which the non-overlapping optimized
SWR algorithm is reviewed. We present the theoretical analysis, such as the
existence, uniqueness and regularity of the method. Then we analyze the con-
vergence behavior of the proposed algorithm. In Section 3, we describe two
steps of our new optimized domain decomposition methods. Our algorithm
includes two steps: 1) the first step is to estimate the initial parameters by
minimizing quadrature functions which are obtained by the simplicity of the
min-max problem; 2) the second step is to obtain the optimized parameters
using the backtracking-Armijo line search method. Finally, in the last section
we perform some numerical experiments to illustrate our developed algorithms
and make comparisons with the optimal method in [4].

2. The Schwarz waveform relaxation method

2.1. Setting of the problem

For the easier understanding, let us describe the main idea of our method
in a simple case. Let the domain Ω = R, we consider the guiding example is
the one dimensional advection reaction diffusion equation as follows:

(2.1) ∂tu + Au = f, in Ω× (0, T ),
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with the initial condition

(2.2) u(x, 0) = u0(x), in Ω,

where A = −a∂2
xx + b∂x + c and a is a positive constant. The spatial do-

main Ω is split into two non-overlapping sub-domains Ω1 = (−∞, 0) and
Ω2 = (0, +∞). We introduce the optimized non-overlapping SWR algorithm,
consists of solving iteratively two sub-problems on Ω1 × (0, T ) and Ω2 × (0, T )
using some coupling transmission conditions at the interfaces Γ = {0}. More
precisely, we define a sequence (uk

1 , uk
2), k ∈ N as a solution of the equations

corresponding to transmission conditions, for i = 1, 2:{
∂tu

k+1
i + Auk+1

i = f, in Ωi × (0, T ),

uk+1
i (x, 0) = u0(x), in Ωi,

(2.3)

{
(∂x + S2)uk+1

1 (0, t) = (∂x + S2)uk
2(0, t), in (0, T ),

(−∂x + S1)uk+1
2 (0, t) = (−∂x + S1)uk

1(0, t), in (0, T ),
(2.4)

where S1 and S2 are linear operators, possibly pseudo-differential. Note that
we need to provide some initial guesses u0

1(0, t), u0
2(0, t), for t ∈ (0, T ) as solving

each sub-problem approximately. The sequence (uk
1 , uk

2) must converge to the
exact solution

(
u|Ω1 , u|Ω2

)
of (2.1) as k tends to infinity. This convergence

property depends on the choice of the operators S1 and S2. Furthermore,
in order to reduce the complexity and the computing time, the number of
iterations for reaching the convergence must be as small as possible.

In this paper, we see below that if Si are chosen as the Dirichlet to Neu-
mann operators S̃i, for i = 1, 2, then the SWR algorithm converges in two
iterations. However, the operators S̃i are non-local operators in time, and it
is very expensive to approximate them directly in sub-problems. The simple
approach of the optimized SWR algorithm has been afterwards proposed, that
the operators Si are chosen as the approximation of S̃i in the form Si := piId

or Si := piId + qi∂t for i = 1, 2, where the real parameters pi, qi are given in
order to optimize the convergence rate.

The goal of the optimized Schwarz methods is to choose the positive pa-
rameters pi and qi to obtain good performance of convergence. Many variants
of this approach have been proposed and investigated in the recent literature
[1], [4], [5], [6], [7], [10], [14], [15] and references therein. In particular, Gan-
der, Martin J. et al. in [1], [4], the authors determine analytically the best
parameter pi, qi > 0 for the advection reaction diffusion equation. For other
problems with varying coefficients, it may be very difficult to find the optimal
parameters analytically. From all that reasons, this paper studies a new simple
method for computing numerically efficient transmission conditions.
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2.2. Existence, uniqueness and regularity

In this section, we will explain the mathematical formulation and algo-
rithmic composition of the domain decomposition method. Let us consider
the advection diffusion equation (2.1). Without loss of generality, we may
assume that the reaction coefficient c is non-negative because of a change of
variables v = u−λt with λ + c > 0 will lead to the equation with a pos-
itive reaction coefficient. A weak solution to (2.1) is defined as a function
u ∈ C(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)), such that for any v in H1(Ω), we have

∂t(u, v) + a(∂xu, ∂xv) +
b

2
((∂xu, v)− (∂xv)) + c(u, v) = (f, v),

in D′(0, T ),

where (., .) denotes the inner product in L2(Ω). For the transmission condi-
tions, we first introduce the anisotropic Sobolev spaces as Hr,s(Ω × (0, T )) =
= L2(0, T ; Hr(Ω)) ∩Hs(0, T ; L2(Ω)). We refer the readers to [12], [13] for the
proof of the existence, uniqueness and regularity results.

Theorem 2.1. Assume that u0 ∈ L2(Ω) and f ∈ L2(0, T ; L2(Ω)). Then there
exists a unique weak solution u of the system (2.1), (2.2). Moreover, if u0 ∈
∈ H1(Ω) and f ∈ L2(0, T ; L2(Ω)), then the weak solution u ∈ H2,1(Ω× (0, T )).

One need to analyze under which condition our sub-domain problems of the
algorithm with Robin transmission conditions is well posed. Without loss of
generality, we only study the well-posedness of the sub-domain problem in Ω1

(2.5)

⎧⎪⎨⎪⎩
∂tu + Au = f, in Ω1 × (0, T ),
u(., 0) = u0, in Ω1,

∂xu + S2u(0, .) = g, in (0, T ).

First, we consider the case Si = piId, for i = 1, 2, which is justified by the
following lemma:

Lemma 2.1. If u0 ∈ H1(Ω1) and g ∈ H1/4(0, T ), then there exists an exten-
sion v in H2,1(Ω1×(0, T )), such that v(., 0) = u0 in Ω1 and (∂xv+S2v)(0, .) = g
on (0, T ).

Proof. Let g̃ be in H3/4(0, T ) such that g̃(0) = u0(0). By the continuous
extension theorem, there exists a function v1 in H2,1(Ω1 × (0, T )) such that

v1(., 0) = u0, v1(0, .) = g̃, ∂xv1(0, .) = 0,
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and a function v2 in H2,1(Ω1 × (0, T )) such that

v2(., 0) = 0, v2(0, .) = 0, ∂xv2(0, .) = g − S2g̃.

Now the sum v = v1 + v2 is the desired extension in H2,1(Ω1 × (0, T )).
So it is sufficient to analyze the well-posedness of the problem with homo-

geneous initial and boundary conditions

(2.6)

⎧⎪⎨⎪⎩
∂tũ + Aũ = F, in Ω1 × (0, T ),
ũ(., 0) = 0, in Ω1,

(∂xũ + S2ũ)(0, .) = 0, in (0, T ),

where ũ = u − v and the right hand side function F = f − (∂tv + Av) is in
L2
(
0, T, L2(Ω1)

)
if f is in L2

(
0, T, L2(Ω1)

)
. We start with the weak formula-

tion: for any ϕ in H1(Ω1), we multiply the equation by ϕ, integrate, and use
Greens formula and the boundary condition, to obtain in D′(0, T ) as follows

∂t(ũ, ϕ) + a(∂xũ, ∂xϕ) +
b

2
((∂xũ, ϕ)− (∂xϕ, ũ)) + c(ũ, ϕ)

+
(

ap2 +
b

2

)
ũ(0)ϕ(0) = (F,ϕ).

The following theorem gives the existence, uniqueness and regularity of the
weak solution, see [14] for the proof. �

Theorem 2.2. If F ∈ L2
(
0, T, L2(Ω1)

)
, then (2.6) has a unique weak solution

ṽ ∈ H2,1(Ω1 × (0, T )), for any p2.

Theorem 2.3. If f ∈ L2
(
0, T, L2(Ω1)

)
and u0 ∈ H1(Ω1), g ∈ H1/4(0, T ),

then the problem (2.5) has a unique solution u ∈ H2,1(Ω1× (0, T )), for any p2.

Proof. Using Lemma 2.1 and Theorem 2.2, we get the proof. �

This theorem also holds on the sub-domain Ω2 by changing x to −x, b to
−b.

Theorem 2.4. Let g be in H1/4(0, T ), and the transmission conditions of
(2.3) are (∂xu1

1+S2u
1
1)(0, .) = g and (−∂xu1

2+S1u
1
2)(0, .) = (−∂xu1

1+S1u
1
1)(0, .).

Then (2.3) defines a sequence of solutions (uk
1 , uk

2) in H2,1(Ω1 × (0, T )) ×
×H2,1(Ω1 × (0, T )) for any p1, p2 > 0.

Proof. For k = 1, the equation (2.3) defines a solution (u1
1, u

1
2), where u1

1 is
in H2,1(Ω1 × (0, T )). As (−∂xu1

1 + S1u
1
1)(0, .) is in H

1
4 (0, T ), then u1

2 is also in
H2,1(Ω1 × (0, T )). Assume that

(uk
1 , uk

2) ∈ H2,1(Ω1 × (0, T ))×H2,1(Ω1 × (0, T )).
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Similar to the case k = 1, we also have (∂xuk
2 + S2u

1
2)(0, .) and (−∂xuk

1 +
+S1u

k
1)(0, .) are in H

1
4 (0, T ), and thus by Theorem 2.3, (uk+1

1 , uk+1
2 ) must be

in H2,1(Ω1 × (0, T ))×H2,1(Ω1 × (0, T )). The proof is complete. �

We also have the well-posed of the sub-domain problems for two parameters
Si = piId + qi∂t. The following theorem is well proved in [1].

Theorem 2.5. For p2 > − b

2a
and q2 > 0, if f ∈ L2(0, T ; L2(Ω1)), u0 ∈

∈ H1(Ω1) and g ∈ L2(0, T ), then the problem (2.5) has a unique solution in
H2,1(Ω1 × (0, T )).

2.3. Convergence of the SWR algorithm

In this section, we consider the convergence of the SWR algorithm with
assumption that all hypotheses for the well-posedness are satisfied. Let us
define ek

i as the errors between the solution u and uk
i in the SWR algorithm

for i = 1, 2. The errors ek
i satisfy a homogeneous equation with the initial

condition and the transmission conditions as follows:{
∂te

k+1
i + Aek+1

i = 0, in Ωi × (0, T ),

ek+1
i (., 0) = 0, in Ωi,

and(2.7)

{
(∂x + S2)ek+1

1 (0, .) = (∂x + S2)ek
2(0, .),

(−∂x + S1)ek+1
2 (0, .) = (−∂x + S1)ek

1(0, .).
(2.8)

Definition 2.1. (Dirichlet to Neumann operators) The Dirichlet to Neumann
operators

S̃1g = ∂xu1(0, .), S̃2g = −∂xu2(0, .)

satisfy that

(2.9)

⎧⎪⎨⎪⎩
∂tui + Aui = 0, in Ωi × (0, T ),
ui(., 0) = 0, in Ωi,

ui(0, .) = g, in (0, T ),
for i = 1, 2.

We note that the SWR algorithm converges in two iterations if the operators
Si are given by the Dirichlet to Neumann operators. The following lemma will
be used in the rest of the paper.
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Lemma 2.2. Let S̃i be the Dirichlet and Neumann operators defined by (2.9),
for i = 1, 2. If we choose Si = S̃i then the SWR algorithm converges in two
steps.

Proof. The error ek+1
i satisfies

(∂x + S2)ek+1
1 (0, .) = (∂x + S2)ek

2(0, .).

Since Si = S̃i, we got that

(∂x + S2)ek+1
1 (0, .) = (−S̃2 + S2)ek

2(0, .) = 0.

Therefore one obtains e2
1 = 0. �

It can be seen that the transmission operators S̃i are non local operators
in time, for i = 1, 2. Nevertheless, it is expensive to calculate them directly.
Hence, a natural idea is to choose Si as an approximation of S̃i in terms of
Si = piId or Si = piId + qi∂t. Let us describe the behavior of the error
afterwards.

Theorem 2.6. Assume that p1 >
b

2a
, p2 > − b

2a
, q1 > 0 and q2 > 0. Then

both SWR algorithms corresponding to Si = piId and Si = piId + qi∂t, for
i = 1, 2 converge.

Proof. First, taking the Fourier transform the equations (2.7) in time, we
obtain that the solutions on the sub-domains are in the form

êk+1
1 = λk+1

1 er+x, êk+1
2 = λk+1

2 er−x,

where r+, r− are respectively the roots of characteristic equation

−ar2 + br + c + iω = 0.

By the transmission conditions, we get that

(r+ + σ2)λk+1
1 = (r− + σ2)λk

2 ,

(−r− + σ1)λk+1
2 = (−r+ + σ1)λk

1 .

with σ1 and σ2 are the symbols of S1 and S2 respectively. So, we obtain

ê2k
1 = [R(ω)]k ê0

1, ê2k+1
2 = [R(ω)]k ê1

2,

where

(2.10) R(ω) =
r− + σ2

r+ + σ2
.
−r+ + σ1

−r− + σ1
=: R2(ω).R1(ω).
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It can be seen that the convergence of the algorithm is obtained if |R(ω)| <
< 1. So, we will prove this fact for both algorithms. In the first case, we have
Si = piId. This implies σi = pi. Then,

|R2(ω)|2 =
(b + 2ap2 − Re(

√
d))2 + (Im(

√
d))2

(b + 2ap2 + Re(
√

d))2 + (Im(
√

d))2
,

where d = b2 +4a(c+iω). Thus, for any p2 > − b

2a
, it follows that Re(

√
d) > 0,

so we have |R2(ω)| < 1. Similarly, we also obtain |R1(ω)| < 1. Then, we deduce
the convergence of the SWR algorithm in the first case.

In the second case, we have σi = pi + iqiω. So the convergence factor in
this case becomes

R(ω) =
r− + p2 + iq2

r+ + p2 + iq2
.
−r+ + p1 + iq1

−r− + p1 + iq1
=: R2(ω).R1(ω).

By simple computations, it gives that

|R2(ω)|2 =
(b + 2ap2 − x)2 + (y − 2aq2ω)2

(b + 2ap2 + x)2 + (y + 2aq2ω)2
,

where x = Re(
√

d) > 0, y = Im(
√

d). Next, we show that yω ≥ 0. Indeed,
since

d = b2 + 4a(c + iω) = r2e2iϕ, ϕ ∈
[
−π

2
,
π

2

]
,

we get that
√

d = reiϕ = r(cos ϕ + i sin ϕ). Hence,

yω = r sin ϕ.ω = r sin ϕ.
r2 sin 2ϕ

4a
=

2r3

4a
sin2 ϕ cos ϕ ≥ 0.

Therefore, using p2 > − b

2a
, q2 > 0, we obtain |R2(ω)|2 < 1 for all ω.

The second factor can be obtained similarly. Finally, we get |R(ω)| < 1 and
then the SWR algorithm also converges in the second case. �

Remark 2.1. For simplicity, we present the previous results for Ω = R to skip
the boundary conditions. However, they also hold in a bounded domain Ω with
the corresponding boundary conditions.

3. A new optimized Schwarz method

In this section, we present a new simple optimized Schwarz method follows
the theoretical Schwarz decomposition method in [4]. In the previous paper
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[4], the authors showed that the optimal transmission conditions are obtained
for S1, S2 are σ1 = r+, σ2 = −r−, where r+, r− are introduced in the proof of
Theorem 2.6. Since the operators σ1 and σ2 are not polynomials in iω, hence
the optimal corresponding transmission operators S1, S2 are non-local operators
in time. In order to overcome this difficulty, σ1 and σ2 are approximated
corresponding to the optimal transmission operators by constants, that means

S1 :=
b + p

2a
, S2 :=

−b + p

2a
.

The main goal of optimized Schwarz methods is to choose the free parameter
p > 0 to obtain a good performance. The choice of the parameter p is restricted
by the requirement that the sub-domain problems need to be well-posed, leads
to a good convergence algorithm. The best performance is obtained by mini-
mizing the convergence rate. For this reason, the parameter p in [4] was chosen
such that the convergence factor R(ω, p) is minimized over all ωmin ≤ ω ≤ ωmax,
where ωmin = 0 and ωmax =

π

Δt
. Hence the optimal choice of the parameter p

for the SWR algorithm is the solution of the following min-max problem:

(3.1) min
p>0

{
max

ωmin≤ω≤ωmax
R (ω, p)

}
.

In order to solve (3.1), the authors approximated the optimized parameter
in [4] as

p := p∗ = (8x2
0πa)

1
4 Δt−

1
4 + O(Δt

1
4 ),

where x0 =
√

a2 + 4bc. On the other hand, the transmission operators with
two parameters are defined by

S1 :=
b + p

2a
+ 2q∂t, S2 :=

−b + p

2a
+ 2q∂t.

In this case, the optimized parameters are obtained as follows

p := p∗ = (2aπx6
0)

1
8 Δt−

1
8 ,

q := q∗ = (π3x2
0)

− 1
8 (2a)

5
8 Δt

3
8 .

The main idea of the optimized Schwarz waveform relaxation method is to
solve the min-max problem (3.1) analytically. In other words, they optimized
the convergence factor R(ω, p). However, the method the authors used in [4]
is very complicated. So we believe that it may be very tricky to extend to
another problems such as elliptic problems with varying coefficients or systems.
Therefore, in this section, we establish a new optimized methods to obtain good
parameters for the Schwarz domain decomposition method. We remind that
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in Lemma 2.2, we prove that the best transmission conditions corresponds to
Dirichlet to Neumann operators S̃i. Our method is proposed to approximate
Dirichlet to Neumann operators S̃i numerically. It includes two steps. The first
step is to estimate the initial parameters by minimizing quadrature functions.
These functions are obtained by the simplicity of the min-max problem. The
second step is to optimize these parameters using the backtracking-Armijo line
search method. The proposed algorithm is quite simple and efficient. Moreover,
it can be easily extended to more general problems because of the simplicity of
the method.

3.1. The first step

In the first case, we approximate S̃i in the form of Si = piId, where pi are
chosen as minimizers of the following min-max problems:

min
pi

(
max
‖g‖≤1

∥∥∥S̃ig − pig
∥∥∥) , for i = 1, 2.

These problems are difficult even when we only solve them numerically. How-
ever, the problems are simpler if we assume that the problems max

‖g‖≤1

∥∥∥S̃ig − pig
∥∥∥

are well solved. We then study the first step of our method is to minimize the
functions

(3.2) Qi(pi) =
∥∥∥S̃ig − pig

∥∥∥2

L2(0×(0,T ))
, for i = 1, 2.

We note that in these functions, g is already known. However, instead of solving
the difficult problems max

‖g‖≤1

∥∥∥S̃ig − pig
∥∥∥, we choose g be a random functions

such that ‖g‖ = 1. In numerical experiment, this fact shows that for random
function g, we always obtain a good enough parameters pi.

Theorem 3.1. Let pst
i be the minimizers of the functions (3.2) respectively.

Then we have

pst
i =

〈
S̃ig, g

〉
‖g‖2

, for i = 1, 2.

Moreover, the SWR method using these parameters converges, that means

pst
1 >

b

2a
and pst

2 > − b

2a
.

Proof. The first state of this theorem is obtained by the fact that pi minimizes
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the quadratic function

Qi(pi) =
〈
S̃ig − pig, S̃ig − pig

〉
=

= ‖g‖2 p2
i − 2pi

〈
S̃ig, g

〉
+
∥∥∥S̃i

∥∥∥2

.

Taking the Fourier transform of equation (2.9) in time, we obtain that û1(x, .) =
= er+xĝ and û2(x, .) = er−xĝ. We therefore propose the approximation aŝ̃Sig = riĝ, where r1 = r+, r2 = −r−. Then,

Qi(pi) =
∥∥∥S̃ig − pig

∥∥∥2

=
∥∥∥ ̂̃Sig − piĝ

∥∥∥2

= ‖(ri − pi)ĝ‖2 .

Set xω = Re(
√

d) and yω = Im(
√

d), we get that

Qi(pi) =
∫
R

[(
(−1)i+1b + xω

2a
− pi

)2

+
(yω

2a

)2
]
|ĝ(ω)|2 dω,

and

d

dpi
Qi(pi) = −2

∫
R

(
xω

2a
+ (−1)i+1 b

2a
− pi

)
|ĝ(ω)|2 dω, for i = 1, 2.

Note that xω > 0, so if p1 ≤
b

2a
then

d

dp1
Q1(p1) < 0.

Moreover, since pst
1 minimizes the function Q1(p1), it implied

d

dp1
Q1 van-

ishes at pst
1 . So we obtain pst

1 >
b

2a
. Similarly, we also have pst

2 > − b

2a
. �

Remark 3.1. In the proof of Theorem 3.1, it can be seen that

−pst
1 +

b

2a
= −pst

2 − b

2a
.

Therefore, it implies pst
1 − pst

2 =
b

a
. So we only need to calculate one parameter

pst
1 instead of both pst

1 and pst
2 .

In the second case, we approximate S̃i in the form Si = piId + qi∂t by
minimizing the function

(3.3) Qi(pi, qi) =
∥∥∥S̃ig − (pi + qi∂t)g

∥∥∥2

L2(0×(0,T ))
.
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Theorem 3.2. The minimizers (pnd
i , qnd

i ) of the functions (3.3) satisfy the
following system

(3.4)

⎧⎪⎪⎨⎪⎪⎩
‖g‖2 pi + 〈g, ∂tg〉 qi =

〈
S̃ig, g

〉
,

〈g, ∂tg〉 pi + ‖∂tg‖2 qi =
〈
∂tg, S̃ig

〉
.

Moreover, we even have

pnd
1 >

b

2a
, pnd

2 > − b

2a
, pnd

1 − pnd
2 =

b

a
, qnd

1 = qnd
2 > 0.

Proof. For every i = 1, 2, we have that

Qi(pi, qi) = ‖g‖2 p2
i + ‖∂tg‖2 q2

i + 2 〈g, ∂tg〉 piqi−

− 2
〈
S̃ig, g

〉
pi − 2

〈
∂tg, S̃ig

〉
qi +

∥∥∥S̃i

∥∥∥2

.

Since pnd
i and qnd

i minimize the functions Qi(pi, qi), so ∇Qi(pnd
i , qnd

i ) = 0.
We imply that pnd

i and qnd
i satisfy the system (3.4). Similar to the proof of

Theorem 3.1, after taking a Fourier transform, we also obtain

Qi(pi, qi) = ‖(ri − pi − iωqi)ĝ‖2 .

Let xω, yω be the same notations as in the proof of Theorem 3.1, we get

Q1 =
∫
R

[(
b + xω

2a
− p1

)2

+
(yω

2a
− ωq1

)2
]
|ĝ(ω)|2 dω,

∂Q1

∂p1
(p1, q1) = −2

∫
R

(
xω

2a
+

b

2a
− p1

)
|ĝ(ω)|2 dω,

∂Q1

∂q1
(p1, q1) = −2

∫
R

(yωω

2a
− ω2q1

)
|ĝ(ω)|2 dω.

It is noticed that xω > 0 and followed proof of Theorem 2.6, we get yωω >

> 0. Therefore, two above estimations show that if p1 ≤
b

2a
and q1 ≤ 0 then

∂Q1

∂p1
(p1, q1) < 0 and

∂Q1

∂q1
(p1, q1) < 0. However, since the parameters (pnd

1 , qnd
1 )

minimize the function Q1(p1, q1). So it implies that pnd
1 >

b

2a
, qnd

1 > 0.

Similarly, we can also prove that pnd
2 > − b

2a
, qnd

2 > 0.
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Moreover, let us take a changing of variables by

t1 = p1 −
b

2a
and t2 = p2 +

b

2a
,

we then obtain

Qi(pi, qi) = T (ti, qi) :=
∫
R

[(xω

2a
− ti

)2

+
(yω

2a
− ωqi

)2
]
|ĝ(ω)|2 dω.

Since arg min
q>0

T (t, q) does not depend on the variables, so we obtain that tnd
1 =

= tnd
2 and qnd

1 = qnd
2 . �

3.2. The second step

The purpose of the second step is to optimize the parameters using the
backtracking-Armijo line search method. Let e1, e2 be the solutions of the
following equations{

∂tei + Aei = 0, in Ωi × (0, T ),
ei(., 0) = 0, in Ωi,{
(∂x + S2)e1(0, .) = g, in (0, T ),
(−∂x + S1)e2(0, .) = (−∂x + S1)e1(0, .), in (0, T ).

Then, let us consider the function

F = ‖(∂x + S2)e2‖2L2({0}×(0,T )) = ‖g2‖2L2(0,T ) ,

where g2 := (∂x + S2)e2(0, .).
The number of variables of the function F depends on the number of parameters
in Si, where Si = piId or Si = piId+qi∂t. In fact, we can estimate G2 by setting
g1 = (−∂x + S1)e1(0, .), then we have

g1 = −(∂x + S2)e1(0, .) + (S1 + S2)e1(0, .) = −g + (S1 + S2)e1(0, .).
g2 := (∂x + S2)e2(0, .) = −g1 + (S1 + S2)e2(0, .).

Our method bases on Lemma 2.2 which states that the function F will
be vanish if we choose Si = S̃i. So we will approximate the operators Si by
minimizing the function F numerically. In this article, we use the backtracking-
Armijo line search method to solve this problem. For the initial guess, we
choose the parameters given by the first step in Section 3.1. For simplicity,
we describe the algorithm in the case of one parameter Si = piId. Let us set
pk = (pk

1 , pk
2) and the gradient of F at pk is gk = ∇F (pk), for all k = 1, 2, ....

The backtracking-Armijo algorithm has two steps:
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1. Pick an initial iterate p0 = (pst
1 , pst

2 ), set k = 0.

2. Until pk has converged:

(i) Choose a search direction dk = −gk/‖gk‖.
(ii) Calculate a suitable step-length λk > 0 so that

F (pk + λkdk) ≤ F (pk) + λkβ
[
gk
]T

dk,

for some fixed β ∈ (0, 1) (e.g., β = 0.1 ).

(iii) Set pk+1 = pk + λkdk.

In the step ii), we will compute λk as following:

• Given λinit > 0 (e.g., λinit = 1), let λ(0) = λinit and l = 0.

• Set λ(l+1) =
1
2
λ(l) until

F (pk + λ(l)dk) ≤ F (pk) + λ(l)β
[
gk
]T

dk.

It is similar for the second case of two parameters Si = piId + qi∂t , the
differences are pk = (pk

1 , pk
2 , qk

1 , qk
2 ) and the initial guess p0 = (pnd

1 , pnd
2 , qnd

1 , qnd
2 ).

4. Numerical experiments

In this section, we perform some numerical experiments to present the effi-
ciency of our method in a comparison with the optimized SWR method in [4].
We consider the parabolic model problem (2.1) on the domain Ω = (−3, 3).
We chose for the problem parameters

a = 0.2, b = 1, c = 0.

We imposed homogeneous boundary condition

u(−3, t) = u(3, t) = 0, t ∈ (0, T ),

with time interval T = 1, and the initial condition

u(x, 0) = e−3(0.2−x)2 , x ∈ Ω.

We use a decomposition the domain Ω into two sub-domains Ω1 = (−3, 0) and
Ω2 = (0, 3). Then, the problem (2.1) is discretized with a finite element method
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P1 in space with spatial step Δx = 0.01, and the backward Euler discretization
in time with time steps are Δt = 0.01 and Δt = 0.005 respectively. To com-
pare the optimized Schwarz waveform relaxation method and our method, we
compute the relative error defined by

err =
‖u− uref‖
‖uref‖

,

where u is numerical solution, uref is the “reference solution” and ‖.‖ denotes
the discrete L2-norm. Here, we use the “reference solution” instead of the exact
solution. The “reference solution” is obtained by solving the equation using a
finite element method P1 with very small time step Δt = 10−4 and spatial step
Δx = 10−4.
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Figure 1. Convergence of our method compared to SWR method using one
parameter.

In Figure 1 and 2, one can see the performance of the optimized Schwarz
waveform relaxation method and the new algorithm in two steps. These meth-
ods are performed in two cases with one and two parameters respectively. We
observe that the convergence behaviors of the algorithms in two methods are
quite close. In more detail, the optimized parameters popt

i , qopt
i from the second

step always lead to a better performance than the parameters pst
i and pnd

i , qnd
i

from the first one.

In particular, in the case of one parameter transmission conditions (Fig-
ure 1), the algorithm with the optimized parameters popt

i even converges faster
than the one with the optimized parameters p∗ in [4]. However, it does not
hold in the case of a two parameter transmission conditions (Figure 2). The
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Figure 2. Convergence of our method compared to SWR method using two
parameters.

reason comes from the fact that our optimization algorithm for the function F
is not efficient enough.

In order to compare the computational cost, we compute the number of
iterations as a function of time step Δt, until the errors are smaller than ε =
10−6 in Figure 3. It can be seen that the behaviors of number of iterations for
two methods are quite the same.
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Figure 3. The number of iterations until the errors are smaller than 10−6 in
one parameter case.
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As a conclusion, we have described our method to estimate the optimized
parameters for efficient transmission conditions. The first step is very simple.
But its convergence is not as good as the convergence of the analytical method
given in [1]. The second step numerically improves the parameters of the first
one. However, we have performed the numerical experiments to show that the
convergence of our method is quite close to the optimized SWR method [4].
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