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Abstract. Competing risks Weibull model arises as the distribution of the
minimum of two independent (two parameter) Weibull random variables
having distinct Weibull exponents. This model is commonly used in the
strength testing of certain brittle fibers, but it also appears in modeling
the life of a series system determined by the shortest of its components.
We implemented the EM algorithm to estimate the bi-Weibull model pa-
rameters (when the failure mode is unknown) and we explicitly derived the
observed information matrix to address the precision of these estimates.

1. Introduction

The simple two parameter Weibull model is often used in the statistical
analysis of certain brittle fiber strength. Since this model does not always
adequately fit the experimental data [4, 11, 12], several other models, such as
the competing risks Weibull model, have been used to describe the failure of
fibers. This competing risks Weibull model arises in the strength testing of
certain brittle fibers in which failure is known to arise from two competing
causes: surface defects and internal defects [3]. It is common to assume that
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each type of failure follows a two parameter Weibull distribution, leading to
a four parameter competing risks model for fiber failure. In practice, it may
or may not be the case that the cause of failure is known for any particular
specimen [7]. Some models are further complicated by the testing of fibers
at several distinct lengths and a fundamental objective is the estimation of
fiber strength at extremely short lengths from data taken at longer lengths [3].
Competing risks Weibull model also arises when the life of a series system is
determined by the shortest of two component lives, where the life distribution
of each component is Weibull [5].

We introduced using the EM algorithm to derive the maximum likelihood
estimates (MLE) of the model parameters when the cause of failure is unknown
for any particular specimen [6]. The advantage of the EM technique over other
techniques, such as Quasi-Newton procedure, is that the maximization reduces
to two separate single variable numerical maximizations. Because the EM
procedure avoids maximization in four parameters simultaneously, it also avoids
the need for estimating the inverse Hessian matrix. There is no need for artful
reparameterizations to speed convergence as is suggested in [5] for the Quasi-
Newton method. It is not merely enough to obtain the maximum likelihood
estimates of the parameters, as they are of little value unless one has some idea
of their accuracy. To address this, we derive an explicit formula for the observed
information matrix, which we use to give a large sample approximation to the
variance-covariance matrix for the maximum likelihood estimates.

2. Competing risks model

A random variable X follows the two parameter Weibull distribution if its
cumulative distribution function P (X ≤ x) = W (x; ρ, β) takes the form

W (x; ρ, β) = 1− exp
{
−
(

x

β

)ρ}
x ≥ 0,

where β > 0 is the scale parameter, and ρ > 0 is the Weibull exponent or shape
parameter.

Let X(0) and X(1) be independent Weibull distributed random variables
having distinct Weibull exponents ρ0 and ρ1, and having cumulative distribu-
tion function Fi(x), i = 0, 1. The minimum X = min {X(0), X(1)} is said to
have a bi-Weibull distribution, whose cumulative distribution function is

(2.1) W (x; ρ0, ρ1, β0, β1) = 1− exp
{
−
[(

x

β0

)ρ0

+
(

x

β1

)ρ1
]}

x ≥ 0.
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Let Si(x) = 1 − Fi(x) be the survival function, and fi(x) be the density
function of the simple Weibull random variable X(i), i = 0, 1. Denoting the
hazard rate of X(i) by ri(x), we obtain the following relation

fi(x) = ri(x)Si(x) =
fi(x)

1− Fi(x)
Si(x).

We will say that a “type 0 defect caused the failure” if X(0) ≤ X(1), and
conversely, a “type 1 defect caused the failure” if X(0) > X(1). Denote the
defect type by

I =

{
0 ifX(0) ≤ X(1)

1 ifX(0) > X(1).

Let X be the minimum of X(0) and X(1). We now express the conditional
probability that X arises from a type 0 defect, given that X = x. We first find
the probability that x < X ≤ x + dx, or with a short notation, X ∈ dx. From

P (X ∈ dx, I = i) = [1− Fi(x)]fi(x)dx = ri(x)S0(x)S1(x)dx, i = 0, 1,

we have

P (X ∈ dx) = (r0(x) + r1(x))S0(x)S1(x)dx.

Therefore,

Πi(x) := P (I = i|X ∈ dx) =
ri(x)

r0(x) + r1(x)
, i = 0, 1.

Thus the joint density function of X and I (with respect to the product of
the Lebesgue measure for X, and the counting measure for I) is

f(x, i) = r0(x)1−ir1(x)iS0(x)S1(x), i = 0, 1.

Let X1, X2, . . . , Xn be independent identically distributed random variables
and let Ij be the type of defect that caused the failure in Xj . Each Xj arises as
a minimum of two independent random variables X

(0)
j and X

(1)
j , j = 1, 2, . . . , n.

Then the likelihood function of X = (X1, X2, . . . , Xn) and I = (I1, I2, . . . , In)
is

l(x, i) =
n∏

j=1

f(xj , ij) =
n∏

j=1

r0(xj)1−ij r1(xj)ij S0(xj)S1(xj).

Therefore the log likelihood function is

log l(x, i) =
∑n

j=1(1− ij) log r0(xj) +
∑n

j=1 ij log r1(xj) +

+
∑n

j=1 log S0(xj) +
∑n

j=1 log S1(xj).(2.2)

The above equations clearly hold regardless of the distribution of X(i),
i = 0, 1.
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3. Maximum likelihood estimation

If the type of defect that caused the failure is known, the parameter es-
timation may simply be done by maximizing the likelihood function. If this
fracture information is unknown - as in most applications - maximizing the
likelihood function involves maximization in four parameters simultaneously.
According to Ishioka and Nonaka [5] this may be achieved using the Quasi-
Newton method. We implemented the EM algorithm to derive the maximum
likelihood estimates (MLE) of the model parameters when the cause of failure
is unknown for any particular specimen [6]. This widely applicable algorithm
for computing the maximum likelihood when some observations are missing is
presented by Dempster, Laird and Rubin [1]. Each iteration of the algorithm
involves two steps, an expectation (E-step) and a maximization (M -step), and
can be applied to estimate the four parameters of the bi-Weibull distribution
by viewing the defect type as missing data.

In order to apply the algorithm, we introduce the parameters Then the
E-step calculates Q(θ

′ |θ) = E(log(l(x, I; θ
′
))|x, θ), where θ corresponds to the

parameters in the model. Suppose θ(p) denotes the current value of θ after p
cycles of the algorithm. Then the EM iteration θ(p) → θ(p+1) is as follows:

E-step : Compute Q(θ|θ(p)):

Q(θ|θ(p)) =
n∑

j=1

Π(p)
0 (xj) log(α0ρ0x

ρ0−1
j ) +

n∑
j=1

Π(p)
1 (xj) log(α1ρ1x

ρ1−1
j )

−α0

n∑
j=1

xρ0
j − α1

n∑
j=1

xρ1
j(3.1)

where

Π(p)
0 (xj) =

α0
(p)ρ

(p)
0 x

ρ
(p)
0 −1

j

α0
(p)ρ

(p)
0 x

ρ
(p)
0 −1

j + α1
(p)ρ

(p)
1 x

ρ
(p)
1 −1

j

,

and
Π(p)

1 (xj) = 1−Π(p)
0 (xj).

Since Equation (3.1) can be written as a sum of two functions, so that
each function depends on the parameters α0, ρ0 and α1, ρ1 respectively, the
maximization in the M -step can be split into two parts:
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M -step : Choose θ(p+1) to be a value of θ which maximizes Q(θ|θ(p)) :

choose α
(p+1)
i and ρ

(p+1)
i which maximizes (3.1) as a function of αi and ρi

i = 0, 1:

(3.2)

n∑
j=1

Π(p)
i (xj) log(ri(xj)) +

n∑
j=1

log(Si(xj)) =

=
n∑

j=1

Π(p)
i (xj) log(αiρix

ρi−1
j )− αi

n∑
j=1

xρi

j .

The choice of α
(p+1)
i i = 0, 1 is clear as follows:

(3.3) α
(p+1)
i =

∑n
j=1 Π(p)

i (xj)∑n
j=1 x

ρ
(p+1)
i

j

, i = 0, 1.

Then by substituting (3.3) into (3.2) and simplifying, choose ρ
(p+1)
i , i = 0, 1,

which maximizes
n∑

j=1

Π(p)
i (xj) log

(
ρix

ρi−1
j∑n

j=1 xρi

j

)
.

4. Observed information matrix

In many cases, determining the expected value in the Fisher information
is complicated or impossible. Since the justification of the Fisher information
lies in its asymptotic properties, any function of the data that is asymptoti-
cally equivalent to the Fisher information can be equally justified. One very
important such equivalent is the so-called observed information matrix:

(4.1) I(θ) = (I(θr, θs))r,s

where

I(θr, θs) := −∂2 log l(X; θ)
∂θr∂θs

= −
n∑

i=1

∂2 log f(Xi; θ)
∂θr∂θs

and the covariance matrix of θ̂ is now estimated by the matrix inverse I−1(θ̂).
Efron [2] gave justification for preferring to estimate the variance by the inverse
of the observed information matrix rather than the inverse Fisher information
matrix. There are procedures to estimate the observed information matrix
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when the EM algorithm is used to find the MLE in incomplete data problems
[8, 9]. In the bi-Weibull case it is possible to calculate explicitly the observed
information matrix.

Let Y = (Y1, . . . , Y2n) denote the complete data with associated den-
sity f(Y|θ), where θ = (θ1, . . . , θd) is the unknown parameter. Let us write
Y = (Yobs,Ymis), where Yobs represents the observed part X, a bi-Weibull
distributed random sample and Ymis = I = (I1, . . . , In) the missing part, the
type of defect that caused the failure. The EM algorithm finds θ̂, the MLE for
θ based on Yobs the observed data, by maximizing f(Yobs|θ) in θ.

The observed information matrix Io(θ|Yobs) is the negative second deriva-
tive of the log likelihood function of θ given Yobs,

(4.2) Io(θ|Yobs) = −∂2 log f(Yobs|θ)
∂θ∂θ

,

and

(4.3) Io(θ̂|Yobs) = −∂2 log f(Yobs|θ)
∂θ∂θ

∣∣∣∣∣
θ=θ̂

.

This can be more complicated to evaluate than the observed information using
the complete data Y. Denote

(4.4) Io(θ|Y) = −∂2 log f(Y|θ)
∂θ∂θ

,

and

Ioc = −∂2 log f(Y|θ)
∂θ∂θ

∣∣∣∣∣
θ=θ̂

.

Notice that f(Y|θ) can be factorized as

f(Y|θ) = f(Yobs|θ)f(Ymis|Yobs, θ).

This expression can be used to evaluate (4.4):

Io(θ|Y) = −∂2 log f(Y|θ)
∂θ∂θ

= −∂2 log f(Yobs|θ)
∂θ∂θ

− ∂2 log f(Ymis|Yobs, θ)
∂θ∂θ

.

By writing

Iom = −∂2 log f(Ymis|Yobs, θ)
∂θ∂θ

∣∣∣∣∣
θ=θ̂

,

and evaluating (4.2) and (4.3) at θ̂, we get

Io(θ̂|Yobs) = Ioc − Iom.
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For the bi-Weibull distribution (2.1), it is possible to evaluate Ioc and
Iom, and thus Io(θ̂|Yobs), whose inverse approximates the asymptotic variance-
covariance matrix of θ̂.

Calculating the complete information matrix, Ioc is straightforward as fol-
lows. The ‘complete likelihood function’ is

f(Y|θ) = l(x, i) =

=
n∏

j=1

(
ρ0

β0

(
xj

β0

)ρ0−1
)1−ij

(
ρ1

β1

(
xj

β1

)ρ1−1
)ij

exp
{
−
[(

xj

β0

)ρ0

+
(

xj

β1

)ρ1
]}

.

Taking the negative second derivatives of the complete log likelihood function
with respect to the parameters, we get

∂2

∂β2
k

log l(x, i) =
n∑

j=1

(1− ij)
ρk

β2
k

− ρk (ρk + 1) β−ρk−2
k

∂2

∂ρ2
k

log l(x, i) =
n∑

j=1

− (1− ij)
ρk

+
(

xj

βk

)ρk

log2

(
xj

βk

)
∂2

∂βk∂ρk
log l(x, i) =

n∑
j=1

− (1− ij)
βk

+
1
βk

(
xj

βk

)ρk
(

1 + ρk log
(

xj

βk

))
.

for k = 0 and 1. The cross derivatives,

∂2

∂β0∂β1
log l(x, i),

∂2

∂ρ0∂ρ1
log l(x, i),

∂2

∂β0∂ρ1
log l(x, i),

∂2

∂ρ0∂β1
log l(x, i)

all vanish. Taking the expected value, using E(1− Ij |Xj = xj) = Π0(xj), and
E(Ij |Xj = xj) = Π1(xj) results in the complete information matrix as follows:

Ioc(βk, βk) = −ρk

β2
k

n∑
j=1

Πk(xj) +
ρk(ρk + 1)

β2
k

n∑
j=1

(
xj

βk

)ρk

(4.5)

Ioc(βk, ρk) =
1
βk

n∑
j=1

Πk(xj)−
1
βk

n∑
j=1

(
xj

βk

)ρk
(

1 + ρk log
(

xj

βk

))
(4.6)

Ioc(ρk, ρk) =
1
ρ2

k

n∑
j=1

Πk(xj) +
n∑

j=1

(
xj

βk

)ρk

log2

(
xj

βk

)
.(4.7)
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for k = 0, 1. When we evaluate (4.5) and (4.6) at the MLE, they simplify to:

Ioc(βk, βk) =
ρ2

k

β2
k

n∑
j=1

Πk(xj)

Ioc(βk, ρk) = − 1
βk

n∑
j=1

Πk(xj)
(

1 + ρk log
(

xj

βk

))
.

In matrix form

Ioc =

⎛⎜⎜⎜⎜⎝
Ioc(β0, β0) Ioc(β0, ρ0)
Ioc(β0, ρ0) Ioc(ρ0, ρ0)

0

0
Ioc(β1, β1) Ioc(β1, ρ1)
Ioc(β1, ρ1) Ioc(ρ1, ρ1)

⎞⎟⎟⎟⎟⎠ .

The evaluation of the missing information matrix is more complicated, and
involves long calculations. The ‘missing likelihood function’ is

f(Ymis|Yobs, θ) =
n∏

j=1

Π0(xj)1−ij Π1(xj)ij

where Π0(xj) and Π1(xj) are defined in (2.2). After much calculation and
simplification the missing information matrix is

Iom =
n∑

j=1

Π0(xj)Π1(xj)×⎛⎜⎜⎜⎜⎜⎜⎜⎝

ρ2
0

β2
0

− 1+ρ0 log(
xj
β0

)

β0
− ρ0ρ1

β0β1

ρ0(1+ρ1 log(
xj
β1

)

β0ρ1

.
(1+ρ0 log(

xj
β0

))
2

ρ2
0

ρ1(1+ρ0 log(
xj
β0

))

β1ρ0
− (1+ρ0 log(

xj
β0

))(1+ρ1 log(
xj
β1

))

ρ0ρ1

. .
ρ2
1

β2
1

− 1+ρ1 log(
xj
β1

)

β1

. . .
(1+ρ1 log(

xj
β1

))
2

ρ2
1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Since this matrix is symmetric, the values in the lower triangle of the matrix
are the same as the corresponding values in the upper triangle.

As the MLE satisfies the ∂
∂θ log

∏n
i=1 f(x, i) = 0 log likelihood equations,
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the difference of Ioc and Iom for (β, β) and (β, ρ) can be reduced as follows,

Io(βk, βk) =
ρ2

k

β2
k

n∑
j=1

Π2
k(xj)

Io(βk, ρk) = − 1
βk

n∑
j=1

(
1 + βk log

(
xj

βk

)
Π2

k(xj)
)

for k = 0 and 1.

5. Example

A numerical example is now given to illustrate the above method. We first
simulate data from two simple Weibull distributions with parameters ρ0 = 6,
β0 = 3, and ρ1 = 2, β1 = 4. Then generate the minimum of these two series of
data sets. 100 simulation runs were performed on each of the simple Weibull
random variables. The results show that in 37 cases of the 100, the first random
variable was smaller, i.e. a type 0 defect caused the failure. The above EM-
procedure was applied to estimate the parameters of the bi-Weibull distribution
(2.1).

The observed information matrix

Io =

⎛⎜⎜⎝
130.22 −4.44 25.31 −4.78
−4.44 1.17 1.13 0.81
25.31 1.13 15.76 8.63
−4.78 0.81 8.63 13.90

⎞⎟⎟⎠ ,

while its inverse is

I−1
o =

⎛⎜⎜⎝
0.05 0.27 −0.15 0.10
0.27 2.38 −0.88 0.50
−0.15 −0.88 0.56 −0.35
0.10 0.50 −0.35 0.29

⎞⎟⎟⎠ .

The estimates of the standard deviation for the parameter estimates are
shown in Table 1.
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Parameters ρ0 β0 ρ1 β1

Real 6 3 2 4
Estimated 6.35 3.08 2.25 3.29
(standard deviation) (1.54) (0.22) (0.54) (0.75)

Table 1: Standard deviations of the parameter estimates of the bi-Weibull
model

6. Conclusion

We implemented the EM algorithm to estimate the bi-Weibull model pa-
rameters (when the failure mode is unknown) and we explicitly derived the
observed information matrix, which we used to give a large sample approxima-
tion to the variance-covariance matrix for the maximum likelihood estimates.
This allows one to provide confidence intervals for the parameters, as well as
for the distribution mean or its functions of interest.
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Ágnes M. Kovács
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