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Abstract. In this paper, we give some theorems on uniqueness problem
of differential polynomials of meromorphic functions. Let a, b be non-zero
constants and let n, m, l, k be positive integers satisfying n ≥ 3l(k + 1) +
+3m + 9 and m ≥ l(k + 1) + 1. If fn + afm(f (k))l and gn + agm(g(k))l

share the value b CM, then f and g are closely related. We also consider
the case sharing the value IM.

1. Introduction and main results

Let C denote the complex plane and f(z) be a non-constant meromorphic
function in C. It is assumed that the reader is familiar with the standard notion
used in Nevanlinna value distribution theory such as T (r, f), m(r, f), N(r, f), . . .
(see [9, 24]), and S(r, f) denotes any quantity that satisfies the condition
S(r, f) = o(T (r, f)) as r → ∞, outside of a possible exceptional set of finite
linear measure.

In 1959, Hayman considered the problem which was motivated by Picard
exceptional values and proved the following result in [10].

Theorem A (Hayman’s Theorem). For all z ∈ C, each complex meromorphic
function f satisfying

fn(z) + af ′(z) 	= b
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is constant if n ≥ 5 and a, b ∈ C, a 	= 0. However, if f is entire, this holds also
for n ≥ 3 and for n = 2, b = 0.

As a consequence, if n ≥ 3 then fn(z)f ′(z) assumes all finite values except
possibly zero and infinitely often unless f is a rational function. When f is
an entire function, the remain case is only n = 1, which was proved later by
Cluine in [4]. In 1982, Döringer has shown, Hayman’s theorem remains valid
for fn +afm(f (k))l instead of fn(z)+af ′(z) provided that n ≥ 3+(k+1)l+m
in [5]. These results are related to the value sharing problem of meromorphic
functions and their derivatives. Let us first recall some basic definitions.

For f be a non-constant meromorphic function and S ⊂ C∪{∞}, we define

Ef (S) =
⋃
a∈S

{(z, m) | f(z) = a with multiplicity m},

Ef (S) = f−1(S) =
⋃
a∈S

{z | f(z) = a}.

Let F be a non-empty set of meromorphic functions. Two functions f and g
of F are said to share S, counting multiplicity (share S CM), if Ef (S) = Eg(S).
Similarly, two functions f and g are said to share S, ignoring multiplicity (share
S IM), if E(S) = Eg(S).

In 1997, Yang-Hua studied the unicity problem for meromorphic functions
and the differential monomials of the form unu′, when they share only one
value, and obtained the following result in [22].

Theorem B. Let f and g be two non-constant meromorphic functions, n � 11
be an integer and a ∈ C\{0}. If fnf ′ and gng′ share the value a CM, then either
f = dg for some (n + 1)-th root of unity d or g(z) = c1e

cz and f(z) = c2e
−cz

where c, c1 and c2 are constants and satisfy (c1c2)n+1c2 = −a2.

Since then, several authors study the uniqueness of meromorphic functions
by considering differential polynomials like (un)(k), un(u−1)u′, un(u−1)2u′, . . .
(see [6, 7, 15, 16, 17, 18]).

In 2011, Grahl-Nevo studied the unicity problem for meromorphic functions
and the differential polynomial of the form un+au(k) and obtained the following
theorems in [8].

Theorem C. Let f and g be non-constant meromorphic functions on C, a, b ∈
∈ C \ {0} and let n and k be positive integers satisfying n ≥ 5k + 17. Assume
that the functions

(1.1) ψf := fn + af (k) and ψg := gn + ag(k)
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share the value b CM. Then

(1.2)
ψf − b

ψg − b
=

fn

gn
=

af (k) − b

ag(k) − b

or

(1.3)
ψf − b

ψg − b
=

fn

ag(k) − b
=

af (k) − b

gn

or

(1.4) f = g, f (k) = g(k) ≡ b

a
.

Theorem D. Let f and g be two non-constant entire functions on C, a, b ∈
∈ C \ {0} and let n, k be positive integers satisfying n ≥ 11 and n ≥ k + 2.
Assume that the functions ψf and ψg defined as in (1.1) share the value b CM.
Then (1.2) or (1.4) holds.

In 2014, Zhang-Yang added an assumption that ”the b-point of ψf are not
the zeros of f and g” and proved the following theorems in [27].

Theorem E. Let f and g be two non-constant meromorphic functions on C,
a, b ∈ C \ {0} and let n, k be positive integers satisfying n ≥ 3k + 12. Assume
that ψf and ψg defined as in (1.1) share the value b CM and the b-point of ψf

are not the zeros of f and g. Then (1.2) or (1.3) holds.

Theorem F. Let f and g be two non-constant entire functions on C, a, b ∈
∈ C\{0} and let n, k be positive integers satisfying n ≥ 8. Assume that ψf and
ψg defined as in (1.1) share the value b CM and the b-point of ψf are not the
zeros of f and g. Then (1.2) holds.

In this paper, we study the unicity problem for fn + afm(f (k))l, where
n, m, k, l ≥ 1, which is related to this kind of differential polynomial. Namely,
we prove the following theorems.

Theorem 1.1. Let f and g be non-constant meromorphic functions on C,
a, b ∈ C\{0} and let n, m, k, l be positive integers satisfying n ≥ 3l(k+1)+3m+9
and m ≥ l(k + 1) + 1. Assume that the functions φf := fn + afm(f (k))l and
φg := gn + agm(g(k))l share the value b CM. Then

(1.5)
φf − b

φg − b
=

fn

gn
=

afm(f (k))l − b

agm(g(k))l − b

or

(1.6)
φf − b

φg − b
=

fn

agm(g(k))l − b
=

afm(f (k))l − b

gn
.
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Theorem 1.2. Let φf and φg be given as in Theorem 1.1, where f and g be
non-constant entire functions. Assume that φf and φg share the value b CM.
If n ≥ 3l + 3m + 5 and m ≥ l + 3, then (1.5) holds.

Theorem 1.3. Let φf and φg be given as in Theorem 1.1. Assume that φf

and φg share the value b IM. If n ≥ 6l(k + 1) + 6m + 15 and m ≥ l(k + 1) + 1,
then (1.5) or (1.6) holds.

Theorem 1.4. Let φf and φg be given as in Theorem 1.1, where f and g be
non-constant entire functions. Assume that φf and φg share the value b IM. If
n ≥ 6l + 6m + 8 and m ≥ l + 4, then (1.5) holds.

2. Some basic lemmas

Let us recall a few classical lemmas.

Lemma 2.1. [9] Let f, g be non-constant meromorphic functions on C, a ∈ C.
Then

T (r, f + g) ≤ T (r, f) + T (r, g) + O(1),

T (r, fg) ≤ T (r, f) + T (r, g) + O(1),

T (r, f − a) = T (r, f) + O(1),

T (r,
1
f

) = T (r, f) + O(1).

Lemma 2.2. [9] Let f be a non-constant meromorphic function on C and let
P (z) ∈ C[x] be a polynomial of degree q. Then

T (r, P (z)) = qT (r, f) + O(1).

Lemma 2.3. [9] Let f be a non-constant meromorphic function on C. Then
for any positive integer k, we have

T (r, f (k)) ≤ T (r, f) + kN(r, f) + S(r, f) ≤ (k + 1)T (r, f) + S(r, f).

Moreover, if f be a non-constant entire function, then

T (r, f (k)) ≤ T (r, f) + S(r, f).

Lemma 2.4 (Lemma of Logarithmic Derivative). [9] Let f be a non-constant
meromorphic function on C. Then for any positive integer k, we have

m(r,
f (k)

f
) = S(r, f).
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Lemma 2.5 (First Main Theorem). [9] Let f be a non-constant meromorphic
function on C. Then for a ∈ C, we have

T (r,
1

f − a
) = T (r, f) + O(1).

Lemma 2.6 (Second Main Theorem). [9] Let a1, ..., an ∈ C with n � 2, n ∈ N,
and let f be a non-constant meromorphic function on C. Then for r > 0, we
have

(n− 1)T (r, f) � N(r, f) +
n∑

i=1

N(r,
1

f − ai
) + S(r, f).

Suppose that f1, . . . , fl be meromorphic functions on C. Let nij (0 ≤ i ≤ l,
1 ≤ j ≤ ki) be non-negative integers. We denote by

M [f1, . . . , fl] = fn10
1 (f ′

1)
n11 · · · (f (k1)

1 )n1k1 · · · fnl0
l (f ′

l )
nl1 · · · (f (kl)

l )nlkl

the differential monomial in f1, . . . , fl.

Let f1, . . . , fl be meromorphic functions on C, M1[f1, . . . , fl], . . . ,
Mk[f1, . . . , fl] be differential monomials in f1, . . . , fl and a1, . . . , ak ∈ C \ {0}.
The summation

P [f1, . . . , fl] = a1M1[f1, . . . , fl] + · · ·+ akMk[f1, . . . , fl]

is said to be a differential polynomial in f1, . . . , fl.

Lemma 2.7. Let f be a meromorphic function on C. Suppose that f = f1
f2

,
where f1 and f2 be entire functions that have no common zeros and let k be a
positive integer number. Then there exists a differential polynomial ωk[f1, f2]
in f1, f2 such that

f (k) =
ωk(f1, f2)

fk+1
2

.

Proof. We prove by induction. With k = 1, we have

f ′ =
f ′
1f2 − f ′

2f1

f2
2

=
ω1[f1, f2]

f2
2

.

Assume

f (k) =
ωk[f1, f2]

fk+1
2

.
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We have

f (k+1) =
fk+1
2 ω′

k[f1, f2]− (k + 1)fk
2 f ′

2ωk[f1, f2]

f
2(k+1)
2

=

=
ω′

k[f1, f2]f2 − (k + 1)f ′
2ωk[f1, f2]

fk+2
2

=

=
ωk+1[f1, f2]

fk+2
2

.

This completes the proof of Lemma 2.7. �

Lemma 2.8. Let f be an entire function on C, a, b ∈ C \ {0} and m, l, k be
positive integers. Suppose that fm(f (k))l is a non-constant function. Then we
have

T
(
r, fm(f (k))l

)
≤ N

(
r,

1
f

)
+ N

(
r,

1
afm(f (k))l − b

)
+ T

(
r, f (k)

)
+ S(r, f).

Proof. By Lemma 2.6 and the assumption that f is a non-constant entire
function, we have

T (r, fm(f (k))l) ≤ N(r,
1

fm(f (k))l
) + N(r,

1
fm(f (k))l − b

a

) + S(r, f) ≤

≤ N(r,
1

fm
) + N(r,

1
(f (k))l

) + N(r,
1

afm(f (k))l − b
) + S(r, f) ≤

≤ N(r,
1
f

) + N(r,
1

f (k)
) + N(r,

1
afm(f (k))l − b

) + S(r, f),

which implies,

T (r, fm(f (k))l) ≤ N(r,
1
f

) + N(r,
1

afm(f (k))l − b
) + T (r, f (k)) + S(r, f).

Lemma 2.8 is proved. �

Lemma 2.9 ([22], Lemma 3). Let f and g be non-constant meromorphic func-
tions on C. If f and g share 1 CM, then one of the following three cases holds:

1) T (r, f)+T (r, g) ≤ 2{N2(r, f)+N2(r, g)+N2(r, 1
f )+N2(r, 1

g )}+S(r, f)+
+ S(r, g);

2) f ≡ g;

3) fg ≡ 1.
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Lemma 2.10 ([24], Theorem 1). Let f and g be non-constant meromorphic
functions on C. If f and g share 1 IM, then one of the following three cases
holds:

1) T (r, f) + T (r, g) ≤ 2N2(r, f) + 3N(r, f) + 2N2(r, g) + 3N(r, g)+

+2N2(r,
1
f

) + 3N(r,
1
f

) + 2N2(r,
1
g
) + 3N(r,

1
g
) + S(r, f) + S(r, g);

2) f ≡ g;
3) fg ≡ 1.

3. Proof of the Theorems

Proof. [Proof of Theorem 1.1]
We claim that afm(f (k))l − b 	≡ 0. Suppose that afm(f (k))l − b ≡ 0, we

have f (k) 	≡ 0 and

mT (r, f) = T (r, fm) + O(1) =
= lT (r, f (k)) + O(1) ≤
≤ l(k + 1)T (r, f) + S(r, f).

Hence
(m− l(k + 1))T (r, f) ≤ S(r, f),

which contradicts the assumption that m ≥ l(k + 1) + 1. Similarly, we have
agm(g(k))l − b 	≡ 0.

Setting

(3.1) F =
−fn

afm(f (k))l − b
, G =

−gn

agm(g(k))l − b
.

By Lemma 2.1 and Lemma 2.3, we have

nT (r, f) = T (r,−fn) + O(1) ≤

≤ T (r,
−fn

afm(f (k))l − b
) + T (r, afm(f (k))l − b) + O(1) ≤

≤ T (r, F ) + mT (r, f) + lT (r, f (k)) + O(1) ≤
≤ T (r, F ) + (m + l(k + 1))T (r, f) + S(r, f) ≤
≤ T (r, F ) + (m + l(k + 1))T (r, f) + S(r, f).

Hence
(n−m− l(k + 1))T (r, f) ≤ T (r, F ) + S(r, f).
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From this and the assumption that n ≥ 3l(k + 1) + 3m + 9, we have F is
non-constant. Similarly, we have G is non-constant.

Suppose that f = f1
f2

, where f1, f2 are entire functions which have no com-
mon zeros and g = g1

g2
, where g1, g2 are entire functions which have no common

zeros. By Lemma 2.7, there exists a differential polynomial ωk[f1, f2] such that
f (k) = ωk[f1,f2]

fk+1
2

and g(k) = ωk[g1,g2]

gk+1
2

. So

φf − b =
fn
1 + (afm

1 (ωk[f1, f2])l − bf
m+l(k+1)
2 )fn−m−l(k+1)

2

fn
2

and

φg − b =
gn
1 + (agm

1 (ωk[g1, g2])l − bg
m+l(k+1)
2 )gn−m−l(k+1)

2

gn
2

.

In the following we prove that the functions

fn
1 + (afm

1 (ωk[f1, f2])l − bf
m+l(k+1)
2 )fn−m−l(k+1)

2

and f2 have no common zeros. Suppose that there exists a constant γ such that

(f1(γ))n+
(
a(f1(γ))m(ωk[f1, f2](γ))l − b(f2(γ))m+l(k+1)

)
(f2(γ))n−m−l(k+1) = 0

and
f2(γ) = 0.

This implies f1(γ) = 0 and f2(γ) = 0, which contradicts to the assump-
tion that f1 and f2 have no common zeros. Hence fn

1 + (afm
1 (ωk[f1, f2])l −

−bf
m+l(k+1)
2 )fn−m−l(k+1)

2 and f2 have no common zeros. Therefore

(3.2) Eφf
(b) = E

fn
1 +(afm

1 (ωk[f1,f2])l−bf
m+l(k+1)
2 )f

n−m−l(k+1)
2

(0).

Similarly, we have

(3.3) Eφg
(b) = E

gn
1 +(agm

1 (ωk[g1,g2])l−bg
m+l(k+1)
2 )g

n−m−l(k+1)
2

(0).

On the other hand, we have

(3.4) F =
fn
1

−(afm
1 (ωk(f1, f2))l − bf

m+l(k+1)
2 )fn−m−l(k+1)

2

.

Hence

F − 1 =
fn
1 + (afm

1 (ωk(f1, f2))l − bf
m+l(k+1)
2 )fn−m−l(k+1)

2

−(afm
1 (ωk(f1, f2))l − bf

m+l(k+1)
2 )fn−m−l(k+1)

2

.
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We will show that the functions fn
1 +(afm

1 (ωk(f1, f2))l−bf
m+l(k+1)
2 )fn−m−l(k+1)

2

and afm
1 (ωk(f1, f2))l − bf

m+l(k+1)
2 have no common zeros. Suppose that there

exists a constant α ∈ C such that⎧⎪⎪⎨⎪⎪⎩
(f1(α))n + (a(f1(α))m(ωk(f1, f2)(α))l − b(f2(α))m+l(k+1))·

· (f2(α))n−m−l(k+1) = 0

a(f1(α))m(ωk(f1, f2)(α))l − b(f2(α))m+l(k+1) = 0.

From this and the assumption that m ≥ 1, we have f1(α) = f2(α) = 0. This
contradicts to the assumption that f1, f2 have no common zeros. Therefore
fn
1 + (afm

1 (ωk(f1, f2))l − bf
m+l(k+1)
2 )fn−m−l(k+1)

2 and afm
1 (ωk(f1, f2))l −

−bf
m+l(k+1)
2 have no common zeros. Combining this with the previous fact that

fn
1 +(afm

1 (ωk[f1, f2])l−bf
m+l(k+1)
2 )fn−m−l(k+1)

2 and f2 have no common zeros,
we have fn

1 +(afm
1 (ωk(f1, f2))l−bf

m+l(k+1)
2 )fn−m−l(k+1)

2 and (afm
1 (ωk(f1, f2))l−

−bf
m+l(k+1)
2 )fn−m−l(k+1)

2 have no common zeros. So we have

(3.5) EF (1) = E
fn
1 +(afm

1 (ωk[f1,f2])l−bf
m+l(k+1)
2 )f

n−m−l(k+1)
2

(0).

Similarly, we get

(3.6) EG(1) = E
gn
1 +(agm

1 (ωk[g1,g2])l−bg
m+l(k+1)
2 )g

n−m−l(k+1)
2

(0).

From (3.2) to (3.6) and the assumption that Eφf
(b) = Eφg

(b), we have

EF (1) = EG(1).

Applying Lemma 2.9 to F and G with the following cases:
Case 1.

T (r, F ) + T (r, G) ≤ 2{N2(r, F ) + N2(r,
1
F

) + N2(r, G) + N2(r,
1
G

)}+

+ S(r, F ) + S(r, G).
(3.7)

By (3.4), we obtain

N2(r,
1
F

) ≤ 2N(r,
1
f

).

Hence

(3.8) N2(r,
1
F

) ≤ 2T (r, f).

Similarly, we get

(3.9) N2(r,
1
G

) ≤ 2T (r, g).
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On the other hand, we have

N2(r, F ) = N2(r,
−fn

afm(f (k))l − b
) ≤

≤ N2(r,
1

afm(f (k))l − b
) + N2(r, fn) ≤

≤ N2(r,
1

afm(f (k))l − b
) + 2N(r, f) ≤

≤ T (r, fm(f (k))l) + 2T (r, f) ≤
≤ mT (r, f) + lT (r, f (k)) + 2T (r, f) + O(1) ≤
≤ mT (r, f) + l(k + 1)T (r, f) + 2T (r, f) + S(r, f),

which implies

(3.10) N2(r, F ) ≤ (m + 2 + l(k + 1))T (r, f) + S(r, f).

Similarly, we get

(3.11) N2(r, G) ≤ (m + 2 + l(k + 1))T (r, g) + S(r, g).

From (3.7) to (3.11), we have

T (r, F ) + T (r, G) ≤ 2{(l(k + 1) + m + 4)T (r, f) + (l(k + 1) + m + 4)T (r, g)}+
+ S(r, f) + S(r, g).

Therefore

nT (r, f) + nT (r, g) = T (r, fn) + T (r, gn) + O(1) ≤

≤ T (r, F ) + T (r,
1

afm(f (k))l − b
) + O(1) +

+T (r, G) + T (r,
1

agm(g(k))l − b
) + O(1) =

= T (r, F ) + T (r, fm(f (k))l) + O(1) +
+T (r, G) + T (r, gm(g(k))l) + O(1) ≤

≤ T (r, F ) + T (r, fm) + T (r, (f (k))l) + O(1) +
+T (r, G) + T (r, gm) + T (r, (g(k))l) + O(1) ≤

≤ 2{(l(k + 1) + m + 4)T (r, f) +
+(l(k + 1) + 4 + m)T (r, g)}+
+(m + l(k + 1))T (r, f) + (m + l(k + 1))T (r, g) +
+S(r, f) + S(r, g),
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which implies

n(T (r, f)+T (r, g)) ≤ (3l(k +1)+3m+8)(T (r, f)+T (r, g))+S(r, f)+S(r, g).

Thus

(n− 3l(k + 1)− 3m− 8)(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

which contradicts to the assumption that n ≥ 3l(k + 1) + 3m + 9.
Case 2. F = G. Then

−fn

afm(f (k))l − b
=

−gn

agm(g(k))l − b
.

Therefore
φf − b

φg − b
=

fn

gn
=

afm(f (k))l − b

agm(g(k))l − b
.

Case 3. FG = 1. Thus

φf − b

φg − b
=

fn

agm(g(k))l − b
=

afm(f (k))l − b

gn
.

This completes the proof of Theorem 1.1. �

Proof. [Proof of Theorem 1.2]
We claim that afm(f (k))l − b 	≡ 0. If afm(f (k))l − b ≡ 0, we have f (k) 	≡ 0

and

mT (r, f) = T (r, fm) + O(1) =
= T (r, (f (k))l) + O(1) =
= lT (r, f (k)) + O(1) ≤
≤ lT (r, f) + S(r, f),

which implies
(m− l)T (r, f) ≤ S(r, f),

which contradicts to the assumption that m ≥ l+3. Similarly, we have agm(g(k))l−
−b 	≡ 0.

We define the functions F and G as in the proof of Theorem 1.1. Proceeding
as in the proof of Theorem 1.1, we can obtain that F and G share 1 CM.
Applying Lemma 2.9 to F and G, we have the following three cases:

Case 1.

T (r, F ) + T (r, G) ≤ 2{N2(r, F ) + N2(r,
1
F

) + N2(r, G) + N2(r,
1
G

)}+

+ S(r, F ) + S(r, G).
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We have
N2(r,

1
F

) ≤ 2T (r, f),

N2(r,
1
G

) ≤ 2T (r, g).

By Lemma 2.3, we get

N2(r, F ) = N2(r,
−fn

afm(f (k))l − b
) ≤

≤ N2(r,
1

afm(f (k))l − b
) ≤

≤ T (r, fm(f (k))l) ≤
≤ mT (r, f) + lT (r, f (k)) + O(1),

which implies

N2(r,
1
F

) ≤ (m + l)T (r, f) + S(r, f).

Similarly, we have

N2(r,
1
G

) ≤ (m + l)T (r, g) + S(r, g).

Hence

T (r, F )+T (r, G) ≤ 2{(m+ l+2)T (r, f)+(m+ l+2)T (r, g)}+S(r, f)+S(r, g).

Therefore

nT (r, f) + nT (r, f) = T (r, fn) + T (r, fn) + O(1) ≤

≤ T (r, F ) + T (r,
1

afm(f (k))l − b
) + T (r, G) +

+T (r,
1

afm(g(k))l − b
) + O(1) =

= T (r, F ) + T (r,
1

fm(f (k))l
) + T (r, G) +

+T (r,
1

fm(g(k))l
) + O(1) =

= T (r, F ) + T (r, fm(f (k))l) + T (r, G) +
+T (r, fm(g(k))l) + O(1) ≤

≤ T (r, F ) + T (r, fm) + T (r, (f (k))l) + T (r, G) +
+T (r, gm) + T (r, (g(k))l) + O(1) ≤

≤ 2{(m + l + 2)T (r, f) + (m + l + 2)T (r, g)}+
+(m + l)T (r, f) + (m + l)T (r, g) + S(r, f) + S(r, g),
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which implies

n(T (r, f) + T (r, g)) ≤ (3l + 3m + 4)(T (r, f) + T (r, g)) + S(r, f) + S(r, g).

Thus
(n− 3l − 3m− 4)(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

which contradicts to the assumption that n ≥ 3l + 3m + 5.

Case 2. F = G. Then

−fn

afm(f (k))l − b
=

−gn

afm(g(k))l − b
.

Therefore (1.5) holds.

Case 3. FG = 1. Then

(3.12)
φf − b

φg − b
=

fn

agm(g(k))l − b
=

afm(f (k))l − b

gn
.

We will prove that (3.12) cannot occur. Since φf , φg share the value b CM and
f, g are entire functions, φf−b

φg−b has no zero or pole at all. From this and (3.12),
we have

(3.13) N(r,
1
f

) =
1
n

N(r,
1

gm(g(k))l − b
a

), N(r,
1
g
) =

1
n

N(r,
1

fm(f (k))l − b
a

),

(3.14) N(r,
1
f

) = N(r,
1

gm(g(k))l − b
a

), N(r,
1
g
) = N(r,

1
fm(f (k))l − b

a

).

We will show that f (k) 	≡ 0. Suppose for contradiction that f (k) ≡ 0. Then f
is a non-constant polynomial. Combining this and (3.13), we have g has no zero
at all. This implies fg is a non-constant function and g(k) 	≡ 0. From (3.12),
we have

(3.15) (fg)n = −b(agm(g(k))l − b).

From this and Lemma 2.6, we have

nT (r, fg) ≤ N(r,
1

(fg)n
) + N(r,

1
gm(g(k))l

) + S(r, fg) ≤

≤ N(r,
1
fg

) + N(r,
1

g(k)
) + S(r, fg) ≤

≤ T (r, fg) + T (r, g(k)) + S(r, fg),
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which implies

(3.16) (n− 1)T (r, fg) ≤ T (r, g) + S(r, fg) + S(r, g).

On the other hand, by Lemma 2.6 and (3.15), we have

mT (r, g) = T (r, gm) + O(1) ≤

≤ T (r, gm(g(k))l) + T (r,
1

(g(k))l
) + O(1) ≤

≤ N(r,
1

(fg)n
) + N(r,

1
gm(g(k))l

) + lT (r, g) + S(r, g) ≤

≤ T (r, fg) + T (r, g) + lT (r, g) + S(r, g),

which yields

(3.17) (m− l − 1)T (r, g) ≤ T (r, fg) + S(r, g).

From (3.16) and (3.17), we have

(n− 1)T (r, fg) + (m− l − 2)T (r, g) ≤ S(r, fg) + S(r, g),

which contradicts to the assumptions that n ≥ 3l + 3m + 5 and m ≥ l + 3.
Hence f (k) 	≡ 0 and similarly, we have g(k) 	≡ 0.

By Lemma 2.8, we have

mT (r, f) = T (r, fm) + O(1) ≤

≤ T (r, fm(f (k))l) + T (r,
1

(f (k))l
) + O(1) ≤

≤ N(r,
1
f

) + N(r,
1

afm(f (k))l − b
) +

+T (r, f (k)) + T (r, (f (k))l) + S(r, f) ≤

≤ N(r,
1
f

) + N(r,
1

afm(f (k))l − b
) +

+T (r, f (k)) + lT (r, f (k)) + S(r, f) ≤

≤ N(r,
1
f

) + N(r,
1

afm(f (k))l − b
) + (l + 1)T (r, f) + S(r, f),

which implies

(m− l − 1)T (r, f) ≤ N(r,
1
f

) + N(r,
1

afm(f (k))l − b
) + S(r, f).
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From this and (3.13), (3.14), we have

(m− l − 1)T (r, f) ≤ 1
n

N(r,
1

agm(g(k))l − b
) + N(r,

1
g
) + S(r, f) ≤

≤ 1
n

N(r,
1

agm(g(k))l − b
) + N(r,

1
g
) + S(r, f) =

=
1
n

N(r,
1

agm(g(k))l − b
) +

1
n

N(r,
1

afm(f (k))l − b
) +

+S(r, f) ≤

≤ 1
n

T (r, agm(g(k))l − b) +
1
n

T (r, afm(f (k))l − b) +

+S(r, f) + S(r, g) =

=
1
n

T (r, gm(g(k))l) +
1
n

T (r, fm(f (k))l) +

+S(r, f) + S(r, g) ≤

≤ 1
n

(
mT (r, g) + lT (r, g(k))

)
+

+
1
n

(
mT (r, f) + lT (r, f (k))

)
+ S(r, g) ≤

≤ 1
n

(mT (r, g) + lT (r, g)) +
1
n

(mT (r, f) + lT (r, f)) +

+S(r, f) + S(r, g),

which implies

(m− l − 1)T (r, f) ≤ (m + l)
n

T (r, g) +
m + l

n
T (r, f) + S(r, f) + S(r, g).

Similarly, we get

(m− l − 1)T (r, g) ≤ (m + l)
n

T (r, f) +
m + l

n
T (r, g) + S(r, g).

Hence

(m− l− 1)(T (r, f) + T (r, g)) ≤ 2(m + l)
n

(T (r, f) + T (r, g)) + S(r, f) + S(r, g).

Therefore

(n(m− l − 1)− 2(m + l))(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

which contradicts to the assumptions that m ≥ l+3 and n ≥ 3l+3m+5. This
proves Theorem 1.2. �
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Proof. [Proof of Theorem 1.3]

We define the functions F and G as in the proof of Theorem 1.1. Proceeding
as in the proof of Theorem 1.1, we obtain that F and G share 1 IM. Applying
Lemma 2.10 to F and G, we have the following three cases:

Case 1.

T (r, F ) + T (r, G) ≤ 2N2(r, F ) + 3N(r, F ) + 2N2(r, G) + 3N(r, G) +

+2N2(r,
1
F

) + 3N(r,
1
F

) + 2N2(r,
1
G

) + 3N(r,
1
G

) +

+S(r, F ) + S(r, G).

Proceeding as in the proof of Theorem 1.1, we have

N2(r,
1
F

) ≤ 2T (r, f),

N2(r,
1
G

) ≤ 2T (r, g),

N(r,
1
F

) ≤ T (r, f),

N(r,
1
G

) ≤ T (r, g),

N2(r, F ) ≤ (m + 2 + l(k + 1))T (r, f) + S(r, f),

N2(r, G) ≤ (m + 2 + l(k + 1))T (r, g) + S(r, g).

By Lemma 2.3, we have

N(r, F ) = N(r,
−fn

afm(f (k))l − b
) ≤

≤ N(r,
1

afm(f (k))l − b
) + N(r, f) ≤

≤ T (r, afm(f (k))l − b) + N(r, f) ≤
≤ T (r, fm(f (k))l) + N(r, f) ≤
≤ mT (r, f) + lT (r, f (k)) + T (r, f) ≤
≤ mT (r, f) + l(k + 1)T (r, f) + T (r, f) + S(r, f).

which implies

N(r,
1
F

) ≤ (l(k + 1) + m + 1)T (r, f) + S(r, f).
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Similarly, we have

N(r,
1
G

) = (l(k + 1) + m + 1)T (r, g) + S(r, g).

Hence

T (r, F ) + T (r, G) ≤ (5l(k + 1) + 5m + 14)T (r, f) +
+(5l(k + 1) + 5m + 14)T (r, g) + S(r, f) + S(r, g).

Therefore

nT (r, f) + nT (r, g) = T (r, fn) + T (r, gn) + O(1) ≤

≤ T (r, F ) + T (r,
1

afm(f (k))l − b
) +

+T (r, G) + T (r,
1

afm(g(k))l − b
) + O(1) ≤

≤ (5l(k + 1) + 5m + 14)T (r, f) +
+(5l(k + 1) + 5m + 14)T (r, g) +
+(l(k + 1) + m)T (r, f) + (l(k + 1) + m)T (r, g) +
+S(r, f) + S(r, g),

which implies

n(T (r, f)+T (r, g)) ≤ (6l(k+1)+6m+14)(T (r, f)+T (r, g))+S(r, f)+S(r, g).

Thus

(n− 6l(k + 1)− 6m− 14)(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

which contradicts to the assumption that n ≥ 6l(k + 1) + 6m + 15.

Case 2. F = G. Then

φf − b

φg − b
=

fn

gn
=

afm(f (k))l − b

agm(g(k))l − b
.

Case 3. FG = 1. Then

φf − b

φg − b
=

fn

agm(g(k))l − b
=

afm(f (k))l − b

gn
.

This completes the proof of Theorem 1.3. �
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Proof. [Proof of Theorem 1.4]

Proceeding as the proof of Theorem 1.2, we have afm(f (k))l − b 	≡ 0 and
agm(g(k))l−b 	≡ 0. We define the functions F and G as in the proof of Theorem
1.1. Proceeding as in the proof of Theorem 1.1, we have F and G share 1 IM.
Applying Lemma 2.10 to F and G, we have the following three cases:

Case 1.

T (r, F ) + T (r, G) ≤ 2N2(r, F ) + 3N(r, F ) + 2N2(r, G) + 3N(r, G) +

+2N2(r,
1
F

) + 3N(r,
1
F

) + 2N2(r,
1
G

) + 3N(r,
1
G

) +

+S(r, F ) + S(r, G).

Proceeding as the proof of Theorem 1.2, we have

N2(r,
1
F

) ≤ 2T (r, f),

N2(r,
1
G

) ≤ 2T (r, g),

N(r,
1
F

) ≤ T (r, f),

N(r,
1
G

) ≤ T (r, g),

N2(r, F ) ≤ (m + l)T (r, f) + S(r, f),

N2(r, G) ≤ (m + l)T (r, g) + S(r, g),

N(r, F ) ≤ (m + l)T (r, f) + S(r, f),

N(r, G) ≤ (m + l)T (r, g) + S(r, g).

Hence

T (r, F )+T (r, G) ≤ (5l+5m+7)T (r, f)+(5l+5m+7)T (r, g)+S(r, f)+S(r, g).
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Therefore

nT (r, f) + nT (r, g) = T (r, fn) + T (r, gn) + O(1) ≤

≤ T (r, F ) + T (r,
1

afm(f (k))l − b
) + T (r, G) +

+T (r,
1

agm(g(k))l − b
) + O(1) =

= T (r, F ) + T (r, fm(f (k))l) + T (r, G) +
+T (r, gm(g(k))l) + O(1) ≤

≤ T (r, F ) + mT (r, f) + lT (r, (f (k))) + T (r, G) +
+mT (r, g) + lT (r, (g(k))) + O(1) ≤

≤ (5l + 5m + 7)T (r, f) + (5l + 5m + 7)T (r, g) +
+(m + l)T (r, f) + (m + l)T (r, g) + S(r, f) + S(r, g).

Thus
(n− 6l − 6m− 7)(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

which contradicts to the assumption that n ≥ 6l + 6m + 8.

Case 2. F = G. Then

−fn

afm(f (k))l − b
=

−gn

afm(g(k))l − b
.

Therefore (1.5) holds.

Case 3. FG = 1. Then

(3.18)
φf − b

φg − b
=

fn

a(g(k))l − b
=

a(f (k))l − b

gn
.

We will prove that (3.18) cannot occur. Since φf , φg share the value b IM
and f, g are entire functions, we have

(3.19) N(r,
1
f

) = N(r,
1

gm(g(k))l − b
a

), N(r,
1
g
) = N(r,

1
fm(f (k))l − b

a

).

We will show that f (k) 	≡ 0. Suppose for contradiction that f (k) ≡ 0. This
implies f is a non-constant polynomial. Combining this and (3.19), we have fg
is non-constant and g(k) 	≡ 0. From (3.18), we have

(3.20) (fg)n = −b(agm(g(k))l − b).
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From this and Lemma 2.6, we have

nT (r, fg) ≤ N(r,
1

(fg)n
) + N(r,

1
gm(g(k))l

) + S(r, fg) ≤

≤ N(r,
1
fg

) + N(r,
1

gm
) + N(r,

1
g(k)

) + S(r, fg) ≤

≤ T (r, fg) + T (r, g) + T (r, g(k)) + S(r, fg),

which implies

(3.21) (n− 1)T (r, fg) ≤ 2T (r, g) + S(r, fg) + S(r, g).

On the other hand, by (3.20) we have

mT (r, g) = T (r, gm) + O(1) ≤

≤ T (r, gm(g(k))l) + T (r,
1

(g(k))l
) + O(1) ≤

≤ N(r,
1

(fg)n
) + N(r,

1
gm(g(k))l

) + lT (r, g) + S(r, g) ≤

≤ T (r, fg) + 2T (r, g) + lT (r, g) + S(r, g),

which yields

(3.22) (m− l − 2)T (r, g) ≤ T (r, fg) + S(r, g).

From (3.21) and (3.22), we have

(n− 1)T (r, fg) + (m− l − 3)T (r, g) ≤ S(r, fg) + S(r, g),

which contradicts to the assumptions that n ≥ 6l + 6m + 5 and m ≥ l + 4.
Hence f (k) 	≡ 0 and similarly we have g(k) 	≡ 0.

By Lemma 2.8, we have

T (r, fm(f (k))l) ≤ N(r,
1
f

) + N(r,
1

fm(f (k))l − b
a

) + T (r, f (k)) + S(r, f) =

= N(r,
1
f

) + N(r,
1
g
) + T (r, f (k)) + S(r, f) ≤

≤ 2T (r, f) + T (r, g) + S(r, f).

Hence

mT (r, f) = T (r, fm) + O(1) ≤

≤ T (r, fm(f (k))l) + T (r,
1

(f (k))l
) + O(1) ≤

≤ 2T (r, f) + T (r, g) + T (r, (f (k))l) + S(r, f) ≤
≤ 2T (r, f) + T (r, g) + lT (r, f) + S(r, f) + S(r, g),
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which implies

mT (r, f) ≤ (l + 2)T (r, f) + T (r, g) + S(r, f) + S(r, g).

Similarly, we have

mT (r, g) ≤ (l + 2)T (r, g) + T (r, f) + S(r, f) + S(r, g).

Hence
(m− l − 3)(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

which contradicts to the assumption that m ≥ l + 4.

This proves Theorem 1.4. �
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