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Abstract. The direct and converse trigonometric approximation theo-
rems in Lebesgue spaces of functions of several variables are proved by
using moduli of smoothness of fractional order. Also, a constructive char-
acterization of the generalized Lipschitz classes is obtained.

1. Introduction

Let T := [0, 2π] and Lp (T) (1 ≤ p ≤ ∞) be the space of 2π-periodic Lebesgue
measurable functions such that ‖f‖Lp(T) < ∞, where

‖f‖Lp(T) :=

⎧⎪⎪⎨⎪⎪⎩
(∫

T

|f (x)|p dx

)1/p

, 1 ≤ p < ∞

ess sup
x∈T

|f (x)| , p = ∞.

For r = 1, 2, ... the r−modulus of smoothness of the function f ∈ Lp (T) is
defined by

ωr (f, δ)p := sup
0<h≤δ

‖Δr
hf (x)‖Lp(T) , (δ > 0)
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where

Δr
hf (x) :=

r∑
k=0

(−1)k

(
r

k

)
f (x + (r − k) h) .

Let Tn (n = 0, 1, ...) be the set of trigonometric polynomials of degree at
most n and let En (f)p be the best approximation of f ∈ Lp (T) by elements
of Tn, i.e.

En (f)p = inf
tn∈Tn

‖f − tn‖Lp(T) .

There are many results on approximation of functions belong to Lp (T)
spaces (1 ≤ p ≤ ∞) . Especially, the classical Jackson theorem

(1.1) En (f)p ≤ cωr

(
f,

1
n

)
p

, n = 1, 2, ...

and its weak converse

(1.2) ωr

(
f,

1
n

)
p

≤ c

nr

n∑
k=0

(k + 1)r−1
Ek (f)p , n = 1, 2, ...

are very important in trigonometric approximation theory. We refer to mono-
graphs [7] and [16] for these theorems and other results of trigonometric ap-
proximation.

Approximation problems of functions in Lp (T) spaces by trigonometric
polynomials are also studied by using modulus of smoothness of any positive
order, called fractional modulus of smoothness.

Let f ∈ L1 (T) has the Fourier series

(1.3)
∞∑

k=−∞
ck (f) eikx,

where

ck (f) =
1
2π

2π∫
0

f (x) e−ikxdx (k ∈ Z) .

We denote by L1
0 (T) the class of functions f ∈ L1 (T) for which c0 = 0 in

(1.3). For α > 0,the α−th fractional integral of f ∈ L1
0 (T) is defined as

Iα (x, f) :=
∑
k∈Z∗

ck (f) (ik)−α
eikx,

where (ik)−α := |k|−α
e(−1/2)πiαsignk and Z∗ := {±1,±2,±3, ...} (see, for ex-

ample [19, Vol. II., p. 134]).
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For α ∈ (0, 1) and r = 1, 2, ... we set

f (α) (x) : =
d

dx
I1−α (x, f) ,

f (α+r) (x) : =
(
f (α) (x)

)(r)

=
dr+1

dxr+1
I1−α (x, f)

when the right sides exist ([14, p. 347]).
Let x, t ∈ R, α ∈ R+ := (0,∞) and let

Δα
hf (x) :=

∞∑
k=0

(−1)k

(
α

k

)
f (x + (α− k) h) , f ∈ L1 (T)

converges in L1 (T) and Δα
hf (·) is a measurable function ([15]). Since the

Binomial coefficients satisfy ([14, p.14])∣∣∣∣(α

k

)∣∣∣∣ := ∣∣∣∣α (α− 1) ... (α− k + 1)
k!

∣∣∣∣ ≤ c

kα+1
(k ∈ N)

we have

c (α) :=
∞∑

k=0

∣∣∣∣(α

k

)∣∣∣∣ < ∞

and therefore Δα
hf (·) is defined almost everywhere on R and

(1.4) ‖Δα
hf‖Lp(T) ≤ c (α) ‖f‖Lp(T)

for α ∈ R+ ([15]).
If α ∈ N, then the fractional difference Δα

hf (·) coincides with usual forward
difference.

For α ∈ R+, the α−th fractional modulus of smoothness of f ∈ Lp (T) is
defined as

(1.5) ωα (f, δ)p := sup
0<h≤δ

‖Δα
hf (x)‖Lp(T) .

The modulus of smoothness ωα (f, ·)p is a non-decreasing function of δ ≥ 0,
ωα (f, 0)p = 0 and satisfies

ωα (f1 + f2, δ)p ≤ ωα (f1, δ)p + ωα (f2, δ)p

for δ ≥ 0 ([15]) .

More general information about fractional moduli of smoothness can be
found in [6] and [15].
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Throughout the paper, c will denote positive constants which are not im-
portant for the questions involve in the paper and can be different at each
occurrence.

Analogues of the inequalities (1.1) and (1.2) were proved in [15] for α > 0:

Theorem A. Let 1 ≤ p ≤ ∞ and α ∈ R+. If f ∈ Lp (T), then the estimates

(1.6) En (f)p ≤ cωα

(
f,

1
n

)
p

, n = 1, 2, ...

and

(1.7) ωα

(
f,

1
n

)
p

≤ c

nα

n∑
k=0

(k + 1)α−1
Ek (f)p , n = 1, 2, ....

holds.

Approximation problems concerning fractional moduli of smoothness was
recently studied in various spaces of 2π-periodic functions. For example, in
the papers[1], [2], [3], [5], [4], [17] and [18] the idea of fractional moduli of
smoothness is used.

Approximation problems for functions of several variables were also studied
by many mathematicians. Some of these results can be found in [8], [10] and
[13]. They are also summarized in [9]. In all of these studies authors considered
the moduli of smoothness of integer order.

In this work, analogues (1.6) and (1.7) are obtained in Lebesgue spaces of
functions of several variables.

2. Main results

Let Tm (m ≥ 1) denote the m−dimensional cube [−π, π]m . We denote by
Lp (Tm) (1 ≤ p ≤ ∞) the space of all measurable functions F of m−variables,
which are 2π−periodic in each variable and satisfy ‖F‖Lp(Tm) < ∞, where

‖F‖Lp(Tm) =

⎧⎪⎪⎨⎪⎪⎩
( ∫

Tm

|F (x1, ..., xm)|p dx1...dxm

) 1
p

, 1 ≤ p < ∞

ess sup |F (x1, ..., xm)|
(x1,...,xm)∈Tm

, p = ∞.

For points in Rm we will use the notations x = (x1, ..., xm) and

dxi := dx1...dxi−1dxi+1...dxm (1 ≤ i ≤ m) .



Approximation in Lp spaces 9

Also, for functions F (x) , defined on Rm, we consider the sections

Fi,x (t) := F (x1, ..., xi−1, t, xi+1, ..., xm) (1 ≤ i ≤ m) .

Our approximation tools are m−variable trigonometric polynomials. It is
appropriate to describe in term of multivariate complex polynomials. So, let

T m
n :=

{
T (x) = ReP

(
eix1 , ..., eixm

)
: P ∈ Pm

n

}
,

where Pm
n be the set of all are m−variable complex polynomials of degree at

most n, i. e.

Pm
n :=

{
P (Z1, ..., Zm) =

∑
0≤ki≤n

(i=1,...,m)

ck1,..,km
Zk1

1 ...Zkm
m : ck1,..,km

∈ C

}
.

Note that, T m
n consists of all m−variable trigonometric polynomials of order

at most n (in each variable) ([10]).
The best approximations of F ∈ Lp (Tm) in the class T m

n are

(2.1) En (F )Lp(Tm) := inf
Tn∈T m

n

‖F − Tn‖Lp(Tm) (n ∈ N) .

Let F ∈ Lp (Tm) . For α ∈ R+, we define the partial differences

Δα,i
h F (x) : = Δα,i

h Fi,x (xi)

: =
∞∑

k=0

(−1)k

(
α

k

)
F (x1, ..., xi−1, xi + (α− k) h, xi+1, ..., xm) .

For α ∈ R+ we define the α−th partial fractional modulus of smoothness
of F ∈ Lp (Tm) (1 ≤ p ≤ ∞) as

Ωα,i (F, δ)Lp(Tm) := sup
0<h≤δ

∥∥∥Δα,i
h F

∥∥∥
Lp(Tm)

(1 ≤ i ≤ m) .

The fractional modulus of smoothness of F ∈ Lp (Tm) is defined by

Ωα (F, δ)Lp(Tm) := max
1≤i≤m

Ωα,i (F, δ)Lp(Tm) (δ > 0) .

It follows from (1.4) and Fubini theorem that

(2.2) Ωα,i (F, δ)Lp(Tm) ≤ c ‖F‖Lp(Tm) (δ > 0) ,

and hence the modulus of smoothness Ωα,i (F, ·)Lp(Tm) exists for F ∈ Lp (Tm) .
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By using definition of Ωα,i (F, ·)Lp(Tm) , one easily get

(2.3) Ωα,i (F + G, δ)Lp(Tm) ≤ Ωα,i (F, δ)Lp(Tm) + Ωα,i (G, δ)Lp(Tm)

for F,G ∈ Lp (Tm) and α ∈ R+.

Now we can give multivariate direct and converse approximation theorems
for functions of several variables, which are our main results.

Theorem 2.1. Let m ≥ 1 , 1 ≤ p ≤ ∞ and α ∈ R+. Then the Jackson type
inequality

(2.4) En (F )Lp(Tm) ≤ c Ωα

(
F,

1
n

)
Lp(Tm)

, n = 1, 2, ..

holds for F ∈ Lp (Tm) .

Theorem 2.2. Let 1 ≤ p ≤ ∞ and m ≥ 1. Then for F ∈ Lp (Tm) and α ∈ R+,
we have

(2.5) Ωα

(
F,

1
n

)
Lp(Tm)

≤ c

nα

n∑
k=0

(k + 1)α−1
Ek (F )Lp(Tm) .

Corollary 2.1. Let m ≥ 1 , 1 ≤ p ≤ ∞, β > 0, and F ∈ Lp (Tm) . If

En (F )Lp(Tm) = O
(
n−β

)
, n = 1, 2, ...

then

Ωα (F, δ)Lp(Tm) =

⎧⎪⎪⎨⎪⎪⎩
O
(
δβ
)
, α > β,

O
(
δ

β

log
(

1
δ

))
, α = β,

O (δα) , α < β,

for every δ > 0 and α ∈ R+.

Let β > 0. The generalized Lipschitz class Lip∗ (β, p) is defined by

Lip∗ (β, p) :=
{

F ∈ Lp (Tm) : Ωα (F, δ)Lp(Tm) = O
(
δβ
)
, δ > 0

}
,

where α > β.

Corollary 2.2. Let m ≥ 1, 1 ≤ p ≤ ∞, β > 0 and F ∈ Lp (Tm) . If

En (F )Lp(Tm) = O
(
n−β

)
, n = 1, 2, ...

for some β > 0, then F ∈ Lip∗ (β, p) .
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Note that the analogue of the class Lip∗ (β, p) for periodic functions on the
real line was defined in ([6]).

Combining Theorem 2.1 and Corollary 2.2 yields the following constructive
characterization of the classes Lip∗ (β, p) .

Theorem 2.3. Let 1 ≤ p ≤ ∞, m ≥ 1, F ∈ Lp (Tm) and β > 0. The following
assertions are equivalent:

(i) F ∈ Lip∗ (β, p)
(ii) En (F )Lp(Tm) = O

(
n−β

)
, n = 1, 2, ... .

3. Auxiliary results

Let W p
α (T) ,(α = 1, 2, ...) , be the linear space of functions for which f (α−1)

is absolutely continuous and f (α) ∈ Lp (T) . W p
α (T) becomes a Banach space

with respect to the norm

‖f‖W p
α(T) := ‖f‖Lp(T) +

∥∥∥f (α)
∥∥∥

Lp(T)
.

Let 1 ≤ p ≤ ∞. For f ∈ Lp (T) and δ > 0 , the K−functional is defined as

(3.1) Kα (f, δ) := inf
{
‖f − g‖Lp(T) + δα

∥∥∥g(α)
∥∥∥

Lp(T)
: g ∈ W p

α (T)
}

.

It is known that the K−functional (3.1) and the modulus of smoothness
(1.5) are equivalent, i.e.,

(3.2) ωα (f, δ)p ∼ Kα (f, δ) (δ > 0)

for f ∈ Lp (T) and α = 1, 2, ... ([12, pp. 41-50]).
We define another modulus of smoothness for f ∈ Lp (T) and α ∈ R+ by

ω̃α (f, δ)p :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
1
δ

δ∫
0

‖Δα
hf (x)‖p

Lp(T) dh

) 1
p

, 1 ≤ p < ∞

1
δ

δ∫
0

‖Δα
hf (x)‖L∞(T) dh, p = ∞.

Lemma 3.1. Let 1 ≤ p ≤ ∞ and f ∈ Lp (T), then for α = 1, 2, ... the equiva-
lence

(3.3) ωα (f, δ)p ∼ ω̃α (f, δ)p (δ ≥ 0)

holds.
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Proof. For 1 < p < ∞, this lemma was proved in ([10]).

Now, we will prove the lemma for p = 1 or p = ∞. From definition of new
moduli, we can obtain easily

(3.4) ω̃α (f, δ)p ≤ cωα (f, δ)p .

To prove the converse inequality, we consider following Steklov transform
given in ([12, p. 50]):

fα,h (x) :=
1
hr

h∫
0

...

h∫
0

α−1∑
s=0

(−1)α+s+1

(
α

s

)
f
(
x + α−s

α (t1 + ... + tα)
)
dt1 ...dtα.

Let p = 1 or p = ∞.

(3.5)

‖fα,h (x)− f (x)‖Lp(T) ≤

∥∥∥∥∥∥ 1
hr

h∫
0

...

h∫
0

Δα
t1+...+tα

α

f (x) dt1 ...dtα

∥∥∥∥∥∥
Lp(T)

≤

≤ 1
hr

h∫
0

...

h∫
0

∥∥∥∥Δα
t1+...+tα

α

f (x)
∥∥∥∥

Lp(T)

dt1 ...dtα

Using a known method in the approximation theory we define another suit-
able transform

(3.6) gδ (x) :=
2
δ

δ∫
δ/2

fα,h (x) dh (0 < δ ≤ 1) .

By (3.5) and Fubini theorem, we can easily obtain

(3.7) ‖gδ (x)− f (x)‖Lp(T) ≤ cω̃α (f, δ)p .

From (3.6) we get

g
(α)
δ (x) =

dα

dxα
gδ (x) =

2
δ

δ∫
δ/2

f
(α)
α,h (x) dh

and hence gδ ∈ W p
α (T) .
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We’ll use the fact

(3.8) f
(α)
α,h (x) = h−r

α−1∑
s=0

(−1)α+s+1

(
α

s

)(
α

α− s

)α

Δα
α−s

α h
f (x) .

For p = 1, by using (3.8) and Fubini theorem, and considering the definition
of ω̃r (f, δ), we get

∥∥∥g(α)
δ (x)

∥∥∥
L1(T)

≤ 2
δ

δ∫
δ/2

∥∥∥f (α)
α,h (x)

∥∥∥
L1(T)

dh ≤

≤ c

δα+1

δ∫
0

⎛⎝α−1∑
s=0

(
α

s

)(
α

α− s

)α
2π∫
0

∣∣∣Δα
α−s

α h
f (x)

∣∣∣ dx

⎞⎠ dh ≤

≤ c

δα+1

α−1∑
s=0

(
α

s

)(
α

α− s

)α
δ∫
0

⎛⎝2π∫
0

∣∣∣Δα
α−s

α h
f (x)

∣∣∣ dx

⎞⎠ dh ≤

≤ c

δα+1

α−1∑
s=0

(
α

s

)(
α

α− s

)α
2π∫
0

⎛⎝ δ∫
0

∣∣∣Δα
α−s

α h
f (x)

∣∣∣ dh

⎞⎠ dx =

=
c

δα+1

α−1∑
s=0

(
α

s

)(
α

α− s

)α
2π∫
0

⎛⎜⎝
α−s

α δ∫
0

|Δα
t f (x)| dh

⎞⎟⎠ dx ≤

≤ c

δα+1

δ∫
0

⎛⎝2π∫
0

|Δα
t f (x)| dx

⎞⎠ dt =

=
c

δα+1

δ∫
0

‖Δα
t f (x)‖L1(T) dt =

= cδ−αω̃r (f, δ)p .

Hence we obtain

(3.9)
∥∥∥g(α)

δ (x)
∥∥∥

L1(T)
≤ cω̃α (f, δ)p .
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For p = ∞, by (3.8), Fubini theorem and definition of ω̃r (f, δ) , we have

∣∣∣g(α)
δ (x)

∣∣∣ ≤ 2
δ

δ∫
δ/2

∣∣∣f (α)
α,h (x)

∣∣∣ dh ≤

≤ c

δα+1

α−1∑
s=0

(
α

s

)(
α

α− s

)α
δ∫
0

∣∣∣Δα
α−s

α h
f (x)

∣∣∣ dh =

=
c

δα+1

α−1∑
s=0

(
α

s

)(
α

α− s

)α
α−s

α δ∫
0

|Δα
t f (x)| dt ≤

≤ c

δα+1

α−1∑
s=0

(
α

s

)(
α

α− s

)α
δ∫
0

|Δα
t f (x)| dt =

=
c

δα+1

δ∫
0

|Δα
t f (x)| dt ≤

≤ c

δα+1

δ∫
0

‖Δα
hf (x)‖L∞(T) dh.

So, the inequality

(3.10)
∥∥∥g(α)

δ (x)
∥∥∥

L∞(T)
≤ cδ−αω̃r (f, δ)p

holds.

Therefore, for p = 1 or p = ∞, we get from (3.7), (3.9) and (3.10)

Kα (f, δ)p ≤ ‖f − gδ‖Lp(T) + δα
∥∥∥g(α)

δ (x)
∥∥∥

Lp(T)

≤ cω̃α (f, δ)p

and by (3.2)
ωα (f, δ)p ≤ cKα (f, δ)p ≤ cω̃α (f, δ)p .

The last inequality and (3.4) yield (3.3). �
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Lemma 3.2. Let 1 ≤ p ≤ ∞ and f ∈ Lp (T), then the inequality

ω̃β (f, δ)p ≤ cω̃α (f, δ)p , δ ≥ 0

holds for 0 < α < β.

Proof. By Theorem 5 in [15] we have∥∥∥Δβ
hf (·)

∥∥∥
Lp(T)

≤ c ‖Δα
hf (·)‖Lp(T) .

From this inequality we get∥∥∥Δβ
hf (·)

∥∥∥p

Lp(T)
≤ c ‖Δα

hf (·)‖p
Lp(T)

for 1 ≤ p ≤ ∞. Now by integrating the last inequality with respect to dh we
get

δ∫
0

∥∥∥Δβ
hf (·)

∥∥∥p

Lp(T)
dh ≤ c

δ∫
0

‖Δα
hf (·)‖p

Lp(T) dh.

Since δ > 0 we can write

1
δ

δ∫
0

∥∥∥Δβ
hf (·)

∥∥∥p

Lp(T)
dh ≤ c

1
δ

δ∫
0

‖Δα
hf (·)‖p

Lp(T) dh.

From the last inequality we obtain⎛⎝1
δ

δ∫
0

∥∥∥Δβ
hf (x)

∥∥∥p

Lp(T)
dh

⎞⎠
1
p

≤ c

⎛⎝1
δ

δ∫
0

‖Δα
hf (x)‖p

Lp(T) dh

⎞⎠
1
p

which completes the proof with usual modification p = ∞. �

For fractional moduli ωα (f, ·)p , α ∈ R+, this lemma was proved in [15].

Corollary 3.1. Let α ∈ R+ and 1 ≤ p ≤ ∞. Then, for f ∈ Lp (T) the
estimate

(3.11) En (f)p ≤ cω̃α

(
f,

1
n

)
p

, n = 1, 2, ...

holds.
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It is known that ([16]) for f ∈ Lp (T) and α ∈ R+,

En (f)p ≤ cω[α]+2

(
f,

1
n

)
p

,

where [α] denotes the integer part of the real number α. Then by the last
inequality, Lemma 3.1 and Lemma 3.2, we get

En (f)p ≤ cω[α]+2

(
f,

1
n

)
p

≤ cω̃[α]+2

(
f,

1
n

)
p

≤ cω̃α

(
f,

1
n

)
p

.

The last estimate is important for proof of Theorem 2.1.

Lemma 3.3. Let 1 ≤ p ≤ ∞ and m ≥ 1, α ∈ R+. If Tn ∈ T m
n , n ≥ 1, then

there exist a constant c > 0 depending only r and p such that∥∥∥∥∂αTn

∂xα
i

∥∥∥∥
Lp(Tm)

≤ cnα ‖Tn‖Lp(Tm) .

Proof. It is known that ([15]) for tn ∈ Tn and 1 ≤ p ≤ ∞

(3.12)
∥∥∥t(α)

n

∥∥∥
Lp(T)

≤ cnα ‖tn‖Lp(T) , n = 1, 2, ...,

holds. From this inequality, we obtain

∥∥∥∥∂αTn (x)
∂xα

i

∥∥∥∥
Lp(Tm)

=

⎧⎪⎨⎪⎩
∫

Tm−1

⎛⎝∫
T

∣∣∣∣∂αTn,i,x (xi)
∂xα

i

∣∣∣∣p dxi

⎞⎠ 1
p .p

dxi

⎫⎪⎬⎪⎭
1
p

≤

≤ cnα

⎧⎨⎩
∫

Tm−1

∥∥Tn,i,x (xi)
∥∥p

Lp(T)
dxi

⎫⎬⎭
1
p

=

= cnα

⎧⎨⎩
∫

Tm−1

⎛⎝∫
T

∣∣Tn,i,x (xi)
∣∣p dxi

⎞⎠ dxi

⎫⎬⎭
1
p

=

= cnα

⎧⎨⎩
∫
Tm

|Tn (x)|p dx1...dxm

⎫⎬⎭
1
p

=

= cnα ‖Tn (x)‖Lp(Tm) . �
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The following lemma can be proved by the method used in proof of Lemma
3.3 and the one variable case in [15].

Lemma 3.4. Let m ≥ 1 , 1 ≤ p ≤ ∞ and α ∈ R+. If Tn ∈ Tm
n , n ≥ 1, then

there exists a constant c > 0 depending only α and p such that

Ωα,i (Tn, δ)Lp(Tm) ≤ cδα

∥∥∥∥∂αTn

∂xα
i

∥∥∥∥
Lp(Tm)

.

4. Proofs of main results

Proof of Theorem 2.1. Let f ∈ Lp (T) has the Fourier series (1.3) , and let
(sn (f)) be the sequence of partial sums of (1.3) , i .e.

sn (f) (x) =
∑
|k|≤n

ck (f) eikx (n ∈ N) .

The sequence of de la Vallée-Poussin means of (1.3) is defined by

vn (f) (x) :=
1

n + 1

2n∑
k=n

sk (f) (x) (n ∈ N) .

Note that vn ∈ T2n for n ∈ N.

For f ∈ Lp (T) (1 ≤ p ≤ ∞) the estimates

(4.1) ‖f − vn (f)‖Lp(T) ≤ cEn (f)p

(4.2) ‖vn (f)‖Lp(T) ≤ c ‖f‖Lp(T)

hold (see, for example [11, p. 196]).

For F ∈ Lp (Tm) we set

Vn,iF (x) := vn

(
Fi,x

)
(xi) (1 ≤ i ≤ m) .
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For 1 ≤ p < ∞, we have from (4.1), (3.11) and Fubini theorem

‖F − Vn,iF‖Lp(Tm) =

⎧⎨⎩
∫
Tm

|(F − Vn,iF ) (x)|p dx1...dxm

⎫⎬⎭
1
p

=

=

⎧⎪⎨⎪⎩
∫

Tm−1

⎛⎝∫
T

∣∣(Fi,x − vnFi,x

)
(xi)
∣∣p dxi

⎞⎠ 1
p p

dxi

⎫⎪⎬⎪⎭
1
p

=

=

⎧⎨⎩
∫

Tm−1

∥∥(Fi,x − vnFi,x

)
(xi)
∥∥p

Lp(T)
dxi

⎫⎬⎭
1
p

≤

≤ c

⎧⎨⎩
∫

Tm−1

(
En

(
Fi,x

)
p

)p

dxi

⎫⎬⎭
1
p

≤

≤ c

⎧⎨⎩
∫

Tm−1

(
ω̃α

(
Fi,x,

1
n

)
p

)p

dxi

⎫⎬⎭
1
p

=

= c

⎧⎪⎨⎪⎩
∫

Tm−1

⎛⎜⎝ 1
n−1

n−1∫
0

∥∥Δα
hFi,x

∥∥p

Lp(T)
dh

⎞⎟⎠ dxi

⎫⎪⎬⎪⎭
1
p

=

= c

⎧⎪⎨⎪⎩
∫

Tm−1

⎛⎜⎝ 1
n−1

n−1∫
0

⎛⎝∫
T

∣∣Δα
hFi,x (xi)

∣∣p dxi

⎞⎠ dh

⎞⎟⎠ dxi

⎫⎪⎬⎪⎭
1
p

=

= c

⎧⎪⎨⎪⎩ 1
n−1

n−1∫
0

⎛⎝∫
Tm

∣∣∣Δα,i
h F (x)

∣∣∣p dx1...dxm

⎞⎠ dh

⎫⎪⎬⎪⎭
1
p

=

= c

⎧⎪⎨⎪⎩ 1
n−1

n−1∫
0

(∥∥∥Δα,i
h F

∥∥∥p

Lp(Tm)

)
dh

⎫⎪⎬⎪⎭
1
p

≤

≤ c

⎧⎪⎨⎪⎩ 1
n−1

n−1∫
0

(
Ωα,i

(
F,

1
n

)
Lp(Tm)

)p

dh

⎫⎪⎬⎪⎭
1
p

=

= cΩα,i

(
F,

1
n

)
Lp(Tm)

.
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Hence,

(4.3) ‖F − Vn,iF‖Lp(Tm) ≤ cΩα,i

(
F,

1
n

)
Lp(Tm)

(
α ∈ R+

)
holds for all partial fractional moduli. Let us note that Vn,iF (x) are not
trigonometric polynomials of several variables (namely, of x), therefore the in-
equality in (4.3) does not give the degree of approximations in each variable.
However based on (4.3) we can get the inequality (2.4) by a well known tech-
nique of the approximation theory (see [8, p. 200-201 ]). In the second step of
the proof, we will construct multivariate trigonometric polynomials as

ṼnF (x) := Vn,1Vn,2...Vn,mF (x) .

By (4.2), (4.3) and by definition of Ωα (F, .)Lp(Tm) , we obtain

En (F )
Lp(Tm)

≤
∥∥∥F − ṼnF

∥∥∥
Lp(Tm)

=

= ‖(F − Vn,1F ) + (Vn,1F − Vn,1Vn,2F ) +
+... + (Vn,1Vn,2...Vn,m−1F − Vn,1Vn,2...Vn,mF )‖Lp(Tm) ≤

≤ c

m∑
i=1

‖F − Vn,iF‖Lp(Tm) ≤

≤ c

m∑
i=1

Ωα,i

(
F,

1
n

)
Lp(Tm)

≤ cΩα

(
F,

1
n

)
Lp(Tm)

.

For p = ∞, Theorem 2.1 can be similarly proved by using (4.1), (4.2) and
(3.11). �

Note that, for 1 < p < ∞, Theorem 2.1 can be also proved by using the
sequence of partial sums instead of de la Vallée-Poussin means.

Proof of Theorem 2.2. Let F ∈ Lp (Tm) and Tn (n ∈ N) be the polynomials
of best approximation to F in the class T m

n . Also, let n ∈ N and δ := 1/n.

By subadditivity of the modulus,

(4.4) Ωα,i (F, δ)Lp(Tm) ≤ Ωα,i (F − T2v+1 , δ)Lp(Tm) + Ωα,i (T2v+1 , δ)Lp(Tm)

for every v = 0, 1, ... . The inequality (2.2) gives

(4.5) Ωα,i (F − T2v+1 , δ)Lp(Tm) ≤ c ‖F − T2v+1‖Lp(Tm) = cE2v+1 (F )Lp(Tm) .
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Since the sequence of best approximations is decreasing, by Lemma 3.4 we
get

Ωα,i (T2v+1 , δ)Lp(Tm) ≤ cδα

∥∥∥∥∂αT2v+1

∂xα
i

∥∥∥∥
Lp(Tm)

≤

≤ cδα

{∥∥∥∥∂αT1

∂xα
i

∥∥∥∥
Lp(Tm)

+
v∑

s=0

∥∥∥∥∂αT2s+1

∂xα
i

− ∂αT2s

∂xα
i

∥∥∥∥
Lp(Tm)

}
≤

≤ cδα

{
E0 (F )Lp(Tm) +

v∑
s=0

2(s+1)α ‖T2s+1 − T2s‖Lp(Tm)

}
≤

≤ cδα

{
E0 (F )Lp(Tm) +

v∑
s=0

2(s+1)αE2s (F )Lp(Tm)

}
.

Furthermore, for s ≥ 1, by considering the inequality

(4.6) 2(s+1)αE2s (F )Lp(Tm) ≤ c∗
2s∑

k=2s−1+1

kα−1Ek (F )Lp(Tm) ,

where c∗ = 2α+1 if 0 < α < 1 and c∗ = 22α if α ≥ 1, we obtain

(4.7) Ωα,i (T2v+1 , δ)Lp(Tm) ≤ cδα

{
E0 (F )Lp,q

W
+

2v∑
k=1

kα−1Ek (F )Lp(Tm)

}
.

If we choose v such that 2v ≤ n < 2v+1, and by (4.6),

E2v+1 (F )Lp(Tm) ≤
2(v+1)αE2v+1 (F )Lp(Tm)

2(v+1)α
≤ cδα

2v∑
k=1

kα−1Ek (F )Lp(Tm) .

Now combining (4.4), (4.5), (4.7) and the last inequality we have

Ωα,i (F, δ)Lp(Tm) ≤

≤ cE2v+1 (F )Lp(Tm) + cδα

{
E0 (F )Lp(Tm) +

2v∑
k=1

kα−1Ek (F )Lp(Tm)

}
≤

≤ cδα
2v∑

k=1

kα−1Ek (F )Lp(Tm) +

+ cδα

{
2v∑

k=1

kα−1Ek (F )Lp(Tm) + E0 (F )Lp(Tm)

}
≤

≤ cδα

{
2v∑

m=1

kα−1Ek (F )Lp(Tm) + E0 (F )Lp(Tm)

}
≤
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≤ cδα

{
n∑

k=1

kα−1Ek (F )Lp(Tm) + E0 (F )Lp(Tm)

}
≤

≤ c

nα

n∑
k=0

(k + 1)α−1
Ek (F )Lp(Tm) .

Thus,

Ωα (F, δ)Lp(Tm) = max
1≤i≤m

Ωα,i (F, δ)Lp(Tm) ≤ c
1

nα

n∑
k=0

(k + 1)α−1
Ek (F )Lp(Tm)

and Theorem 2.2 is proved. �
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