UNSOLVED PROBLEMS SECTION

SOME UNSOLVED PROBLEMS ON ARITHMETICAL FUNCTIONS

Imre Kátai and Bui Minh Phong

(Budapest, Hungary)

Let, as usual, \mathcal{P} , \mathbb{N} , \mathbb{Q} , \mathbb{R} be the set of primes, positive integers, rationals and real numbers, respectively. Let \mathbb{Q}_{\times} = multiplicative group of positive rationals.

1. Let α, β distinct positive numbers, at least one of which is irrational. Let $\gamma_n = \frac{[\alpha n]}{[\beta n]}, \mathcal{B}$ be the multiplicative group generated by $\{\gamma_n \mid n \in \mathbb{N}\}$.

Conjecture 1. $\mathcal{B} = \mathbb{Q}_{\times}$.

Conjecture 2. Let f be a completely additive function for which

$$f([\alpha n]) - f([\beta n]) \to C \quad (n \to \infty).$$

Then $f(n) = A \log(n), \ A = \frac{C}{\log \frac{\alpha}{\beta}}.$

Note. We proved these conjectures in the case $\alpha = \sqrt{2}$, $\beta = 1$ (see [2], [3], [4], [5]).

2. Let \mathcal{A}, \mathcal{B} be the subsets of $\mathbb{N}, \mathcal{C} = \mathcal{A} \oplus \mathcal{B} = \{a + b \mid a \in \mathcal{A}, b \in \mathcal{B}\}$. Let \mathcal{F} be the set of those collection of functions $f : \mathcal{C} \to \mathbb{R}, g : \mathcal{A} \to \mathbb{R}, h : \mathcal{C} \to \mathbb{R}$, for which

(*)
$$f(a+b) = g(a) + h(b)$$
 for all $a \in \mathcal{A}, b \in \mathcal{B}$

Key words and phrases: Completely additive functions.

²⁰¹⁰ Mathematics Subject Classification: 11A07, 11A25, 11N25, 11N64. https://doi.org/10.71352/ac.44.233

is satisfied.

It is clear that for each choice of $A, B, C \in \mathbb{R}$, the functions

$$\begin{cases} g(n) = An + B \quad (\forall n \in \mathcal{A}), \\ h(m) = Am + C \quad (\forall m \in \mathcal{B}), \\ f(k) = Ak + (B + C) \quad (\forall k \in \mathcal{C}) \end{cases}$$

give a solution of (*).

Problem. Under what condition is true that \mathcal{F} does not contain more elements?

3.

Conjecture 3. If $a, b \in \mathbb{N}, a \neq b$, f_1, f_2 are real-valued completely additive functions and $f_1(p+a) \equiv f_2(p+b) \pmod{1}$ for every $p \in \mathcal{P}$, then $f_1(n) \equiv \equiv f_2(n) \equiv 0 \pmod{1}$ holds for every $n \in \mathbb{N}$.

Conjecture 4. If $a, b \in \mathbb{N}, a \neq b$, f_1, f_2 are real-valued completely additive functions and $f_1(p+a) = f_2(p+b)$ for every $p \in \mathcal{P}$, then $f_1(n) = f_2(n) = 0$ holds for every $n \in \mathbb{N}$.

Conjecture 5. Let D be a positive integer. Assume that the arithmetical function $f : \mathbb{N} \to \mathbb{C}$ satisfy

$$f(n^2 + Dm^2) = f(n)^2 + Df(m)^2 \text{ for all } n, m \in \mathbb{N}.$$

Then one of the following assertions holds:

a)
$$f(n) = 0$$
 for all $n \in \mathbb{N}$,
b) $f(n) = \frac{\epsilon(n)}{D+1}$ for all $n \in \mathbb{N}$,
c) $f(n) = \epsilon(n)n$ for all $n \in \mathbb{N}$,

where $\epsilon(n) = 1$ if $n \in E$ and $\epsilon(n) = \pm 1$ if $n \notin E$, $E := \{n^2 + Dm^2 \mid n, m \in \mathbb{N}\}.$

This is proved in [1] for D = 1 and in [6] for D = 2, 3.

4. Let f, g be arithmetical functions and $a, b \in \mathbb{N}$. Assume that

$$f(p+q+a+b) = g(p+a) + g(q+b)$$
 for all $p, q \in \mathcal{P}$.

Let

$$S_p := g(p+a) \quad \text{for all} \quad p \in \mathcal{P}.$$

Conjecture 6. We have

$$S_p = \frac{p-3}{2}S_5 - \frac{p-5}{2}S_3 \quad \text{for all} \quad p \in \mathcal{P} \setminus \{2\},$$

that is

$$g(p+a) = \frac{p-3}{2}g(5+a) - \frac{p-5}{2}g(3+a) \text{ for all } p \in \mathcal{P} \setminus \{2\}.$$

References

- Bojan, Basic, Characterization of arithmetic functions that preserve the sum-of-squares operation, Acta Mathematica Sinica, English Series, 30 (2014), Issue 4, 689–695.
- [2] Kátai, I. and B. M. Phong, On the multiplicative group generated by $\left\{\frac{\left[\sqrt{2}n\right]}{n} \mid n \in \mathbb{N}\right\}$, Acta Math. Hungar., 145(1) (2015), 80–87.
- [3] Kátai, I. and B. M. Phong, On the multiplicative group generated by $\left\{ \frac{\left[\sqrt{2}n\right]}{n} \mid n \in \mathbb{N} \right\}$ II., Acta Math. (Szeged), 81(3–4) (2015), 431–436.
- [4] **Kátai, I. and B. M. Phong,** On the multiplicative group generated by $\left\{\frac{\left[\sqrt{2}n\right]}{n} \mid n \in \mathbb{N}\right\}$ III., Acta Math. Hungar., **147** (2015), 247–254.
- [5] **Kátai, I. and B. M. Phong,** On the multiplicative group generated by $\left\{\frac{[\sqrt{2}n]}{n} \mid n \in \mathbb{N}\right\}$ IV., *Mathematica Pannonica (Pécs)*, (accepted).
- [6] Khanh, B. M. M., On the equation $f(n^2 + Dm^2) = f(n)^2 + Df(m)^2$, Annales Univ. Sci. Budapest., Sect. Comp., 44 (2015), 59–68.

I. Kátai and B. M. Phong

Department of Computer Algebra Faculty of Informatics Eötvös Loránd University H-1117 Budapest Pázmány Péter sétány 1/C Hungary katai@inf.elte.hu bui@inf.elte.hu