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Abstract. The sequences of complex pseudo-random of numbers (PRN’s)
producing by powers of generating element of the norm group Em in the
residue class ring modulo pm (p is a rational prime) over the ring of Gaus-
sian integers are studied.

1. Introduction

We consider the sequence of complex numbers {zn}, |zn| ≤ 1. Let 0 ≤ ξ1 <
< ξ2 ≤ 1, 0 ≤ ϕ1 < ϕ2 ≤ 2π, N(z) = |z|2, and let P (ξ, ϕ) denotes the sectorial
region of unit circle |z| ≤ 1

(1) P = P (ξ, ϕ) := {z ∈ C : ξ1 < N(z) ≤ ξ2, ϕ1 < arg z ≤ ϕ2}.

Denote by F the collection of sectorial regions P (ξ, ϕ) for all ξ and ϕ.
We say that the sequence {zn} is pseudo-random in the unit circle if it is

induced by a determinative algorithm and its statistic properties are ”simi-
lar” to the property of the sequence of the random numbers. The ”similarity”

Key words and phrases: Gaussian integers, the sequence of pseudo-random numbers, discrep-
ancy.
2010 Mathematics Subject Classification: 11K45, 11T71, 94A60, 11L07, 11T23.
This work was completed with the support of the Hungarian and Vietnamese TET (grant
agreement no. TET 10-1-2011-0645).

https://doi.org/10.71352/ac.44.211

https://doi.org/10.71352/ac.44.211


212 T.T. Vinh

means that this sequence closely adjacent to uniformly distributed in the disk
|z| ≤ 1, and its elements are uncorrelated. On these properties of the sequence
of pseudo-random numbers (abbreviation: PRN’s) can destine by value of dis-
crepancy DN of the points z1, z2, . . . , zN :

(2) DN (z1, . . . , zN ) := sup
P⊂C1

∣∣∣∣AN (P )
N

− |P |
π

∣∣∣∣ ,
where C1 := {z ∈ C, |z| ≤ 1}; AN (P ) is the number of points among z1, . . . , zN

falling into P , |P | denotes the volume P ; supremum is extended over all secto-
rial region P of unit circle |z| ≤ 1.

The similar definition of discrepancy DN has for the s-dimensional sequence
of complex points Z

(s)
n =

(
z
(s)
1 , . . . , z

(s)
n

)
, zj ∈ C.

We say that the sequence zn passes the s-dimensional test on uncorrelated-
ness if it passes the s-dimensional test on equidistribution

(i.e. D
(s)
N

(
z
(s)
1 , . . . , z

(s)
N

) → 0 at N → ∞).
For the construction of the sequence of PRN’s on [0, 1) frequently the con-

gruential recursion of the form

yn+1 ≡ f(yn) (mod m),

is used, where f(u) is an integral-valued function.
We will investigate the sequence of complex numbers produced by recursion

(3) zn+1 ≡ z0 · (u + iv)n (mod pm)

where z0 and u+ iv are Gaussian integers, (z0, p) = 1; u2 +v2 ≡ ±1 (mod pm).
For real sequences xn produced by congruential recursion, an estimate for

DN can be obtained by the Erdős–Turán–Koksma inequality (see,[3, Th. 3.10].
In our paper we get an analogue of the Erdős–Turán–Koksma inequality for

the sequence of pseudorandom complex numbers. And then we show that the
sequence generated by (3) is a sequence of PRN’s in C1.

2. Preliminary results

Notation. Let G denote the ring of the Gaussian integers, G := {a+bi : a, b ∈
∈ Z}; N(z) = |z|2 be the norm of z ∈ G. For γ ∈ G denote Gγ (respectively,
G∗γ) the complete system of residues (respectively, reduced residues system) in
G modulo γ; p is a prime number in Z; p is a Gaussian prime number. If q is
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a positive integer, q > 1, then we write eq(x) = e2πi x
q for x ∈ R. Symbols ”O”

and ”�” are equivalent; νp(α) = k if pk|α, pk+1 � |α.

Let M > 1 be a positive integer and let y1, y2, . . . , yN be some sequence
of points from GM and let YM = {yn

M |n = 0, . . . , N − 1}. For P ∈ F denote
A(P, YM ) the number of points from YM contained in P .

We will adapt the proof from [2] for an analogue of the Erdős–Turán–
Koksma inequality.

We define the adequate approximation of sectorial region P ∈ F,

P :=
{

z

q
: z ∈ G, N1 ≤ N(z) ≤ N2, 0 ≤ ϕ1 < arg z ≤ ϕ2 < 2π

}
, q ∈ N.

We say that the set S(P ) is the adequate approximation of P if

• (i) A(P, YN (M)) = A(S(P ), YN (M)) + O
(
N

1
2

)
,

• (ii) volumes |P | and |S(P )| are ”similar”,

• (iii) A(S(P ), YN (M)) has a representation by an exponential sum.

Let N1, N2, ϕ1, ϕ2 be the parameters in the definition of P . For r, s ∈ ZM we
set r = r

M , s = s
M .

Determine
(4)

Sr,s :
{

β =
α

M
: α ∈ GM , r < N(β) ≤ r +

1
M

, 2πs < arg α ≤ 2π

(
s +

1
M

)}
.

Put
S(P ) :=

⋃
r,s

Sr,s⊂P

Sr,s.

It is obvious that S(P ) = P (N1, N2, ψ1, ψ2), where

N1 = min
{ a

M
, a ∈ ZM : N1 ≤ a

M

}
N2 = min

{
b

M
, b ∈ ZM : N2 ≤ b

M

}
ψ1 = min

{
2πa

M
, a ∈ ZM : ψ1 ≤ 2πa

M

}
ψ2 = min

{
2πb

M
, b ∈ ZM : ψ2 ≤ 2πb

M

}
.
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We proved the following analogue of the Erdős–Turán–Koksma inequality
(see, [3])

Theorem 1. Let M > 1 be integer. Then for any sequence {yn}, yn ∈ GM ,
the discrepancy DN of points

{
yn

M

}
satisfies the inequality

DN ≤ 2

(
1 −

(
1 − 2π

M

)2
)

+

+
1
M

∑
γ∈GM
γ �=0

min
(

1
| sin π	(γ)| ,

1
| sin π
(γ)|

)
1
N

(
|SN | + O

(
N

1
2

))
,

where SN =
N−1∑
n=0

eM (	(γyn)).

Proof. By an analogue with the work [2] we infer

(5) RN (S(P )) :=
A(S(P ))

N
− |S(P )| =

1
N

N−1∑
n=0

χS(P )(xn) − |S(P )|,

where xn = yn

M , χΔ is the characteristic function of the set Δ.
By the equality

χSr,s
(x) =

∑
α∈Sr,s

1
M2

∑
γ∈GM

eM (γ(α − x))

we get

(6)
|RN (S(P ))| ≤

≤ ∑
0 �=γ∈GM

1
M2

∣∣∣∣∣ ∑
z(r,s)∈Sr,s

eM (−	(γz(r, s)))

∣∣∣∣∣ ·
∣∣∣∣ 1
N

N−1∑
n=0

eM (	(γyn))
∣∣∣∣ ,

where z(r, s) is the complex number such that

N(z(r, s)) =
r

M
, arg z(r, s) =

2πs

M
.

In order to calculate the first inner sum over Sr,s one needs an estimate of
the sum

(7)
∑

M
=

∑
N1<N(ω)<N2
ϕ1≤arg ω≤ϕ2

eM (	(γω)), (0 �= γ ∈ GM ).



Congruential generator of complex pseudo-random of numbers 215

The sum
∑

M can be considered as a sum of coefficients of the next Dirichlet
series for the Hecke Z-function over the Gaussian field Q(i):

Zm(s, δ0, δ1) =
∑

0 �=ω∈G

e2πi�(ωδ1)

N(ω + δ0)s
e4mi arg ω, (	s > 1).

Putting δ0 = 0, δ1 = γ
M , we obtain for any T > 1 by a standard way the

following estimates:

(8)

∑
N(ω)≤X

eM (γω) = (ϕ2 − ϕ1)
∑

N(ω) ≤ xeM (γω) + O

⎛⎝ 1
T

∑
N(ω)≤x

1

⎞⎠+

+ O

⎛⎝(ϕ2 − ϕ1)
T∑

m=1

∣∣∣∣∣∣
∑

N(ω)≤x

eM (γω)e4mi arg ω

∣∣∣∣∣∣
⎞⎠ .

(9)
∑

N(ω)≤x

eM (γω)e4mi arg ω �ε
x

1
2+ε

M
1
4

+ M
1
2 (|m| + 3)1+ε

(for the details, see Chapter 2 of [1], for example).
Next, we have a simple analogue of the estimate of linear exponential sum

over G

(10)

∣∣∣∣∣ ∑
N1<N(ω)≤N2

22πi�(αω)

∣∣∣∣∣ ≤
≤ (N2 − N1)

1
2 min

(
(N2 − N1)

1
2 , 1
| sin π�(α)| ,

1
| sin π�(α)|

)
.

Now by (4)–(9), putting T = x
2
3 and taking into account that |P | =

= ϕ2−ϕ1
2 (N2 − N1), we obtain our assertion. �

3. Sequence of PRNs produced by the cyclic group En

Let p ≡ 3 (mod 4) be a prime integer. Consider the set of the classes of
residue (mod pn) over G, such that for every α ∈ En we have N(α) ≡ ±1
(mod pn). Respectively for a convolution of multiplication the set En forms a
group. It is well known that a regular generative element of E1 (i.e. u2 + v2 ≡
−1 (mod p), u2 + v2 = −1 + ph, (h, p) = 1) is a generative element for any E	,
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 = 1, 2, . . . , n. Moreover, |En| = 2(p + 1)pn−1 (|En| is the number of elements
in En).

We fix the generative element of En and let some z0 ∈ Gn, (N(z0), p) = 1.
We call z0 an initial value for the sequence {zm}, where zm = z0(u + iv)m,
m = 0, 1, . . . , N − 1.

Lemma 1 (([4], pp. 232–233)). Let p ≡ 3 (mod 4), n > 3, and let u + iv is
a generative element of the group En. Then for every 0 ≤ 
 ≤ pn−2, 0 ≤ k <
< 2(p + 1), we have

(u + iv)2(p+1)p�+k ≡ A(
, k) + iB(
, k) (mod pn),

where

A(
, k) ≡ A0(k) + A1(k)
 + · · · + An−1(k)
n−1 (mod pn),

B(
, k) ≡ B0(k) + B1(k)
 + · · · + Bn−1(k)
n−1 (mod pn),

Moreover,

Aj(k) = Aju(k) − Bjv(k), Bj(k) = Ajv(k) + Bju(k), j = 0, 1, . . . , n − 1;
A0 ≡ 1 (mod p), B0 ≡ 0 (mod p);

A1 ≡ 0 (mod p3), A2 = p2A′2, (A′2, p) = 1;

B1 = pB′1, (B′1, p) = 1, B2 ≡ A3 ≡ B3 ≡ · · · ≡ An−1 ≡ Bn−1 ≡ 0 (mod p3);
u(0) = 1, v(0) = 0, (u(p + 1), p) = 1, p||v(p + 1);

(v(k), p) = 1 for k �= 0, p + 1.

Corollary 1.

p||A1(k), Aj(k) ≡ 0 (mod p2), j = 2, 3, . . . ; k �= 0, p + 1;

p2||A1(0), Aj(0) ≡ 0 (mod p3), j = 2, 3, . . . ;

p2||A1(p + 1), p2||A2(k), Aj(p + 1) ≡ 0 (mod p3), j = 3, 4, . . . ;

p2||B2(k) if k �= 0, p + 1; B2(k) ≡ 0 (mod p3) else;

Bj(k) ≡ 0 (mod p3), j = 3, 4, . . . ; νp(B1(k)) = 1, k = 0, 1, . . . , 2p + 1.

Lemma 2. Let α ∈ Gpn , α = phα0, (α0, p) = 1, h < n, and let zm = z0(uiv)m

(mod pn), m = 0, 1, . . . , 2(p + 1)pn−1 − 1.
Then ∣∣∣∣∣∣

N−1∑
j=0

epn−1(	(αzj))

∣∣∣∣∣∣ ≤ 2p
n−h−r−1

2 ,

where r is determined from (13)(see, below) and depends on α.
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Proof. Let us denote

νp(α) = h, 0 ≤ h < n − 1, α = phα0, (α0, p) = 1;

Mh = 2(p + 1)pn−1−h.

Then we have

(11)

∣∣∣∣∣
M0−1∑
m=0

epn−h−1(	(α0z
m))

∣∣∣∣∣ = p2h

∣∣∣∣∣
Mh−1∑
m=0

epn−h−1(	(α0z
m))

∣∣∣∣∣ =

= p2h

∣∣∣∣∣∣
2p+1∑
k=0

pn−h−1−1∑
	=0

epn−h−1(aAk(
) − bBk(
))

∣∣∣∣∣∣ .
For every k = 0, 1, . . . , 2p + 1, we consider the polynomial

aAk(
) − bBk(
) =
n−1∑
j=0

cj(k)
j ,

where

cj(k) = (aAj − bBj)u(k) + (bAj − aBj)v(k), j = 0, 1, . . . , n − 1.

In particular,

(12)

c1(k) = (aA1 − bB1)u(k) + (bA1 − aB1)v(k) =
= (au(k) + bv(k))A1 − (bu(k) − av(k))B1,

c2(k) = (aA2 − bB2)u(k) + (bA2 − aB2)v(k) =
= (au(k) + bv(k))A2 − (bu(k) − av(k))B2.

We see that for all values of k = 0, 1, . . . , 2p + 1

νp(A1(k)) �= νp(B1(k)), νp(A2(k)) �= νp(B2(k)).

Now if for given α0 and k the inequality

(13) νp(c1(k)) ≥ νp(c2(k)) = r

holds, then the inner sum over 
 in (11) can be estimated as p
n−h+r−1

2 (such
sum by consequent slope leads to the Gaussian sum).

In other cases (i.e., νp(c1(k)) < νp(c2(k))) this sum is vanishes.

Hence, from (10)-(12) we infer the assertion of lemma. �
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Lastly we prove the main result

Theorem 2. Let the sequence {zn} be generated by the recursion

zm+1 ≡ zm(u + iv) (mod pn),

where z0 ∈ Gpm , u + iv is a generative element of the group En of classes of
residue modulo pn with the norms that ≡ ±1 (mod pn). Then the discrepancy
of the points

{
zm

pn

}
, m = 0, 1, . . . , N − 1, N ≤ 2(p + 1)pn−1 satisfies the

inequality

DN ≤ 2

(
1 −

(
1 − 2π

pn

)2
)

+ N−1p
n
2 log pn.

Proof. Indeed, for every h, 0 ≤ h ≤ n−1 there is at most O(pn−h−r) numbers
α0, α0 ∈ Gpn−h for which νp(c1(k)) ≥ νp(c2(k)) = r, where c1(k), c2(k) are
determined by (11).

Now, by Lemma 2 and Theorem 1 we immediately obtain the theorem. �

If A, B ∈ Z, (B, p) = 1, then for A · B−1 (mod pn) we shall write
[

A
B

]
pn

Remark 1. The characterization of elements for the sequence {zm} (producing

by (3)) permits to construct the new sequences of PRN’s in interval [0, 1]
(

for

example,
{

1
pn 	(zm)

}
,
{

1
pn 
(zm)

}
,
{

1
pn

[
�(zm)
�zm

]
pn

})
.

Remark 2. It is possible to deduce from Theorem 1 that the sequence of
complex numbers zn produced by the recursion

zm+1 ≡ αz−1
m + β + γzm (mod pn),

α, β, γ, z0 ∈ G, (α, p) = (z0, p) = 1, β ≡ γ ≡ 0 (mod p), passes the
s-dimensional test for the equidistribution and unpredictability.
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