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Abstract. The sequences of complex pseudo-random of numbers (PRN’s)
producing by powers of generating element of the norm group FE,, in the
residue class ring modulo p™ (p is a rational prime) over the ring of Gaus-
sian integers are studied.

1. Introduction

We consider the sequence of complex numbers {z, }, |z,| < 1. Let 0 < & <
<& <1,0< 01 <o <27, N(2) = |2|2, and let P(&, ) denotes the sectorial
region of unit circle |z| <1

(1) P=P ) :={z€C: & <N(z) <&, g1 <argz < @a}.

Denote by § the collection of sectorial regions P(&, ¢) for all £ and ¢.

We say that the sequence {z,} is pseudo-random in the unit circle if it is
induced by a determinative algorithm and its statistic properties are ”simi-
lar” to the property of the sequence of the random numbers. The ”similarity”
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means that this sequence closely adjacent to uniformly distributed in the disk
|z| <1, and its elements are uncorrelated. On these properties of the sequence
of pseudo-random numbers (abbreviation: PRN’s) can destine by value of dis-

crepancy Dy of the points z1, 22, ..., 2N
An(P)  |P|
2 Dn(z1,...,2n) = sup |———— — —|,
2 ( )i sup |20
where Cy := {z € C, |z| < 1}; An(P) is the number of points among 21, ..., z2x

falling into P, |P| denotes the volume P; supremum is extended over all secto-
rial region P of unit circle |z| < 1.

The similar definition of discrepancy Dy has for the s-dimensional sequence
of complex points Z,(f) = (2§5)7 cee 27(15)), zj € C.

We say that the sequence z, passes the s-dimensional test on uncorrelated-
ness if it passes the s-dimensional test on equidistribution
(i.e. Dg\?) (z§s), .. .,z](\?)) —0at N — o0).

For the construction of the sequence of PRN’s on [0, 1) frequently the con-
gruential recursion of the form

Yn+1 = f(yn) (mOd m)a

is used, where f(u) is an integral-valued function.
We will investigate the sequence of complex numbers produced by recursion

(3) Znt1 = 20 - (u+ )" (mod p™)

where zy and u+iv are Gaussian integers, (z9,p) = 1; u? +v? = £1 (mod p™).

For real sequences x,, produced by congruential recursion, an estimate for
Dy can be obtained by the Erdés—Turdn—Koksma inequality (see,[3, Th. 3.10].

In our paper we get an analogue of the Erdés—Turan-Koksma inequality for
the sequence of pseudorandom complex numbers. And then we show that the
sequence generated by (3) is a sequence of PRN’s in C;.

2. Preliminary results

Notation. Let G denote the ring of the Gaussian integers, G := {a+bi : a,b €
€ Z}; N(z) = |z|* be the norm of z € G. For v € G denote G (respectively,
G?%) the complete system of residues (respectively, reduced residues system) in
G modulo ~; p is a prime number in Z; p is a Gaussian prime number. If ¢ is
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a positive integer, ¢ > 1, then we write e,(z) = ™% for z € R. Symbols ?O”
and "< are equivalent; v,(a) = k if p¥|a, p*+L fa.

Let M > 1 be a positive integer and let yi,y2,...,yn be some sequence
of points from Gy and let Yy = {4%|n = 0,...,N — 1}. For P € § denote
A(P,Yyr) the number of points from Yy, contained in P.

We will adapt the proof from [2] for an analogue of the Erdds—Turdn—
Koksma inequality.

We define the adequate approximation of sectorial region P € g,
P::{;: z€ G, N; < N(z) <N, 0§g01<argz§<p2<27r}, q € IN.

We say that the set S(P) is the adequate approximation of P if

o (i) A(P,Yx(M)) = A(S(P), Y (M)) + O (N*}),

e (ii) volumes |P| and |S(P)| are ”similar”,

o (iii) A(S(P),Yn(M)) has a representation by an exponential sum.

Let N1, Na, @1, 2 be the parameters in the definition of P. For r,s € Z); we

set T =47 ,5 = 77.
Determine
(4)
S dB= O aeGy, F<NB) <T+—, 275 < <on (542
. = — — T — .
3 U o M, T <7 U’ s <arga <2mw (S i
Put
S(P): Sf’g
S?,ZECP

It is obvious that S(P) = P(N1, Na,1,12), where

— a a
lemln{M,aGZM: ngﬁ}
Ny = b beZy: N <i
o = min iR i
. 2ma 2ma
wlzmln{M,anMt ¢1§M}
. 27h 27h
¢2:mln{M, bEZM wQSM}
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We proved the following analogue of the Erdés—Turan—Koksma inequality
(see, [3])

Theorem 1. Let M > 1 be integer. Then for any sequence {y,}, yn € G,
the discrepancy Dy of points { } satisfies the inequality

DNgz(l_(l_j;)Q)+

M Z (|s1nﬂ'3?( )|’ sin73%(*y)|)]17(|SN|+O(Né))’

YEGM
¥#0

N-1
where Sy = > e (R(yyn))-
n=0
Proof. By an analogue with the work [2] we infer

N—-1

6) RSP = 20 is(P) = £ 3 xsiry () - 1S(P)]
n=0

where z,, = y" , XA is the characteristic function of the set A.
By the equahty

> m Y enlrla— )

aes?,? YEG M
we get
[Bn(S(P))] <
(6) 1 1 N1
< X gl X em(=R(z(n9)| v 2 em(R(Oyyn))|
0#£vEG M 2(r,s)E€S7 5 n—

where z(r, s) is the complex number such that

2
arg z(r,s) = il

N((r,9)) = =

r
M )

In order to calculate the first inner sum over Sy one needs an estimate of
the sum

(7) ZM = > emu(R(w)), 0#v€Gu).

N1<N(UJ)<N2
pr<argw<¢ps
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The sum ) ,, can be considered as a sum of coefficients of the next Dirichlet
series for the Hecke Z-function over the Gaussian field Q(i):

271'28?((4}51)

(5 60751 Z 4mzargw (éRS > 1)
0£weG N(w+do)*

Putting 50 = 0, 51 =
following estimates:

47, We obtain for any 7" > 1 by a standard way the

1
Z m(Ww) = (p2 — 1 ZN ) < zen(yw) + O 7 Z 1]+
N(w)<X N(w)<z

(8)

T
+O | (p2 — 1) Z ejvj(’yw)e4mi argw
m=1 |N(w)<z

. Fte
(9) S (et < Do b (] +3)1¢

N(w)<z

(for the details, see Chapter 2 of [1], for example).
Next, we have a simple analogue of the estimate of linear exponential sum
over G

Z 227Ti3?(o¢w)
Ny <N(UJ)§N2

<

(10)

1 . 1
< (N2 — N1)2 min ((N2 —N)Z, G |sinw1s(a)|>~

Now by (4)—(9), putting 7 = z% and taking into account that |P| =
= #2571 (N, — Ny ), we obtain our assertion. [ |

3. Sequence of PRNs produced by the cyclic group E,

Let p = 3 (mod 4) be a prime integer. Consider the set of the classes of
residue (mod p™) over G, such that for every o € E,, we have N(a) = £1
(mod p™). Respectively for a convolution of multiplication the set E,, forms a
group. It is well known that a regular generative element of E; (i.e. u? +v? =
—1 (mod p), u? +v? = —1+ph, (h,p) = 1) is a generative element for any Ey,
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¢=1,2,...,n. Moreover, |E,| =2(p+1)p"~! (|E,| is the number of elements
in Ey).

We fix the generative element of E,, and let some zy € Gy, (N(20),p) = 1.
We call zp an initial value for the sequence {z,,}, where z,, = zo(u + iv)™,
m=0,1,...,N —1.

Lemma 1 (([4], pp. 232-233)). Let p = 3 (mod 4), n > 3, and let u + v is
a generative element of the group E,. Then for every 0 < £ <p" 2, 0<k <
<2(p+1), we have

(u+ iv) 2Pk = A0 k) +iB(6,k) (mod p),

where

Al k) = Ag(k) + Ay (B)0 + -+ + Ay (k)" (mod p™),

(£,k) = Bo(k) + Bi(k)l + -+ B, 1 (k)"~" (mod p"),
Moreover,

Aj(k) = A]u(k) — BjU(/C), Bj(k) = Aj’l)(k) + Bju(k), ] = 0, 1, ey, — ].;
Ap=1 (modp), Bp =0 (mod p);

A1 =0 (mod p?), Ay = p2AL, (Ay,p) =1,

By =pB), (B),p)=1, Bo=A3=Bs=---=A, 1=B,_1=0 (modp?);
u(0) =1, v(0) =0, (u(p+1),p) =1, pllo(p+1);

(v(k),p) =1 for k#0,p+ 1.

Corollary 1.

p|lA1(k), A;(k) =0 (mod p?), j=2,3,...; k#0,p+ 1;

p?||A1(0), 4;(0)=0 (mod p*), j=2,3,...;

PllA1(p + 1), p°||A2(k), Aj(p+1)=0 (mod p*), j=3,4,...;

p?||Ba(k) if k#0,p+1; Ba(k) =0 (mod p?) else;

Bj(k)=0 (modp*), j=3,4,...;v,(Bi1(k)) =1, k=0,1,...,2p+ 1.
Lemma 2. Let a € Gpn, a = pag, (ap,p) =1, h < n, and let z, = zo(wiv)™

(mod p™), m =0,1,...,2(p+ 1)p~~1 — 1.
Then

n—h—r—1

N-1
Z epn—1(R(az;))| <2p 2,
j=0

where 1 is determined from (13)(see, below) and depends on «.
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Proof. Let us denote
Vp(a) = ha 0 S h<n-— ]-a o :pha()a (a()ap) = 17
My, =2(p+ 1)p" 1"

Then we have

D epuoni(R(apz™))| =
m=0

(11)

2p+1p'n h—1 -1

2y Z epn-n-1(aA(€) — bBy(0))] .
k=0 £=0

For every kK =0,1,...,2p + 1, we consider the polynomial

|
—

n

aAp(0) = bBp(0) =) ¢;(k)¥,

<.
I
<)

where
¢j(k) = (aA; — bBj)u(k) + (bA; —aBj)v(k), =0,1,...,n— 1.

In particular,

c1(k) = (aA; — bBy)u(k) + (bAy — aBy)v(k) =

) = (au(k) + bo () Ay — (bu(k) ~ av() By,
co(k) = (aAy — bBo)u(k) + (bAy — aBo)v(k) =

= (au(k) + bo(k)) Az — (bu(k) — av(k))Bs.

We see that for all values of kK =0,1,...,2p+1
vp(A1(k)) # vp(Bi(k)), vp(Az(k)) # vp(Ba(k)).
Now if for given agy and k the inequality

(13) vp(e1(k)) > vp(ca(k)) =7

holds, then the inner sum over £ in (11) can be estimated as pE (such

sum by consequent slope leads to the Gaussian sum).
In other cases (i.e., vp(c1(k)) < vp(ca(k))) this sum is vanishes.

Hence, from (10)-(12) we infer the assertion of lemma. [ |
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Lastly we prove the main result

Theorem 2. Let the sequence {z,} be generated by the recursion
Zm+1 = zm(u+v)  (mod p"),

where zg € Gpm, u + v is a generative element of the group E, of classes of
residue modulo p™ with the norms that = £1 (mod p™). Then the discrepancy

of the points {’;—’3}, m = 0,1,....,N — 1, N < 2(p + 1)p"~! satisfies the

2
2 n
Dy <2 <1 — (1 — :) ) + N7'p2 logp™.
p

Proof. Indeed, for every h, 0 < h < n—1 there is at most O(p”_h_r) numbers
g, a9 € Gpn—n for which vp(c1(k)) > vp(ca(k)) = r, where c1(k), ca(k) are
determined by (11).

Now, by Lemma 2 and Theorem 1 we immediately obtain the theorem. H

inequality

If A,B€Z, (B,p) =1, then for A- B~! (mod p") we shall write [%]pn

Remark 1. The characterization of elements for the sequence {z,,} (producing

by (3)) permits to construct the new sequences of PRN’s in interval [0, 1] { for

example, {p%%(zm)}y {#S(zm)}, {pl" ng::)}pn})

Remark 2. It is possible to deduce from Theorem 1 that the sequence of
complex numbers z,, produced by the recursion

tmit = @z + B+ vzn  (mod ph),

aaﬂafY,ZO € G7 (Oé,p) = (2071)) = 17 /8 =79 = 0 (IIlOdp), passes the
s-dimensional test for the equidistribution and unpredictability.
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