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Abstract. In this paper we present experimental data to confirm the
heuristics that allowed us to use refinements to reduce the heuristic run-
ning time of the elliptic curve primality proving algorithm to o(ln4

n). We
described our implementation of the algorithm of Atkin and Morain in an
earlier paper [3], where the fastest known algorithms are used for various
parts and we applied heuristics and refinements to obtain the improved
running time. Here we justify the heuristics with practical data.

1. Introduction

The Elliptic Curve Primality Proving algorithm (ECPP) of Atkin and Mo-
rain is a widely prevalent algorithm for primality testing. Starting from a
probable prime n0, it is called recursively on a sequence of probable primes
n1, . . . , nl of decreasing size, until nl is small enough to be easily deterministi-
cally verified prime. The original implementation of the algorithm is described
in the paper of Atkin and Morain [1], and several modifications were made
in order to decrease the heuristic running time of the original implementation
O(ln4+ε n) (see [7] [8]). In our work [3] it is proven that the heuristic running
time can be reduced to o(ln4 n) using the fastest possible algorithms under
some heuristic assumptions. We ran several experiments in Magma [2] to con-
firm our statements in practice. In this paper we present some results of these
experiments.

Although presenting all of them would be too long for this paper, it is
possible to download them from the page http://www.math.ru.nl/~gykiss.
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2. The ECPP algorithm

As the ECPP algorithm is described in detail in [3], we only give a short
outline here.

The input of the algorithm is a large positive odd integer n that has passed
some compositeness tests (it is a probable prime).

Algorithm 2.0.1. ECPP

(D) Starting with n0 = n, form a sequence of probable primes n0, . . . , nl, such
that ni+1 is a divisor of the order of an elliptic curve mod ni, such that
ni+1 > ( 4

√

ni+1)2, and such that nl is small enough to be easily recognized
as a prime.

(F) For each of the integers ni, with i = 0, 1, . . . , l − 1, construct the curves
and points for the proof.

(V) Verify that nl is prime, and verify that ni is prime, for i = l − 1,

l− 2, . . . , 0, by showing that the points have the right order on the curves
and that ni+1 > ( 4

√

ni + 1)2.

In this paper we only deal with (D), so we describe this part of the algorithm
in some more detail.

The ‘Downrun’ part (D) of ECPP will be called recursively with input ni;
the aim of one iteration is to find ni+1. We describe the i-th iteration here.

Algorithm 2.0.2. Downrun

(D) Select a pair (D, u) of negative discriminant D and integer u such that
mi(u) = ni +1−u, the order of an elliptic curve mod ni, is the product
of small primes and a probable prime ni+1 that exceeds ( 4

√

ni + 1)2. For
simplicity those mi(u) that have this property we call almost smooth.

This is done as follows:

(0) Select discriminants D suitable for ni from a list.

(1) Reduce the binary quadratic form nix
2 +Bxy + B

2
−D

4ni

y2, where B is

such that B2
≡ D mod 4ni. If this provides a second order algebraic

integer ν ∈ Q(
√

D) with ν · ν = ni, then u = ν + ν and the pair
(D, u) is usable.

(2) For all pairs (D,±u) of the previous step, determine ni + 1− u and
ni + 1 + u. Select those which are almost smooth.

(3) Select the best possible pair (D, u) from this list, and let ni+1 be the
large probable prime factor of ni + 1 − u
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3. Heuristics

The main point of our previous paper [3] was that if we want to decrease the
heuristic running time of ECPP to o(ln4 n) then, besides the fast algorithms,
we need to apply certain refinements. The theoretical background is described
in detail in [3], so here we only list the important facts and explanations.

Parameters

First we will describe a few parameters that play a crucial role in our im-
plementation.

There are three main parameters that are used in the algorithm to control
the Downrun, introduced in previous papers [1], [7], [8], but used in a different
way. We refer to the steps of the description of this algorithm in the previous
section.

d: In step (0) we select a set of discriminants D. In order to control the size
of this set, we apply an upper bound on the size of the discriminants, which
will be denoted by d. In steps (1) and (2) we need to perform a quadratic
form reduction for essentially each discriminant that is suitable for the current
input, as well as an integer factorization and a primality test for each successful
discriminant; thus the number of selected discriminants has a huge impact on
the running time, and it is controlled through d.

s: In step (1) we also have to extract the modular square roots of discrimi-
nants D mod ni. That can be done faster if we extract the square roots of the
prime divisors of the D-s instead. An upper bound s on the size of the factors
of the discriminants controls the size of the set of primes on which we have to
perform the square root extraction, and this bound s will also have an effect
on the number of the discriminants of course, as we discard discriminants that
are not s-smooth.

b: One of the bottlenecks we encounter, is the need to factor the curve orders
mi(u) = ni +1−u, as performed in step (2). There are two ways to control the
running time of the factorizations. The first one, that was mentioned above,
is to control the size of the discriminant set through d and s; but we can also
restrict the set of primes that we use to factor the curve orders. Most of the
factorization is done using a form of trial division, and we put a bound b on
the size of the primes used.

The value of the parameters chosen will depend on the current ni, and so
they ought to be denoted by d(ni), s(ni) and b(ni). By choice the parameters
will all be of the form

a lnc1 ni ln lnc2 ni

for certain values of c1 and c2 that are not dependent on ni.
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Estimates

After describing the main parameters, we get to the assumptions and esti-
mates that provide the core of our heuristics and refinements.

As mentioned before, we control the discriminant set that is used in the
iterations; by e

(
s(ni), d(ni)

)
we denote the number of the curve orders that

we gain in step (2) after processing a set of s(ni)-smooth discriminants up to
d(ni). The expected value of e

(
s(ni), d(ni)

)
is

ē
(
ni, s(ni), d(ni)

)
=

∑
D

2t

h(D)
,

where t is the number of the prime factors of D. For simplicity ē will denote
ē
(
ni, s(ni), d(ni)

)
if not ambiguous. We expect

h(D) = O(
√

D).

The number l of the almost b smooth curve orders is expected to be

λ
(
s(ni), d(ni), b(ni)

)
= eγ

ln b(ni)
lnni

e
(
s(ni), d(ni)

)
.

If not ambiguous λ
(
s(ni), d(ni), b(ni)

)
will be denoted by λ.

The size difference between ni and ni+1 is G(ni). The expected size differ-
ence is

Ḡ(ni) = ln b(ni);

and we denote it by Ḡ if it is not ambiguous.

4. Experiments

In Figure 1 and Figure 2 we show the relation between h(D) and
√

D as
found. Figure 2 presents the same graphs as Figure 1 but on a much finer scale.
The graphs on the left present the average value of

√

D/h(D) as a function of
D, while the graphs on the right present a cumulative average of the same
function. As h(D) = O(

√

D) as we expect the curve is more or less a straight
line. It is interesting that the cumulative average has a maximum at 3 · 108

(but this may be due to the implementation of the class number function in
Magma).
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Figure 1.
√

D/h(D) as a function of D

Figure 2.
√

D/h(D) as a function of D on finer scale

Figure 3 displays the relation between ē and e
(
s(ni), d(ni)

)
for numbers

with 3400 digits (around 10000 bits), that is, the number of curve orders found
versus the expected number. On the abscissa the ē values are marked and on
the ordinate the actual number of curve orders found in all experiments that
we did for numbers up to 3400 digits (with varying values of s and d). We see
that all points are close to the identity function, indicating that ē is a good
estimator for e.
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Figure 3. Precision of ē

As was mentioned before, the parameters d(ni) and s(ni) have an effect on
the value e

(
s(ni), d(ni)

)
, the number of the curve orders that will be found.

In our previous paper [3] we state that if we decrease d(ni) below ln2 ni, the
number of the curve orders will drop considerably. On the other hand, for the
value of s(ni) it was stated that it is useful to keep it below

√
d(ni), because

in practice we do not lose too many curve orders in this case, but the running
time of extracting the modular square roots will drop from O(ln3 n ln ln lnn)
to o(ln3 n). We wanted to see this behavior in practice.

In Figure 4 and 5 we can see the relation between s(ni) = lnσ(ni) and
e
(
s(ni), d(ni)

)
. The value of d is fixed, namely d(ni) = ln2(ni). In each case,

on the abscissa there are values for σ in the range 0.5 . . .1.1. The ordinate of
Figure 4 gives the values of e

(
s(ni), d(ni)

)
that occurred for 3400 digit numbers

on the left, and the average value of the e
(
s(ni), d(ni)

)
-s for the same numbers

on the right. On the ordinate of Figure 5 we see the average value of the
e
(
s(ni), d(ni)

)
-s for 500–3400 digit numbers.

Figure 4. e
(
s(ni), d(ni)

)
and its mean as a function of S for 3400 digit numbers
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Figure 5. The mean of e
(
s(ni), d(ni)

)
as a function of σ for 3400 digit numbers

In Figure 6 and 7 we can see the same type of graphs, only in this case the
value of s is fixed to s(ni) = ln(ni), and d(ni) = lnδ(ni), where δ ranges over
0.5–2.

Figure 6. e
(
s(ni), d(ni)

)
and its mean as a function of δ for 3400 digit numbers

Figure 7. The mean of e
(
s(ni), d(ni)

)
as a function of δ for 3400 digit numbers
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It is clear that decreasing the value of d(ni) has a more drastic effect on the
value of e

(
s(ni), d(ni)

)
: if we decrease the value of δ from 2 to 1.9, the value

of e
(
s(ni), d(ni)

)
drops from slightly more than 7000 to just over 5000, but if

we decrease the value of σ from 1 to 0.9 we still have 6500 curve orders.

To compute λ, the expected number of curve orders that will factor in the
required way, we need e(s(ni), d(ni)), as we saw in the previous chapter. It is
possible to use the actual e(s(ni), d(ni)), but for that we need to determine the
curve orders. In practice we use ē to predict this value, and for this we only
need the appropriate s(ni)-smooth discriminants up to d(ni), which requires
much less computation; the estimation will be less accurate. We ran experiment
for both ways.

Figure 8 and 9 show the actual number l of the almost smooth curve orders,
as a function of the value of λ. In both cases we included the identity function
to see how much the graphs diverse from it.

Figure 8. l as a function of λ for 3400 digit numbers using actual values e

Figure 9. l as a function of λ for 3400 digit numbers using estimated values ē
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In the first case we generated e random numbers and factored them with
bound b, for several different values of b, and in each situation we determined
the value of λ. We use e instead of e

(
s(ni), d(ni)

)
as this experiment was

carried out with a set of random numbers, not curve orders produced by the
algorithm. In this case we have an actual value e. On the abscissa of the first
graph of Figure 8 are the different values of λ, the ordinate shows the values l.
The abscissa of the second graph is the same as the first, but on the ordinate
shows the average values of the l-s.

Figure 9 shows the situation as it is in practice. Instead of using an actual
value e, we use the estimation ē while estimating the value of λ. The abscissa
and ordinate are the same as in Figure 8. It does not make to much sense to
determine the average of l-s in this case; while in the first case we have the
same set of values λ as the e-s are the same for all the experiments and the b-s
are increased in the same way, here we only have different values λ.

It is important to determine whether, in order to increase the number l

of the almost smooth curve orders, it might be better to increase b(ni) or
e
(
s(ni), d(ni)

)
. In the picture of Figure 10 and 11 we see the relation between

l, b and e and the identity function. Again we have to mention that we are
not using b(ni) or e(s(ni), d(ni)) here as we are talking about factoring random
numbers, not generated from an ni. Here b is of the form 2T

·s ln 2, with s = 106

and T = 0, . . . , 12.

Figure 10 shows l as a function of T . The left hand graph includes all the
values that occurred as l while increasing T , while the right hand graph gives
the average values of l on the ordinate. In Figure 11 we present l as a function
of e. We have the same situation here as in Figure 10: the left hand graph
gives all the values of l, and the second only shows the average value of the l-s.

Figure 10. l as a function of T for 3400 digit numbers
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Figure 11. l as a function of e for 3400 digit numbers

We can see that the value of l increases similarly in both cases, but we
need a bigger increase if we choose to increase b. If we consider the expected
value λ = eγ

· ē · ln b(n)/ lnn of l, we see that a 1.04-fold increase of e increases
the value of λ also 1.04-fold. But increasing the value of b = 2T

· s · ln 2 to
2T+1

· s · ln 2 results in

λ(2 · b) = eγ
· ē · ln(2T+1

· s · ln 2)/ lnn =

eγ
· ē ·

(
ln(2T

· s · ln 2)/ lnn + ln 2/ lnn
)

=

λ(b)
(
1 + ln 2/ ln(2T

· s · ln 2)
)
,

thus on average also a 1.04-fold increase in the range of T = 0, ..., 12. If we
compare the 1st and 13th iterations in both cases, the value of e has to be
increased 1.619-fold, but the value of b increased 4096-fold. Of course there
are situations in which it can still be worthwhile to increase b, for example if
we have a huge amount of curve orders already, or if we have a very efficient
factoring algorithm.

Increasing b(ni) has some pleasant effects on the length of the path from
ni, I(ni), and also on the gain, G(ni). We state in our previous paper that
Ḡ(ni) = ln b(ni) and I(ni) � lnni/G(ni). Therefore increasing b(ni) will
increase G(ni) and decrease I(ni).

The length I(ni) of the ECPP-path could refer to two different measures:
on the one hand we simply have a path from ni to the small primes, along
which we verify the primality of ni; on the other hand, there is a sequence of
probable primes that we used to get to the small primes, including backtracks
and repetitions. We will denote the first one by Ib(ni) and the second by In(ni);
one would expect a constant factor between them.

In Figure 12 we see G(ni) as a function of Ḡ(ni) and the identity function.
We observe a constant difference between G(ni) and Ḡ(ni), due to the relatively
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significant difference between the sum and the integral for small primes and

Ḡ(ni) =
∑

p∈P,p≤b(ni)

ln p

p
∼

∫
b(ni)

2

1
x

dx = ln b(ni) − ln 2.

Figure 12. G(ni) as the function of ln b(ni) for 3400 digit numbers

Figure 13 shows Ib(n0) on the left and In(n0) on the right. We can see that
the graph of Ib(n0) is much steeper. Figure 14 shows the average Ib(n0) and
In(n0) as a function of log10 n together with the identity function. Indeed, the
graphs are consistent with a constant factor of around 3.95 between the two
functions.

Figure 13. Ib(n0) and In(n0) as the function of log10 n0 up to 7000 digit num-
bers
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Figure 14. Average Ib(n0) and In(n0) as the function of log10 n0 up to 7000
digit numbers

5. Conclusion

The aim of this paper is to study the behavior of the heuristics from [3] on
a manageable set of experimental data. In the previous chapter we reported
on experiments for numbers ranging from 500 digits up to 3400 digits; we
summarize the results here. The assumptions underlying the analysis in [3]
were the following

(1)
h(D) = O(

√

D).

(2)

e
(
s(ni), d(ni)

)
≈

∑
D

2t

h(D)
,

where e
(
s(ni), d(ni)

)
is the number of curve orders that we gain after

processing all the s(ni) smooth discriminants D up to d(ni).

(3) The heuristic running time of extracting the modular square roots will
drop from O(ln3 n ln ln lnn) to o(ln3 n) if we choose a value of s(ni) that
is below

√
d(ni) while retaining a reasonable number of discriminants by

not decreasing the value of d(ni) below ln2 ni.

(4)

λ
(
s(ni), d(ni), b(ni)

)
= eγ

ln b(ni)
lnni

e
(
ni, s(ni), d(ni)

)
,

where λ
(
s(ni), d(ni), b(ni)

)
is the expected number of curve orders that

factor into the required form.
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(5)
Ḡ(ni) = ln b(ni),

where G(ni) is the expected size of the difference between ni and ni+1.

(6)

I(ni) �
lnni

G(ni)
,

where I(ni) is the length of the path from ni to the small primes.

For (1) we presented a non cumulative and a cumulative average of
√

D

h(D)

and in the range we looked at it is close to a constant value of approximately
3.14.

For (2) we presented e
(
s(ni), d(ni)

)
as a function of ē and the graph is

indeed close to the identity function.
To see (3) we looked at e as a function of s(ni) and d(ni) and the latter has

a much bigger gradient, which means that if we want to decrease the running
time by decreasing the number of discriminants, it is much more effective to
decrease s(ni) below

√
d(ni) because the number of discriminants will not drop

much, while the running time will drop from O(ln3 n ln ln lnn) to o(ln3 n).
Regarding (4), we expected the estimation of l to be much more precise if

we use the actual e
(
s(ni), d(ni)

)
instead of ē, but practice shows ([6]) that it

is not worthwhile to compute the curve orders for estimation purposes, as it
takes too much time, and working with ē seems to be appropriate.

The justification of (5) is given by Figure (12), apart from the constant
difference between the functions G(ni) and b(ni) that was explained above, as
the two lines are parallel; the same holds for (6).

The overall conclusion is that the experiments support our assumptions in
practice for numbers in the range from 500 to 3400 digits. Running experiments
on numbers beyond this range would take too much time; therefore in a real
implementation we increment the parameters in much smaller steps. There is
an implementation of ECPP within the confines of this project, that is based
on the heuristics. Further information can be found in [6].
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[3] Bosma, W., E. Cator, A. Járai and Gy. Kiss, Primality proofs
with elliptic curves: heuristics and analysis, Annales. Univ. Sci. Budapest.,
Sect. Comp., 44 (2015),

[4] Farkas, G., G. Kallós and Gy. Kiss, Large primes in generalized
pascal triangles, Acta Univ. Sapientiae, Informatica 3(2) (2011), 158–171.
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