
Annales Univ. Sci. Budapest., Sect. Comp. 44 (2015) 165–182

DATA DEPENDENCIES IN FUZZY OBJECT

ORIENTED DATABASES MODEL

BASED ON HEDGE ALGEBRA

Nguyen Cong Hao (Hue University, Vietnam)

Truong Thi My Le (Quy Nhon, Vietnam)

Communicated by Bui Minh Phong

(Received July 18, 2015; accepted October 10, 2015)

Abstract. The single most important concept in database schemas design
is that of a functional dependency. A functional dependency describes the
relationship among attributes and is one of the key concepts used in the
normalization. On the basic of fuzzy object-oriented databases model with
hedge algebra has been studied in [2], in this paper, we introduce the study
of the form of data dependencies, including fuzzy functional dependency
in object class, fully fuzzy functional dependency, partial fuzzy functional
dependency, transitive fuzzy functional dependency and fuzzy functional
dependency with quanifier in natural languages. Based on the concepts of
fuzzy functional dependencies, the paper also propose the normal forms of
fuzzy object-class in the model.

1. Introduction

Data dependencies are theoretical foundation to define normal forms of
database schema, in order to limit to the minimum data redundancy, the main

Key words and phrases: Fuzzy functional dependency, fuzzy object-oriented databases, hedge
algebra, fuzzy normal forms.
2010 Mathematics Subject Classification: 11A07, 11A25, 11N25, 11N64.

https://doi.org/10.71352/ac.44.165

https://doi.org/10.71352/ac.44.165

166 Nguyen Cong Hao and Truong Thi My Le

cause breaks in the integrity of data in the database system. When the se-
mantics of the database was extended, and allows storage of uncertainty and
incomplete information (called fuzzy information), the semantics of the data
dependencies has changed, i.e. to expand types of data dependencies. There
have been many projects focused on expanding the types of data dependencies,
especially in fuzzy database model [3], [4], [6], [7], [11] and fuzzy object oriented
databases [7], [13].

Various fuzzy object oriented databases models have been developed mainly
based on fuzzy set theory [13], theoretical possibility [9], [13], similar relation-
ship [13], hedge algebra [2]. In particular, fuzzy object oriented database model
was built using hedge algebra is a new approach to help process fuzzy informa-
tion more efficiently, simply and intuitively. With this approach, a new model
of fuzzy object oriented databases have been developed, in which the language
semantics is quantified by quantitative mapping of hedge algebra. Meanwhile,
the value of language is data, not the labels of fuzzy set representation semantic
of linguistic values, and fundamental advantage that it allows to assess seman-
tics of fuzzy information and classical data in a consistent manner [1]. Based
on the new approach [2], we proposed several fuzzy data dependences, normal
forms of fuzzy object-class and related issues.

2. Fundamental concepts

2.1. Hedge algebra

Hedge algebra is one approach to detecting algebraic structure of the value
domain of the linguistic variable. In view of algebra, each value domain of
the linguistic variable X can be interpreted as an algebra AX = (X, G,H,≤),
in which Dom (X) is the terms domain of linguistic variable X is generated
from a set of primary generators G = {c−, c+) by the impact of the hedges
H = H− ∪ H+, W is a neutral element; ≤ is an semantically ordering rela-
tion on X, it is induced from the natural qualitative meaning of terms. Order
structure induced directly so is the difference compared to other approaches.
When we add some special elements, then edge algebra become an abstract
algebra X = (X, G, H, Σ, Φ,≤), which Σ, Φ are two operators taking the limit
of the set terms is generated when affected by the hedges in H. Alternatively,
if the symbol H(x) = {h1...hpx/h1, ...hp ∈ H}, then Φx = infimumH(x)
and Σx = supremumH(x). Thus, hedge algebra X is built on foundation
of Hedge algebra AX = (X, G, H,≤), where X = H(G), Σ and Φ are two
additional operators. Then X = X ∪ Lim(G) with Lim(G) is the set of ele-

Data dependencies in fuzzy object oriented databases 167

ments limited: ∀x ∈ Lim(G),∃u ∈ X : x = Φu or x = Σu. The limitation
elements are added to hedge algebra X to make the new calculation meant
and so X =(X,G, H, Σ, Φ,≤) called complete hedge algebra. The quantitative
semantics function (ν), fuzziness measure function (fm), sign function (SGN)
and the properties of hedge algebra can reference in the relevant documents
[1], [2].

2.2. Similarity level k

When defining the neighborhood level k, we expect such representative
value it must be inner point of neighborhood level k. So we define similarity
level k as follows: We always assume that each set H− and H+ contains at
least two hedges. At the Xk is the set of all elements of length k. Based on
the fuzzy interval level k and k + 1 we describe in not form the construction a
partition of the domain 0, 1] as follows: With k = 1, fuzzy interval level 1 in-
cludes I(c−) and I(c+). The fuzzy interval level 2 on interval I(c−) is I(hpc

−) =
= I(hp−1c

−) = . . . = I(h2c
−) = I(h1c

−) = νA(c−) = I(h−1c
−) =

= I(h−2c
−) = . . . = I(h−q+1c

−) = I(h−qc
−). Then, we construct a parti-

tion at similar level 1 consists of equivalence classes follows: S(0) = I(hpc
−),

S(c−) = I(c−)\[I(h−qc
−) ∪ I(hpc

−]; S(W) = I(h−qc
−) ∪ I(h−qc

+); S(c+) =
= I(c+)\[I(h−qc

+) ∪ I(hpc
+)] and S(1) = I(hpc

+).

Similarly, with k = 2, we can construct a partition of similar classes level 2.
Such on fuzzy interval level 2, I(hic

+) = (νA(Φhic
+), νA(Φhic

+)] with two
nearby fuzzy interval are I(hi−1c

+) and I(hi+1c
+), we will have equivalence

classes following: S(hic
+) = I(hic

+)\[I(hphic
+) ∪ I(h−qhic

+)], S(Φhic
+) =

= I(h−qhi−1c
+)∪ I(h−qhic

+) and S(Σhic
+) = I(hphi−1c

+)∪ I(hphic
+)), with

−q ≤ i ≤ p and i
= 0. By the same, we can construct a partition of the equiv-
alence classes level k at any. However, in fact we can limit hedges consecutive
action onto primary terms c− and c+, denoted by k∗(k∗ ∈ Z). Classic and
fuzzy values is called the similar level k if the representative value of their in
the same a class similar level k.

3. Fuzzy oriented–object database base on hedge algebra

3.1. Fuzzy objects

The entities in the real world or abstract concepts are often complex ob-
jects. These objects contain a certain set of information about objects and

168 Nguyen Cong Hao and Truong Thi My Le

actions based on such information. Information about the object is called ob-
ject properties and is determined by the specific value, this value can be clearly
value (the exact value) or for any reason we can not determin its exact value.
For example, the value of the attribute ”age” of an object is said to be ”about
18”, or can be a valuable language ”very young”, here is the fuzzy information.
Formally, objects have at least one attribute whose value is a fuzzy set are
fuzzy objects.

3.2. Fuzzy classes

The objects have the same properties are gathered into classes that are
organized into hierarchies. Theoretically, a class can be considered from two
different viewpoints: (a) an extensional class, where the class is defined by
the list of its object instances, and (b) an intensional class, where the class
is defined by a set of attributes and their admissible values. In addition, a
subclass defined from its superclass by means of inheritance mechanism in
object oriented database can be seen as the special case of (b) above.

Thus, a class is fuzzy because of the following several reasons: First, some
objects of a class are fuzzy, these objects belong to the class with certain degree.
Second, when a class is defined, the domain of an attribute may be fuzzy and
a fuzzy class is formed.

For example, a class Picture is fuzzy because the domain of its attribute
Year is a set of fuzzy values such as long, very long, and about 50 years. Third,
a subclass inherits one or more superclasses, in which at least one superclass is
fuzzy, then the class is also fuzzy.

In the fuzzy object oriented database, classes are fuzzy because their at-
tribute domain are fuzzy. The issue that an object belongs to a class with a
degree level k (k ∈ Z) occurs since a class or an object is fuzzy. Similarly, a
class is a subclass of another class as well with a certain degree level k because
of the class fuzziness. Therefore, the evaluations of fuzzy object-class relation-
ships and fuzzy inheritance hierarchies are the core of fuzzy object oriented
database model.

3.3. Fuzzy object-class relationships

In fuzzy object oriented database, the following four situations can be dis-
tinguished for object-class relationships: (a) Crisp class and crisp object: this
situation is the same as the object oriented database, ie the object belongs or
not to the class certainly; (b) Crisp class and fuzzy object: the class is precisely
defined and has precise boundary, the object is fuzzy since its attribute value

Data dependencies in fuzzy object oriented databases 169

may be fuzzy. In this case, the object may be a member of the class under cer-
tain degree; (c) Fuzzy class and crisp object: being the same as the case in (b),
the object may belong to the class with degree level k. For example, a Ph.D.
student and a young student class; (d) Fuzzy class and fuzzy object: in this
case, the object also belongs to the class with degree level k. The object-class
relationships in (b), (c) and (d) above is called fuzzy object-class relationships.
In fact, the case (a) can be seen as a special case of the fuzzy object-class
relationship, with the degree of the object to the class is one.

According to [1], with a fuzzy linguistic value x, we will define a interval
representation for x. In fact, hedges in linguistic values is limited, so there
exists a positive integer k∗, such that 0 < |x| ≤ k∗, ∀x ∈ X. For every
x ∈ X, put j = |x|, for every integer k, 1 ≤ k ≤ k∗, minimum neighborhood
level k of x, denoted by Omin,k(x) is defined as follows: if k = j then Omin,
k(x) = Ik+1(h−1x) ∪ Ik+1(h1x), if 1 ≤ k < j then Omin,k(x) = Ij(x) and if
j + 1 ≤ k ≤ k∗ then Omin,k(x) = Ik+1(h−1y) ∪ Ik+1(h1y). Since then, we
represent fuzzy linguistic data the following definition:

Definition 3.1. (see [1]) Let x ∈ X ∪C, a interval representation of x is a set
intervals IRp(x) is defined:

IRp(x) = {Omin,k(x)|1 ≤ k ≤ k∗}.

The data representation as above can be used to represent different types
of data. For numeric values, this is crisp data, the fuzzy degree of data equal
to 0, then each numeric value a is denoted by [a, a], and Omin,k(a) = {[a, a]},
∀k : 1 ≤ k ≤ k∗ and IRp(a) = {[a, a]}. As each interval value a is represented
by [a−ε, a+ε], with ε be considered the radius from center a. Since [a−ε, a+ε]
is crisp data, so Omin,k([a − ε, a + ε]) = {[a − ε, a + ε]},∀k : 1 ≤ k ≤ k∗ and
IRp([a− ε, a + ε]) = {[a− ε, a + ε]}. When x has length less than k, the value
ν(x) is the tip of an equivalence class I(u) in Pk. This can lead to values in the
neighborhood of x is not similarity level k. Therefore, we will build a different
partition so ν(x) is the topology of the partition for all x, |x| ≤ k, as follows:

Let X is complete and linear hedge algebra, with H+ = {h1, . . . , hp} and
H− = {h−1, . . . , h−q}, where p, q > 1. Put H1 is a set of weak hedges, H2

is the set of powerful hedges: H1 = {hi, h−j |1 ≤ i ≤ [p/2], 1 ≤ j ≤ [q/2]},
H2 = {hi, h−j |[p/2] ≤ i ≤ p, [q/2] ≤ j ≤ q}. Put Pk+1(Hn) =
= {I(hiy)|y ∈ Xk, hi ∈ Hn}, with n = 1, 2. Two interval I(x) and I(y) in
Pk+1(Hn) is called connected together if there exist consecutive intervals in
Pk+1(Hn) from I(x) to I(y). This relationship will divides Pk+1(Hn) into con-
nected components. We have, with each y ∈ Xk, Pk+1(H1) is divided into clus-
ters of the form {I(hiy)|hi ∈ H1}. Furthermore, as I(h−1y) ≤ ν(y) ≤ I(h1y)
or I(h1y) ≤ ν(y) ≤ I(h−1y) should always have ν(y) ∈ {I(hiy)|hi ∈ H1}. Now
we clustering fuzzy intervals of Pk+1(H2). Suppose Xk = {xs|s = 0, ...,m− 1}

170 Nguyen Cong Hao and Truong Thi My Le

consists of m elements are arranged in a sequence such that xi ≤ xj , i ≤ j.
Symbols H−

2 = H2 ∩ H− and H+
2 = H2 ∩ H+. Note that h−q ∈ H−

2 and
hq ∈ H+

2 . The clusters were born from the fuzzy intervals of Pk+1(H2) there
are three types of clusters: cluster on the left x0{I(hix0)|hi ∈ H+

2 }; cluster
on the right xm−1 : {I(hixm−1)|hi ∈ H+

2 }; cluster between xs and xs+1 with
s = 0, ...,m− 2: depends on Sgn(hpxs) and Sgn(hpxs+1) as follows:

C = {I(hixs), I(h
′
jxs+1)|hi ∈ H+

2 , h
′
j ∈ H−

2 }, if Sgn(hpxs) = +1 and
Sgn(hpxs+1) = +1.

C = {I(hixs), I(h
′
jxs+1)|hi ∈ H+

2 , h
′
j ∈ H+

2 }, if Sgn(hpxs) = +1 and
Sgn(hpxs+1) = −1.

C = {I(hixs), I(h
′
jxs+1)|hi ∈ H−

2 , h
′
j ∈ H−

2 }, if Sgn(hpxs) = −1 and
Sgn(hpxs+1) = +1.

C = {I(hixs), I(h
′
jxs+1)|hi ∈ H−

2 , h
′
j ∈ H+

2 }, if Sgn(hpxs) = −1 and
Sgn(hpxs+1) = −1.

Set of all the clusters is denoted C. Since {Sk(C)|C ∈ C} is a partition on
domain reference, it determines an equivalence relationship and we will call the
similar relationship level k. Due to the feature of the partition so with each
value of attribute x, there exists only one cluster that ν(x) ∈ Sk(C) and we
define similar interval level k as follows:

Definition 3.2. (see [1]) For each C ∈ C, we called similar interval level k
corresponding to C is : Sk(C) = ∪{I(u)|I(u) ∈ C}, then Sk(x) = Sk(C).

Proposition 3.1. (see [1]) Let X be a complete and linear hedge algebra, in
which H+ and H− has at least two elements. Then:

1. For each k, {Sk(u)|u ∈ X ∪ C} is uniquely identified and is a partition
of the interval [0, 1];

2. For every x, u ∈ X ∪ C, if ν(x) ∈ Sk(u) then smallest neighborhood level
k of x within Sk(u), ie Omin,k(x) ∈ Sk(u).

Definition 3.3. For any object o has attributes {A1, A2, ..., An} of class C,
X is a complete and linear hedge algebra, with each k, 1 ≤ k ≤ k∗, Sk is
the similar relationship level k on domain of attribute value Ai of the class C.
Then, for each u ∈ X, the value o(Ai) and u is called the equal level k, denoted
o(Ai) =k u, if and only if Omin,k(o(Ai)) ∈ Sk(u).

Definition 3.4. For two any objects o1, o2 on attributes {A1, A2, ..., An} of
class C, X is a complete and linear hedge algebra, for each k, 1 ≤ k ≤ k∗, Sk

Data dependencies in fuzzy object oriented databases 171

is similar relationship level k on domain of attribute value Ai of the class C.
Then:

1. Two values o1(Ai) and o2(Ai) are called the equal level k, denoted
o1(Ai) =k o2(Ai), if and only if exist an equivalence class Sk(u) of simi-
lar relationship Sk so that Omin,k(o1(Ai)) ∈ Sk(u) and Omin,k(o2(Ai)) ∈
∈ Sk(u);

2. Two values o1(Ai) and o2(Ai) are called the different level k, denoted
o1(Ai)
=k o2(Ai), if not exist an equivalence class Sk(u) of similar rela-
tionship Sk so that Omin,k(o1(Ai)) ∈ Sk(u) and Omin,k(o2(Ai)) ∈ Sk(u).

Lemma 3.1. (see [1]) The equal relationship level k(=k) is an equivalence
relationship.

Corollary 3.1. Let o1, o2 are any two objects on attributes {A1, A2, . . . , An}
of class C, Sk is similar relationship level k(0 < k ≤ k∗) on the domain of
attribute value Ai of class C,

1. If o1(Ai) =k o2(Ai) then o1(Ai) =k′ o2(Ai),∀k′ < k;

2. If o1(Ai)
=k o2(Ai) then o1(Ai)
=k′ o2(Ai),∀k′ < k.

4. Data dependency in fuzzy object oriented database model

4.1. Fuzzy functional dependency in object-class

Two objects o1 and o2 is called equal level k on set X, denoted o1(X) =k

=k o2(X), if for every A ∈ X, we have o1(A) =k o2(A). Two objects o1 and
o2 are called different level k on the set X, denoted o1(X)
=k o2(X), if exists
X ∈ A : o1(A)
=k o2(A).

Definition 4.1. Let fuzzy object class C with attributes U, X, Y ⊆ U, for every
integer k and 1 ≤ k ≤ k∗. We say that the class C satisfies fuzzy functional
dependency X functionally determines Y with level k, denoted X ∼>k Y , if
∀o1, o2 ∈ C, o1(X) =k o2(X) ⇒ o1(Y) =k o2(Y).

Algorithm 4.1. Check the class C satisfies fuzzy functional dependency
X ∼>k Y ?

Input: Class C with set of attributes X, Y and set of objects
{oi, i = 1, ...,m}.

Output: True if C satisfies X ∼>k Y , else False.

172 Nguyen Cong Hao and Truong Thi My Le

Method:

1. Construct hedge algebras for fuzzy attributes of X and Y .

2. Construct minimum neighborhood level k for values of objects of X and
Y .

3. Browse in turn pairs objects of class C to detect pairs objects do not
satisfy the functional dependency:

For (each object oi ∈ C, i = 1, ...m− 1)

For (each object oj ∈ C, j = i + 1, ...,m)

If (oi(X) =k oj(X)) and (oi(Y)
=k oj(Y)) Return False;

Return True.

Algorithm 4.1 ensures stop because number of attribute (n) and number of
objects (m) of class C are finite and complexity of the algorithm is O(m2 ∗ n).

Example 4.1. We consider the class “Employee” includes the following at-
tributes:

Class Employee {
Oid : allID

Name : string

Department : string

Job : string

Experience :[fuzzy] domain [0 .. 40]: float

Salary : [fuzzy] domain [2..30]: float

Income tax : [fuzzy] domain [0 .. 4.15]: float

}
Where Name, Department and Job are classic attributes, but Experience,

Salary and Income tax are fuzzy attributes. In fact, between attributes may
exist inexact relationships such as “The employees in the same parts have
similar job and experience must have nearly equal salary” ..., such relationships
are called fuzzy functional dependencies. Let us consider some of the objects
of class “Employee” as follows:

Data dependencies in fuzzy object oriented databases 173

Oid Name Department Job Experience Salary Income tax

oid1 Binh Technical Engineer 25 15 0.36
oid2 Lan Accounting Accountancy more low more low 0
oid3 Minh Technical Manager very high very high very high
oid4 Tuan Technical Engineer about 26 possibly high high
oid5 Van Accounting Accountancy 5.5 5 0

Table 4.1. Class “Employee”

Suppose we have the required test class “Employee ” satisfy fuzzy functional
dependency: Department, Job, Experience ∼>2 Salary?

Experience, Salary and Income tax are fuzzy attributes, those values are
number, interval and linguistic values, so first, we will build a hedge algebra
for each fuzzy attribute:

− For the attribute Experience, we have:
G = {low, high} , H− = {little, possibly} and H+ = {more, very}. The fuzzy
parameters: fm(low) = 0.35; fm(high) = 0.65; μ(very) = 0.3; μ(more) = 0.25;
μ (possibly) = 0.2; μ(little) = 0.25. cdom(Experience) = [0, 40], we use coeffi-
cient r = 40 to convert from [0, 1] to [0, 40].

+ With k = 1, we have: |Ir(low)| = fm(low) × 40 = 14. Ir(low) = [0.0, 14],
fmr(very low) = μ(very) × fm(low) × 40= 4.2, fmr(more low) = μ(more)
× fm(low) × 40 = 3.5. Because {Ir(very low), Ir(more low), Ir(possiblylow),
Ir(little low)} are a partition of Ir(low), we deduce Ir(very low) = [0.0, 4.2],
Ir(more low) = (4.2, 7.7]. So, Omin,1(more low) =Ir(more low) = (4.2, 7.7].
Similar, we have: Omin,1(very high) = Ir(very high) = (32.2, 40].

+ With k = 2:
Omin,2(more low) = Ir(more more low) ∪ Ir(possibly more low) = (5.25,
6.825], Omin,2 (very high) = Ir(possibly very high) ∪ Ir(more very high) =
= (34.15, 37.66].

For number and interval values, we have: Omin,k(25) = [25, 25],
Omin,k(5.5) = [5.5, 5.5], Omin,k (about 26) = [25, 27], ∀1 ≤ k ≤ k∗.

− For the attribute Salary, we have: G = { low, high },
H− = {little, possibly} and H+ = { more, very}. The fuzzy parameters:
fm(low) = 0.25; fm(high) = 0.75; μ(very) = 0.3; μ(more) = 0.3;
μ (possibly) = 0.25; μ(little) = 0.15. cdom(Salary) = [2, 30].

+ With k = 1, we have: Omin,1(very high) = Ir (very high) = (23.7, 30],
Omin,1(possibly high) = Ir (possibly high) = (12.15, 17.4],
Omin,1(more low) = Ir(more low) = (4.1, 6.2].

+ With k = 2, we have: Omin,2(very high) = Ir(possibly very high) ∪
∪ Ir(more very high) = (24.645, 28.11], Omin,2(possibly high) =
= Ir(possibly possibly high) ∪ Ir(more possibly high) = (12.9375, 15.825],

174 Nguyen Cong Hao and Truong Thi My Le

Omin,2(more low) = Ir (more more low) ∪ Ir(possibly more low) =
= (4.73, 5.885].

We found class “Employee” satisfy fuzzy functional dependency: Depart-
ment, Job, Experience ∼>2 Salary for:

Department and Job are two crisp attributes, so objects of the class either
equal or different with all levels above that properties. Therefore, we only need
to consider the objects are equal on these crisp attributes:

− At the first object (oid1) and fourth (oid4), we have:
oid1(Experience) =2 oid4 (Experience) because ∃ S2(high)= Ir(very possibly
high) ∪ Ir(little more high) = (24.14, 25.7] ∪ (25.7, 27.325] = (24.14, 27.325]:
Omin,1 (oid1(Experience)) = [25, 25]⊆ ∃ S1(high) and
Omin,1(oid4(Experience)) = [25, 27] ⊆ ∃ S1(high). And we have:
oid1(Salary) =2 oid4(Salary) because ∃ S2(possibly high) = Ir(possibly possibly
high)∪Ir(more possibly high) = (12.9375, 14.25] ∪ (14.25, 15.825] = (12.9375,
15.825] : Omin,2(oid1(Salary)) = [15, 15] ⊆ S2(possibly high) and
Omin,2(oid4(Salary))= (12.9375, 15.825] ⊆ S2(possibly high).

− At the second object (oid2) and fifth (oid5), we have:
oid2 (Experience) =2 oid5(Experience) because
∃ S2(more low) = Ir(more more low)∪Ir(possibly more low) = (5.25, 6.825] :
Omin,2(oid2(Experience)) = (5.25, 6.825] ⊆ S2(more low) and
Omin,2(oid4(Experience)) = [5.5, 5.5]⊆ S2(more low). And we have:
oid2(Salary) =2 oid5(Salary) because ∃ S2(more low) = Ir(more more low) ∪
∪Ir(possibly more low) = (4.73, 5.885]: Omin,2(oid2 (Salary)) = (4.73, 5.885]⊆
⊆ S2(more low) and Omin,2(oid5 (Salary))= [5, 5] ⊆ S2 (more low).

Proposition 4.1. For fuzzy object class C with set of attributes U , and
X, Y, Z ⊆ U . We have inference axioms based on fuzzy functional dependen-
cies:

• Reflexivity: If X ⊇ Y , then X ∼>k Y .

• Augmentation: If X ∼>k Y , then XZ ∼>k Y Z.

• Transitivity: If X ∼>k Y and Y ∼>k Z, then X ∼>k Z.

• Pseudotransitivity: If X ∼>k1 Y and Y ∼>k2 Z, then X ∼>min(k1,k2) Z

These axioms are soundness.

Proof.

• Reflexivity: Since X ⊇ Y , so with any two objects o1, o2 of class C, if
o1(X) =k o2(X) then o1(Y) =k o2(Y). So by definition fuzzy functional
dependencies 4.1, we have X ∼>k Y.

Data dependencies in fuzzy object oriented databases 175

• Augmentation: Since class C satisfies fuzzy functional dependency
X ∼>k Y , so we have o1(X) =k o2(X) and o1(Y) =k o2(Y), with all
o1, o1∀C(1). Otherwise, we have o1(XZ) =k o2(XZ) so o1(X) =k o2(X)
and o1(Z) =k o2(Z) (2). Since (1) and (2) we have o1(Y Z) =k o2(Y Z).
Thus XZ ∼>k Y Z.

• Pseudotransitivity:

– By suppose X ∼>k1 Y : o1(X) =k1 o2(X) then o1(Y) =k1 o2(Y),
and X ∼>k1 Y : o1(Y) =k2 o2(Y) then o1(Z) =k2 o2(Z) (1).

– Consider the case k1 > k2: o1(X) =k1 o2(X) =⇒ o1(X) =k2

=k2 o2(X), and o1(Y) =k1 o2(Y) =⇒ o1(Y) =k2 o2(Y) (by Corol-
lary 3.1) (2). Since (1) and (2) we have: o1(X) =k2 o2(X) =⇒
=⇒ o1(Z) =k2 o2(Z) (3).

– Consider the case k1 < k2: By Corollary 3.1 too, if o1(Y) =k2

=k2 o2(Y) =⇒ o1(Y) =k1 o2(Y) and o1(Z) =k2 o2(Z) =⇒
=⇒ o1(Z) =k1 o2(Z) (4). From (1) and (4) we have: o1(X) =k1

=k1 o2(X) =⇒ o1(Z) =k1 o2(Z) (5). Since (3) and (5):
o1(X) =min(k1,k2) o2(X) =⇒ o1(Z) =min(k1,k2) o2(Z). Thus if
X ∼>k1 Y and Y ∼>k2 Z then X ∼>min(k1,k2) Z.

4.2. Fuzzy functional dependency with linguistic quantifiers

The use of the linguistic quantifiers such as several, most, much, many, few
... in fuzzy functional dependencies makes describe the data dependencies are
flexible and close to reality, such as: “Most employees in the same parts have
similar job and experience must have approximately equal salary”. Zadel [11]
divided by quantifiers into two type namely: absolute quantifier and proportion
quantifier. Call Q is quantifier of fuzzy functional dependency, O is the original
set of objects of the class C, ||O|| = m is the number objects of set O, domain
DC = [0..m]. We can divide the quantifier Q into two cases:

1. Where Q is the absolute quantifier: We denote ||Q|| is the determined
amount of quantifier Q, if Q is increasingly linear quantifier: We construct
a function fA

Q : DC → {0, 1} such that ∀x ∈ DC , fA
Q (x) = 1 if x ≤ |Q| and

fA
Q (x) = 0 otherwise. If Q is decreasingly linear quantifier: I construct a

function fD
Q : DC → {0, 1} such that ∀x ∈ DC , fD

Q (x) = 1 if x ≥ |Q| and
fD

Q (x) = 0 otherwise.

2. Where Q is the proportion quantifier: Since Dc = [0, m] is continuous
so we using linear transformation convert to interval [0, 1]. Then we
build two fuzzy interval of the two primitive concept small and large,

176 Nguyen Cong Hao and Truong Thi My Le

denoted by I(small) and I(large) with corresponding length fm(small)
and fm(large) so that they form a partition of [0, 1]. Next, we build
equivalence classes S(1), S(large), S(W), S(small), S(0). From there,
we can assert that the total number of objects of class C satisfy fuzzy
conditions with the quantifier Q if the total number of objects Q belongs
to one of the intervals: S(1)×m, S(large) × m, S(W) × m, S(small) ×
m or S(0) × m.

Definition 4.2. For fuzzy object class C with set of fuzzy attributes U , and
X, Y ⊆ U . We call Osatisfy the set of objects of class C satisfy X and Y with
level set k and is defined as follows: Osatisfy = {oi ∈ C : (∃j
= i, oi(X)k =
= oj(X) ∧ oi(Y) =k oj(Y)) ∨ (∀j
= i, oi(X)k
= oj(X))}; Odissatisfy is a set
of objects of class C satisfy X, but not satisfy Y with level k and are defined:
Odissatisfy = {oi ∈ C : ∃j
= i, oi(X)k = oj(X) ∧ oi(Y)
=k oj(Y)}.
Definition 4.3. For fuzzy object class C with set of attributes U , and X, Y ⊆
⊆ U . We say that the class C satisfies fuzzy functional dependencies X de-
termines Y with level k and linguistic quantifier Q, denoted by X ∼>kQ Y ,
if:

1. Q is the increasingly linear absolute quantifier then fA
Q (||Osatisfy||) = 1;

2. Q is the decreasingly linear absolute quantifier then fD
Q (||Osatisfy||) = 1;

3. Q is the quantifier “few”, then ||Osatisfy||/m ∈ S(0);

4. Q is the quantifier “about a half” then |Osatisfy||/m ∈ S(W);

5. Q is the quantifier “most” then ||Osatisfy||/m ∈ S(1);

6. Q is the quantifier “all” the ||Osatisfy||/m = 1.

Algorithm 4.2. Check the class C satisfies fuzzy functional dependency
X ∼>k QY ?

Input: Class C with set of attributes X, Y , the set of objects oi, i = 1, ...,m,
level k and quantifier Q.

Output: True if C satisfies X ∼>k QY , else False.
Method:

1. Construct hedge algebras for fuzzy attributes of X and Y .

2. Construct minimum neighborhood level k for values of objects of X and
Y .

3. Osatisfy = O.

Data dependencies in fuzzy object oriented databases 177

4. Browse in turn objects of class C to detect objects satisfies X but do not
satisfy Y with level k:

For (each object oi ∈ C, i = 1, ...,m− 1)

if (∃j
= i : (oi(X) =k oj(X)) and (oi(Y)
=k oj(Y)))

Osatisfy = Osatisfyoi ;

5. result = False;

6. if (Q is absolute quantifier)

7. if (fA
Q (||Osatisfy||) = 1 or fD

Q (||Osatisfy||) = 1) then result = True;

8. if (Q is proportion quantifier)

9. Construct intervals S(1), S(large), S(W), S(small), S(0)

10. Case Q of

11. “few”: if ||Osatisfy||/m ∈ S(0) then result = True;

12. “about a half’ : if ||Osatisfy||/m ∈ S(W) then result = True;

13. “most” : if ||Osatisfy||/m ∈ S(1) then result = True;

14. “all” : if ||Osatisfy||/m = 1 then result = True;

15. Return result.

Algorithm 4.2 ensures stop because number of attributes (n) and number of
objects (m) of class C are finite and complexity of the algorithm is O(m2 ∗ n).

Example 4.2. We consider the class ”Employee” has structure such as 4.1
and the object as follows:

Oid Name Department Job Experience Salary Income tax

oid1 Binh Technical Engineer 25 15 0.36
oid2 Lan Accounting Accountancy more low more low 0
oid3 Minh Technical Manager very high very high high
oid4 Tuan Technical Engineer about 26 possibly high low
oid5 Van Accounting Accountancy 5.5 5 0
oid6 Hai Technical Manager 35 about 26 little low
oid7 Nhan Accounting Accountancy about 10 about 8 0
oid8 Danh Technical Engineer 8 10 0.05
oid9 Suong Accounting Accountancy 10 7 0

Table 4.2. Class “Employee”

178 Nguyen Cong Hao and Truong Thi My Le

Let consider the constraint that use of quantifier: “Most of the employees in
the same parts have similar job and experience must have nearly equal salary ”.
This constraint corresponding fuzzy functional dependency Department, job,
experience ∼>2,Most salary. We use algorithm 4.2 to check class C satisfies
fuzzy functional dependency with linguistic quantifier as above or not. Based
on the example 4.1, we have the results:

– For the attribute Experience:
Omin,k(oid1(Experience)) = Omin,k(25)=[25, 25],∀1 ≤ k ≤ k∗,
Omin,2(oid2 (Experience)) =Omin,2(more low) = (5.25, 6.825],
Omin,2(oid3 (Experience)) = Omin,2 (very high) = (34.15, 37.66],
Omin,k(oid4(Experience)) =Omin,k(about 26) = [25, 27], ∀1 ≤ k ≤ k∗,
Omin,k(oid5(Experience)) =Omin,k(5.5) = [5.5, 5.5], ∀1 ≤ k ≤ k∗,
Omin,2(oid6(Experience)) = Omin,k(high) = (24.14, 27.325],
Omin,k(oid7(Experience)) = Omin,k(8) = [8, 8], ∀1 ≤ k ≤ k∗,
Omin,k(oid8(Experience)) = Omin,k(about 10) = [9, 11], ∀1 ≤ k ≤ k∗,
Omin,k(oid9(Experience)) =Omin,k(10) = [10, 10],∀1 ≤ k ≤ k∗.

– For the attribute Salary:
Omin,k(oid1(Salary)) = Omin,k(15) = [15,15], ∀1 ≤ k ≤ k∗,
Omin,2(oid2(Salary)) =Omin,2(more low) = (4.73, 5.885],
Omin,2(oid3 (Salary)) = Omin,2(very high) = (24.645, 28.11],
Omin,2(oid4(Salary)) = Omin,2(possibly high) = (12.9375, 15.825],
Omin,k(oid5(Salary)) = Omin,k(5) = [5, 5], ∀1 ≤ k ≤ k∗,
Omin,k(oid6(Salary)) = Omin,k(about 26) = [25, 27], ∀1 ≤ k ≤ k∗,
Omin,k (oid7(Salary)) = Omin,k(10) = [10, 10], ∀1 ≤ k ≤ k∗,
Omin,k(oid8(Salary)) = Omin,k(about 8) = [7, 9], ∀1 ≤ k ≤ k∗,
Omin,k(oid9(Salary)) = Omin,k(7) = [7, 7],∀1 ≤ k ≤ k∗.

According to steps 3 and 4 in algorithm 4.2, we built a set Osatisfy =
= {oid1, oid2 , oid3, oid4, oid5, oid6, oid8}. Because “most” is proportion quan-
tifier so we built fuzzy interval S(1). Select fm(big) = 0.6, fm(small) = 0.4,
μ(very) = 0.4, μ(more) = 0.15, μ(possibly)= 0.25, μ(little)=0.2. We have
fm(very big) = 0.4 × 0.6 = 0.24, so S(1) = (0.76, 1]. Moreover, we have
||Osatisfy||/m = 7/9 = 0.777 ∈ S(1), So by definition, the class “Employee”
satisfies fuzzy functional dependency Department, job, experience ∼>2,most

salary.

4.3. The forms of fuzzy functional dependencies and the normal
forms of fuzzy object class

The main purpose of construction a data model is to create an exact rep-
resentation of the data, the data relationships and constraints. To achieve this
goal, we have identified a set of appropriate relations. One approach to de-

Data dependencies in fuzzy object oriented databases 179

termine the relations is called normalization. Normalization helps to database
designer checking the relations were normalized or not to avoid the occurrence
of anomalies when update data. First, we study some concepts of k-key, fully
fuzzy functional dependency, partial fuzzy functional dependency and transi-
tive fuzzy functional dependency, as the basis for the construction of the normal
forms of fuzzy object-class.

4.3.1. The forms of fuzzy functional dependencies

Definition 4.4. Let fuzzy object class C with set of attributes U, X, Y ⊆ U ,
A ∈ U , for each integer k and 1 ≤ k ≤ k∗. Then:

1. A is a fully fuzzy functional dependency on X with level k, denoted by
X ∼>kF A, if X ∼>k A and not exist Y ⊆ X to let Y ∼>k A.

2. A is a partial fuzzy functional dependency on X with level k, denoted by
X ∼>kP A, if X ∼>k A and exist Y ⊆ X to let Y ∼>k A.

3. A is a transitive fuzzy functional dependency on X with level k, denoted
by X ∼>kT A, if exist Y ⊆ U to let X ∼>k Y , Y ! ∼>k X, Y ∼>k

A, A /∈ XY .

Example 4.3. We consider the class “Student” includes attributes {IdStudent,
Name, IdClass, NameClass, Subject, scores} and set of fuzzy functional depen-
dencies F={ IdStudent ∼>1 Name, IdClass; IdClass ∼>1 NameClass; IdStu-
dent, Subject ∼>1 scores }.

We have IdStudent, Subject ∼>1 scores is fully fuzzy functional dependency
with level 1 because IdStudent !∼>1 scores and Subject !∼>1 scores l. We have
IdStudent, IdClass ∼>1 NameClass is partial fuzzy functional dependency with
level 1 because IdClass ∼>1 NameClass. We have IdStudent ∼>1 NameClass
is partial fuzzy functional dependency with level 1 because IdStudent ∼>1

IdClass; IdClass ∼>1 NameClass; NameClass /∈{ IdStudent, IdClass }.
In object oriented database model, each object has an independent existence

of its value by the object identifiers and the identifiers are invisible to user.
This can lead to instances of existing objects are equal on all the value of the
attributes, this is a form of data redundant in object oriented databases. To
overcome this problem, when design object oriented database, it is common to
use a set of attributes of the object that its value is used to uniquely identify an
object in the class. According to the concept of fuzzy functional dependency
with level k, the concept key of fuzzy class can be stated as follows:

Definition 4.5. Let fuzzy object class C with set of attributes U , and K ⊆ U .
K is called k-key of fuzzy object class C if satisfy simultaneously two conditions
as follows:

180 Nguyen Cong Hao and Truong Thi My Le

1. K ∼>k U ;

2. Not exist K
′ ⊂ K to let K

′ ∼>k U.

4.3.2. The normal forms of fuzzy object class

Definition 4.6. Let fuzzy class C with set of attribute U .

1. A fuzzy class C is in the first fuzzy object normal form with level k,
denote by k − 1FONF, if for every attribute A ∈ U , the A is not type of
collections and gets set value, or the A is type of collections and does not
get set value.

2. A fuzzy class C is in the second fuzzy object normal form with level k,
denote by k− 2FONF, if C is in k− 1FONF and all attributes non k-key
are fully fuzzy functional dependency level k on all k-key.

3. A fuzzy class C is in the third fuzzy object normal form with level k,
denote by k − 3FONF, if C is in k − 1FONF and not exist attribute
non-k-key is transitive fuzzy functional dependency level k on all k-key.

Example 4.5. Let a class “Student” is in normal form 1 − 1FONF includes
attributes U={ IdStudent, NameStudent, IdClass, NameClass, Subject, scores}
and set of fuzzy functional dependencies F={ IdStudent ∼>1 Name, IdClass;
IdClass ∼>1 NameClass; IdStudent, Subject ∼>1 scores}.

The set of attributes (IdStudent, Subject) is one 1−key of class C because
IdStudent, Subject ∼>1 U and IdStudent !∼>1U; Subject !∼>1U. We see that
class C is not in 1 − 2FONF because NameStudent, NameClass are partial
fuzzy functional dependency on k−key (IdStudent, Subject). This is the cause
of the abnormal data in class. We can reconstruct the class “ Student ” into
classes as “ Student-Class ” and “ Student-Score ” in the following normal form
1− 2FONF:

– Class “Student-Class” includes attributes {IdStudent, NameStudent, Id-
Class, NameClass} and set of fuzzy functional dependencies F1={ IdStudent
∼>1 NameStudent, IdClass; IdClass ∼>1 NameClass }.

– Class “Student-Score” includes attributes { IdStudent, Subject, scores}
and set of fuzzy functional dependencies F2={IdStudent, Subject ∼>1 scores}.
but not all the anomalies, due to dependencies exist transitive fuzzy.

The class “Student-Class” is in normal form 1−2FONF, but it still has ab-
normals because exist transitive fuzzy functional dependency IdStudent ∼>1T

NameClass. And the class “Student-Score” is in normal form 1− 3FONF.

Data dependencies in fuzzy object oriented databases 181

5. Conclusion

On the basic of fuzzy object-oriented databases model with hedge algebra
has been studied in [2], we study and construct some forms of data dependencies
in this model. The paper also propose fuzzy functional dependencies in fuzzy
object-class, some inference rules based on fuzzy functional dependencies and
prove their soundness. Besides that, some other forms of fuzzy functional
dependencies are also mentioned as basis for construction of the normal forms
of fuzzy object oriented database model. Issue about linguistic quantifiers
is also mentioned according own approach and take into fuzzy dependencies,
making functional dependencies are flexible and close to reality. Some forms
of special data dependencies in fuzzy object-class will be study in following
articles.

References

[1] Nguyen Cat Ho, Le Xuan Vinh and Nguyen Cong Hao, Unify
data and establish similarity relation in linguistic databases base on
hedge algebra, Journal of Computer Science & Cybernetics, 25(4) (2009),
314–332.

[2] Nguyen Cong Hao and Truong Thi My Le, Fuzzy object-oriented
database model base on hedge algebra, Journal of Computer Science &
Cybernetics, 20(3) (2012), 129–140.

[3] Nguyen Cong Hao, Fuzzy functional dependency with linguistic quanti-
fiers base on hedge algebra, Journal on Information and Communications
Technology, 22(2) (2009), 87–93.

[4] Nguyen Cong Hao, Fuzzy normal forms an approach hedge alge-
bras, Journal on Information and Communications Technology, 17 (2008),
101–107.

[5] Nguyen Kim Anh, Normalizing object-oriented database schema, Jour-
nal of Computer Science & Cybernetics, 19(2) (2003), 125–130.

[6] Thuan, H. and T.T. Thanh, Fuzzy functional dependencies with lin-
guistic quantifiers, Journal of Computer Science & Cybernetics, 18(2)
(2002), 97–108.

[7] Ho Cam Ha and Vu Duc Quang, Fuzzy function dependencies in fuzzy
object-oriented databases, Journal of HNUE, 7 (2011), 23–31.

182 Nguyen Cong Hao and Truong Thi My Le

[8] Raju, H.V.S.N and A.K. Mazumdar, Fuzzy function dependencies
and lossless join decomposition of fuzzy relational database systems, ACM
Transaction of Database Systems, 13(2), (1988), 129–166.

[9] Cristina-Maria Vladarean, Extending object-oriented databases for
fuzzy information modeling, S.C. WATERS Romania S.R.L, Romai J.,
9(1) (2006), 225–237.

[10] Zadeh, L.A., Fuzzy sets, Information and Control, 8 (1965), 338–353.
[11] Zadeh, L.A., A computational approach to fuzzy quantifiers in natural

languages, Computers and Mathematics with Applications, 9(1) (1983),
149–184.

[12] Sadok Ben Yahia, Habib Ounalli and Ali Jaoua, An extension of
classical functional dependency, Information Science, 119(3-4) (1999),
219–234.

[13] Ma, Z.M., Advances in Fuzzy Object-Oriented Databases: Modeling and
Applications, Idea Group Publishing, 2004.

Nguyen Cong Hao
Hue University
Vietnam
nchao@hueuni.edu.vn

Truong Thi My Le
Quang Trung University
Quy Nhon
Vietnam
Le truongthi@yahoo.com

